Publication Cover
Mineral Processing and Extractive Metallurgy
Transactions of the Institutions of Mining and Metallurgy
Volume 132, 2023 - Issue 3-4
442
Views
0
CrossRef citations to date
0
Altmetric
Articles

Role of electrochemical processes in the extraction of metals and alloys – a review

& ORCID Icon
Pages 193-209 | Received 29 May 2023, Accepted 31 Aug 2023, Published online: 11 Sep 2023

References

  • Abbasalizadeh A, Malfliet A, Seetharaman S, Sietsma J, Yang Y. 2017. Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives. J Sustainable Metallurgy. 3(4):627–637. doi:10.1007/s40831-017-0120-x.
  • Abbasalizadeh A, Seetharaman S, Venkatesan P, Sietsma J, Yang Y. 2019. Use of iron reactive anode in electrowinning of neodymium from neodymium oxide. Electrochim Acta. 310:146–152. doi:10.1016/j.electacta.2019.03.161.
  • Alam MS, Tanaka M, Koyama K, Oishi T, Lee J-C. 2007. Electrolyte purification in energy-saving monovalent copper electrowinning processes. Hydrometallurgy. 87:36–44. doi:10.1016/j.hydromet.2006.12.001.
  • Bewer G, Debrodt H, Herbst H. 1982. Titanium for electrochemical processes. JOM. 34(1):37–41. doi:10.1007/BF03337977.
  • Boldt JR, Queneau PE. 1966. Winning of nickel. London: Mathuuen. Section C, Part III.
  • Bouzat G, Carraz JC, Meyer M. 1996. Light metals. Warrendale, PA: TMS.
  • Brown AP, Loutfy RO, Cook GM, Yao NP. 1981. The electrorefining of copper from a cuprous ion complexing electrolyte. JOM. 33(7):49–57. doi:10.1007/BF03339455.
  • Caravaca C, De Córdoba G. 2008. Formation of Gd-Al alloy films by a molten salt electrochemical process. Z Naturforsch A. 63:98–106. doi:10.1515/zna-2008-1-217.
  • Cardarelli F. 2004. U. S. Patent: 20040194574 A1.
  • Castrillejo Y, Vega A, Vega M, Hernández P, Rodriguez JA, Barrado E. 2014. Electrochemical formation of Sc-Al intermetallic compounds in the eutectic LiCl-KCl. Determination of thermodynamic properties. Electrochim Acta. 118:58–66. doi:10.1016/j.electacta.2013.11.163.
  • Chen GZ, Fray DJ, Farthing TW. 2000. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 407:361–364. doi:10.1038/35030069.
  • Chen GZ, Fray DJ, Farthing TW. 2001. Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall Mater Trans B. 32:1041–1052. doi:10.1007/s11663-001-0093-8.
  • Davenport DW, King M, Schlesinger M, Biswas AK. 2002. Extractive metallurgy of copper. 4th ed. Oxford: Pergamon. Chapter 16.
  • Fray D, Schwandt C. 2017. Aspects of the application of electrochemistry to the extraction of titanium and its applications. Mater Trans. 58(3):306–312. doi:10.2320/matertrans.MK201619.
  • Fray DJ. 2008. Novel methods for the production of titanium. Int Mater Rev. 53:317–325. doi:10.1179/174328008X324594.
  • Fray DJ, Farthing TW, Chen Z. 1999. Removal of oxygen from metal oxides Patent, International Publication No: WO9964638 (1999).
  • Free ML, Moats MS. 2014. Hydrometallurgy. In: Seetharaman S, editor. Treatise on process metallurgy, Vol 3. Oxford: Elsevier; p. 99–982. Chapter 2.7.
  • Gilchrist JD. 1980. Extraction metallurgy. 2nd ed. New York, NY: Pergamon. Chapter 12.
  • Ginata MV. 2003. Titanium electrowinning. In: International Symposium on Ionic Liquids, Carry-le-Rouet, France, June 27–28, p. 1–15.
  • Ginatta MV. 2000. Why produce titanium by EW? JOM. 52(5):18–20. doi:10.1007/s11837-000-0025-0.
  • Grjotheim K, Welch BJ. 1987. Aluminium smelter technology. 2nd ed. Dusseldorf: Aluminium-Verlag. Chapter 4.
  • Han W, Chen Q, Sun Y, Jiang T, Zhang M. 2011. Electrodeposition of Mg-Li-Al-La alloys on inert cathode in molten LiCl-KCl eutectic salt. Metall Mater Trans B. 42:1367–1375. doi:10.1007/s11663-011-9567-5.
  • Han W, Li Z, Li M, Gao Y, Yang X, Zhang M, Sunab Y. 2018. Electrolytic extraction of dysprosium and thermodynamic evaluation of Cu–Dy intermetallic compound in eutectic LiCl–KCl. Royal Soc Chem Adv. 8:8118–8129. doi:10.1039/C7RA13423A.
  • Hardee K, Moats M. 2000. Application of titanium mesh-on-lead technology to metal electrowinning systems. In: Woods R, Doyle FM, editors. Electrochemistry in mineral and metal processing V. Pennington, NJ: The Electrochemical Society; p. 294–302.
  • Hart PF, Hill AWD. 1971. Electrorefining in molten salts. In: Kuhn AT, editor. Industrial electrochemical processes. Oxford: Elsevier; p. 245–254.
  • Jackson E. 1986. Hydrometallurgical extraction and reclamation. New York, NY: Ellis Harwood, John Wiley & Sons. (Chapter 5).
  • Jamrack WD. 1963. Rare metal extraction by chemical engineering techniques. New York: MacMillan. (Chapter 7).
  • Jenkins J, et al. 1999. Electrolytic copper—leach, solvent extraction and electrowinning world operating. In: Young SK, et al., editors. Copper 99–Cobre 99—Fourth International Conference, Vol. 4, Hydrometallurgy of Copper. Warrendale, PA: TMS; p. 493–566.
  • Jewell D, Jiao SQ, Kurtanjek M, Fray DJ. 2012. Titanium metal production via oxycarbide electrorefining. Denver, CO: International Titanium Association.
  • Jiao SQ, Zhu HM. 2006. Novel metallurgical process for titanium production. J Mater Res. 21(9):2172–2175. doi:10.1557/jmr.2006.0268.
  • Jiao SQ, Zhu HM. 2007. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J Alloy Compd. 438:243–246. doi:10.1016/j.jallcom.2006.08.016.
  • Kerby RC, Krauss CJ. 1980. Continuous monitoring of zinc electrolyte quality at cominco cathodic by overpotential measurements. In: Cigan JM, Mackay TS, O’Keefe TJ, editors. Lead-Zinc-Tin’80. Las Vegas, NV: TMS-AIME; p. 187–193.
  • Kjos OS, Haarberg GM, Martinez AM. 2010. Electrochemical production of titanium from oxycarbide anodes. Key Eng Mater. 436:93–101. doi:10.4028/www.scientific.net/KEM.436.93.
  • Krishnan A, Pal UB, Lu XG. 2005. Solid oxide membrane process for magnesium production directly from magnesium oxide. Metall Mater Trans B. 36:463–473. doi:10.1007/s11663-005-0037-9.
  • Leber Jr BP, Tabereaux AT, Marks J, Lamb H, Howard T, Kantamaneni R, Gibbs M, Bakshi V, Dolin EJ. 1998. Light metals. Warrendale, PA: TMS.
  • MacLeod ID, Muir DM, Parker AJ, Singh P. 1977. Solvation of ions. Some applications. II. Electrolysis of copper(I) sulphate in water-nitrile mixtures. Aust J Chem. 30:1423–1429. doi:10.1071/CH9771423.
  • Mantell CL. 1960. Electrochemical engineering. New York: McGraw-Hill. Chapter 5.
  • Marks J. 1998. Light metals. Warrendale, PA: TMS.
  • Moats M, Free M. 2007. A bright future for copper electrowinning. JOM. 59(10):34–36. doi:10.1007/s11837-007-0128-y.
  • Moats M, Guerra E, Gonzalez JA. 2008. Zinc electrowinning – operating data. In: Centomo L, Collins M, Harlamovs J, Liu J, editors. Zinc and lead metallurgy. Montreal, Canada: Canadian Institute of Mining, Metallurgy and Petroleum; p. 307–314.
  • Moats M, Hardee K, Brown Jr C. 2003a. Copper electrowinning in cobalt-free electrolyte using mesh on lead anodes. In: Dutrizac JE, Clement C, editors. Proceedings of the Copper–Cobre 2003 International Conference, volume V. Warrendale, PA: TMS; p. 543–553.
  • Moats M, Hardee K, Brown Jr C. 2003b. Mesh-on-lead anodes for copper electrowinning. JOM. 55(7):46–48. doi:10.1007/s11837-003-0125-8.
  • Moore JJ. 1990. Chemical metallurgy. 2nd ed. Oxford: Butterworth – Heinemann. Chapter 6.
  • Muir DM, Parker AJ, Sharp JH, Waghorne WE. 1975. Cuprous hydrometallurgy. Hydrometallurgy. 1:155–168. doi:10.1016/0304-386X(75)90005-5.
  • Oishi T, Koyama K, Alam S, Tanaka M, Lee J-C. 2007. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy. 89:82–88. doi:10.1016/j.hydromet.2007.05.010.
  • Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee J-C. 2013. Effect of additives on monovalent copper electrodeposition in ammoniacal alkaline solutions. Hydrometallurgy. 133:58–63. doi:10.1016/j.hydromet.2012.11.015.
  • Okabe TH, Nakamura M, Oishi T, Ono K. 1993. Electrochemical deoxidation of titanium. Metall Trans B. 24:449–455. doi:10.1007/BF02666427.
  • Ono K, Suzuki R. 2002. A new concept for producing Ti sponge: calciothermic reduction. JOM. 54:59–61. doi:10.1007/BF02701078.
  • Pal UB. 2008. A lower carbon footprint process for production of metals from their oxide sources. JOM. 60:43–47. doi:10.1007/s11837-008-0017-z.
  • Park I, Abiko T, Okabe TH. 2005. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J Phys Chem Solids. 66(2-40):410–413. doi:10.1016/j.jpcs.2004.06.052.
  • Parker RH. 1978. An introduction to chemical metallurgy. 2nd ed. Oxford: Pergamon. Chapter 7.
  • Roberts RA, Ramsey PJ. 1994. Light metals. Warrendale, PA: TMS.
  • Robinson DJ, MacDonald SA, Jiricny V. 2010. United States Patent No. US 7.658,833 B2, Feb. 9, 2010.
  • Robinson T, Moats M, Davenport W, Karcas G, Demetrio S. 2007. Electrolytic copper electrowinning – 2007 world tankhouse operating data. In: Houlachi GE, Edwards JD, Robinson TG, editors. Copper - cobre 2007 international conference – Vol. V. Montreal, Canada: Canadian Institute of Mining, Metallurgy and Petroleum; p. 375–424.
  • Sammut D, Welham NJ. 2002. The intec copper process: a detailed environmental analysis. In: Green Processing Conference, Caims, May 29–31, p. 115–123.
  • Schwandt C, Alexander DTL, Fray DJ. 2009. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control. Electrochim Acta. 54:3819–3829. doi:10.1016/j.electacta.2009.02.006.
  • Shamsuddin M. 2016. Physical chemistry of metallurgical processes. Hoboken: The Minerals, Metals and Materials Society, Wiley. Chapter 12.
  • Stefanidaki E, Hasiotis C, Kontoyannis C. 2001. Electrodeposition of neodymium from LiF–NdF3–Nd2O3 melts. Electrochim Acta. 46(17):2665–2670. doi:10.1016/S0013-4686(01)00489-3.
  • Suput M, Delucas R, Pati S, Ye G, Pal A, Powell IV AC. 2008. Solid oxide membrane technology for environmentally sound production of titanium. Miner Process Extr Metall Rev. 117:118–122. doi:10.1179/174328508X290911.
  • Suzuki RO, Ono K, Teranuma K. 2003. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall Mater Trans B. 34:287–295. doi:10.1007/s11663-003-0074-1.
  • Tabereaux AT, Peterson RD. 2014. Aluminum production. In: Seetharaman S, editor. Treatise on process metallurgy, non-ferrous production technology, Vol 3. Oxford: Elsevier; p. 949–982. Chapter X.
  • Tabereaux AT, Richards NE, Satchel CE. 1995. Light metals. Warrendale, PA: TMS.
  • Takeda O, Uda T, Okabe TH. 2014. Rare earth, titanium group metal, and reactive metal production. In: Seetharaman S, editor. Treatise on process metallurgy, non ferrous production technology, Vol 3. Oxford: Elsevier; p. 995–1069. Chapter 2.9.
  • Tang D, Xiao W, Tian L, Wang D. 2013. Electrosynthesis of Ti2Con from TiO2/C composite in molten CaCl2: effect of electrolysis voltage and duration. J Electrochem Soc. 160:F1192–F1196. doi:10.1149/2.015311jes.
  • Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A. 2001. Aluminium electrolysis. 3rd ed. Düsseldorf, Germany: Aluminium Verlag, Markting & Kommunikation GmbH.
  • Wang DH, Gmitter AJ, Sadoway DR. 2011. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc. 158:E51–E54. doi:10.1149/1.3560477.
  • Wang QY, Song J, Wu J, Jiao SQ, Hou J, Zhu HM. 2014. A new consumable anode material of titanium oxycarbonitride for the USTB titanium process. Phys Chem Chem Phys. 16:8086–8091. doi:10.1039/c4cp00185k.
  • Wells JA, Hopkins WR, Stein RB. 1992. Chemical and electrolytic processing. In: Hartman HL, editor. SME mining engineering handbook. Englewood, CO: SME; p. 2250–2258.
  • Withers J, Laughlin J, Elkadi Y, DeSilva J, Loutfy R. 2010. The electrolytic production of Ti from a TiO2 feed (the DARPA sponsored program). Key Eng Mater. 436:61–74. doi:10.4028/www.scientific.net/KEM.436.61.
  • Withers JC, Loutfy RO, Laughlin JP. 2007. Electrolytic process to produce titanium from TiO2 feed. Mater Technol. 22:66–70. doi:10.1179/175355507X214078.
  • Ye XS, Lu XG, Li CH, Ding WZ, Zou XL, Gao YH, Zhong QD. 2011. Preparation of Ti–Fe based hydrogen storage alloy by SOM method. Int J Hydrogen Energy. 36:4573–4579. doi:10.1016/j.ijhydene.2010.04.098.
  • Zhang Y, Fang ZZ, Sun P, Zheng S, Xia Y, Free M. 2017. A perspective on thermochemical and electrochemical processes for titanium metal production. JOM. 69(10):1861–1868. doi:10.1007/s11837-017-2481-9.
  • Zou X, Lu X, Zhou Z, Xiao W, Zhong Q, Li C, Ding W. 2014. Electrochemical extraction of Ti5Si3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt. J Mater Chem A. 2:7421–7431. doi:10.1039/c3ta15039a.
  • Zúñiga V, Ortega R, Meas Y, Trejo G. 2004. Electrodeposition of zinc from an alkaline non-cyanide bath: influence of a quaternary aliphatic polyamine. Plat Surf Finish. 91:46–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.