Publication Cover
Applied Earth Science
Transactions of the Institutions of Mining and Metallurgy
Volume 129, 2020 - Issue 4
105
Views
3
CrossRef citations to date
0
Altmetric
Articles

Mineralogical and geochemical characteristics of the iron–duricrust deposit in Adi-Daero area, northwestern Tigray, Ethiopia: implication for the origin and controlling factors

, , &
Pages 231-247 | Received 29 Jun 2020, Accepted 11 Aug 2020, Published online: 25 Aug 2020

References

  • Abedini A, Calagari AA. 2013. Rare earth elements geochemistry of Sheikh-Marut laterite deposit, NW Mahabad, West-Azerbaidjan province, Iran. Acta Geol Sin-Engl. 87:176–185. doi: 10.1111/1755-6724.12039
  • Abedini A, Calagari AA. 2014. REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish J Earth Sci. 23:513–532. doi: 10.3906/yer-1404-11
  • Abedini A, Khosravi M, Calagari AA. 2019. Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements. J Geochem Explor. 200:249–265. doi: 10.1016/j.gexplo.2018.09.004
  • Achyuthan H. 2004. Paleopedology of ferricrete horizons around Chennai, Tamil Nadu, India. Revista Mexicana Cie Geol. 21:133–143.
  • Alene M, Jenkin G, Leng M, Darbyshir F. 2006. The Tambien Group, Ethiopia: an early Cryogenian (ca. 800–735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield. Precambrian Res. 147:79–99. doi: 10.1016/j.precamres.2006.02.002
  • Aleva GJJ. 1994. Laterites: concepts, geology, morphology and chemistry. Wageningen: ISIRC.
  • Al–Khirbash S, Semhi K, Richard R, Nasir S, Al-Harthy A. 2013. Rare earth element mobility during lateritization of mafic rocks of the Oman ophiolite. Arab J Geosci. doi:10.1007/s12517-013-1189-6.
  • Alsalam O, Şeker C, Dedeoğlu M. 2020. Quantifying the role of chemical weathering rates on soil developed along an altitudinal transect in the mountainous environments, Turkey. Eurasian J Soil Sci. 9:140–151.
  • Anand RR, Hough RM, Salama W, Aspandiar MF, Butt CRM, González-Álvarez I, Metelka V. 2019. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: a review with new concepts. Ore Geol Rev. 104:294–355. doi: 10.1016/j.oregeorev.2018.11.003
  • Anaya-Gregorio A, Armstrong-Altrin JS, Machain-Castillo ML, Montiel-Garcia PC. 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores, recovered from southwestern Gulf of Mexico. J Palaeogeography. 7:253–271. doi: 10.1186/s42501-018-0005-3
  • Babechuk MG, Widdowson M, Kamber BS. 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol. 363:56–75. doi: 10.1016/j.chemgeo.2013.10.027
  • Beyth M. 1971. The geology of central-western Tigre. Addis Ababa: Ethiopian Institute of Geological Survey. ND37–11. Note No.: 1971/19.
  • Bheemalingeswara K, Solomon G, Ebrahim NH. 2013. Petrography and geochemistry of ferricrete near Shire, northern Ethiopia. Momona Eth J Sci. 5:32–50.
  • Bourman RP. 1993. Perennial problems in the study of laterite: a review. Aust J Earth Sci. 40:387–401. doi: 10.1080/08120099308728090
  • Bourman RP. 2007. Deep regolith weathering on the summit surface of the southern Mount Lofty Ranges, South Australia: a contribution to the ‘laterite’ debate. Geographical Res. 45:291–299. doi: 10.1111/j.1745-5871.2007.00461.x
  • Bourman RP, Buckman S, Chivas AR, Ollier CD, Price DM. 2020. Ferricretes at Burringurrah (Mount Augustus), Western Australia: proof of lateral derivation. Geom. doi:10.1016/j.geomorph.2019.107017.
  • Boynton WV. 1984. Cosmochemistry of the rare earth elements: meteoric studies. In: Henderson P, editor. Rare earth element geochemistry. Amsterdam: Elsevier; p. 63–114.
  • Braun JJ, Viers J, Dupre B, Polve M, Ndam J, Muller JP. 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta. 62:273–299. doi: 10.1016/S0016-7037(97)00344-X
  • Calagari AA, Farahani FK, Abedini A. 2015. Geochemical characteristics of a laterite: the Jurassic Zan deposit, Iran. Acta Geodyn Geomater. 12:67–77. doi: 10.13168/AGG.2015.0001
  • Das B, Khan MWY, Dhruw H. 2020. Trace and REE geochemistry of bauxite deposit of Darai–Daldali plateau, Kabirdham district, Chhattisgarh, India. J Earth Syst Sci. 129:1–15. doi: 10.1007/s12040-019-1281-8
  • Deer WA, Howie RA, Zussmann J. 1992. The rock forming minerals. London: Longman. 720 p.
  • Delgado L, Batezelli A, Ladeira FSB, Luna J. 2019. Paleoenvironmental and paleoclimatic interpretation of the late Cretaceous Marília formation (Brazil) based on paleosol geochemistry. Catena. 180:365–382. doi: 10.1016/j.catena.2019.05.003
  • Elueze AA. 2003. Laterites: readily exploitable sources of raw materials. J Mining Geol. 39:93–101.
  • Emofurieta WO, Aladesawe AI, Ogunseiju P. 1995. Secondary geochemical and mineralogical dispersion patterns associated with laterization process in Ile-Ife, southwestern Nigeria. J Mining Geol. 31:39–51.
  • Fernández-Caliani J, Cantano M. 2010. Intensive kaolinization during a lateritic weathering event in southwest Spain: mineralogical and geochemical inferences from a relict paleosol. Catena. 80:23–33. doi: 10.1016/j.catena.2009.08.005
  • Gebresilassie S, Bheemalingeswara K, Fiseha A. 2012. Geology and characteristics of meta-limestone-hosted iron deposit near Negash, Tigray and northern Ethiopia. Int J Earth Sci Eng. 5:1535–1544.
  • Gebru Y, Elueze AA, Amare K, Dongmo FWN. 2019. Compositional characteristics and genetic affinity of the ferricrete deposit in Adi Kokeb district, northwestern Tigray, Ethiopia. Appl Earth Sci. 128:146–157. doi: 10.1080/25726838.2019.1611089
  • Ghosh S, Guchhait SK. 2015. Characterization and evolution of primary and secondary laterites in northwestern Bengal Basin, West Bengal, India. J Palaeogeography. 4:203–230. doi: 10.3724/SP.J.1261.2015.00074
  • Giorgis I, Bonetto S, Giustetto R, Lawane A, Pantet A, Rossetti P, Thomassin J, Vinai R. 2014. The lateritic profile of Balkouin, Burkina Faso: geochemistry, mineralogy and genesis. J Afr Earth Sci. 90:31–48. doi: 10.1016/j.jafrearsci.2013.11.006
  • Hagos M, Koeberl C, Kabeto K, Koller F. 2010. Geochemical characteristics of the alkaline basalts and the phonolite–trachyte plugs of the Axum area, northern Ethiopia. Austrian J Earth Sci. 103:153–170.
  • Hill IG, Worden RHG, Meighan IG. 2000. Geochemical evolution of a paleolaterite: the interbasaltic formation, northern Ireland. Chem Geol. 166:65–84. doi: 10.1016/S0009-2541(99)00179-5
  • Jian X, Zhang W, Liang H, Guan P, Fu L. 2019. Mineralogy, petrography and geochemistry of an early Eocene weathering profile on basement granodiorite of Qaidam basin, northern Tibet: tectonic and paleoclimatic implications. Catena. 172:54–64. doi: 10.1016/j.catena.2018.07.029
  • Kazmin V. 1972. The geology of Ethiopia. Addis Ababa: Ethiopian Institute of Geological Survey. Note No.: 8210610–12.
  • Kovács J, Farics E, Szabó P, Sajó I. 2020. Fe-Al phosphate microcrystals in pedogenic goethite pisoliths. Min. 10:357.
  • Liankai Z, Hongbing J, Shijie W, Gang L, Xiuming L, Xiao W, QuocDinh N, DaiTrung N. 2020. Geochemical implications of rare earth elements in terra rossa in tropical karst area: a case study in northern Vietnam. Appl Sci. 10:858. doi: 10.3390/app10030858
  • Madhavaraju J, Pacheco-Olivas SA, Gonzalez-Leon CM, Espinoza-Maldonado IG, Sanchez-Medrano PA, Villanueva-Amadoz U, Monreal R, Pi-Puig T, Ramirez-Montoya E, Grijalva-Noriega FJ. 2017. Mineralogy and geochemistry of the lower Cretaceous siliciclastic rocks of the Morita formation, Sierra San Jose section, Sonora, Mexico. J South Am Earth Sci. 76:397–411. doi: 10.1016/j.jsames.2017.04.001
  • Madhavaraju J, Rajendra SP, Lee YI, Montoya ER, Ramasamy S, SantaCruz RL. 2020. Mineralogy and geochemistry of clastic sediments of the Terani Formation, Cauvery Basin, southern India: implications for paleoweathering, provenance and tectonic setting. Geosci J. doi:10.1007/s12303-019-0047-2.
  • Maksimović Z, Panto GY. 1991. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma. 51:93–109. doi: 10.1016/0016-7061(91)90067-4
  • Marker A, Oliveira JJ. 1994. Climatic and morphological control of rare earth element distribution in weathering mantles on alkaline rocks. Catena. 21:179–193. doi: 10.1016/0341-8162(94)90011-6
  • Marques JJ, Schulze DG, Curi N, Mertzman SA. 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma. 121:31–43. doi: 10.1016/j.geoderma.2003.10.003
  • McHarg S, Aspandiar MF. 2019. Gold distribution and lithogeochemical discrimination of residual regolith and transported overburden, Minotaur gold deposit, Lake Lefroy, Western Australia. Aust J Earth Sci. doi:10.1080/08120099.2019.1611663.
  • McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophy Geosyst. 2(2000G):C000109.
  • McNally GH. 2007. Engineering characteristics and uses of duricrusts in Australia. Aust J Earth Sci. 42:535–547. doi: 10.1080/08120099508728223
  • McQueen KG, Scott KM. 2009. Rock weathering and structure of the regolith. In: Scott KM, Pain CF, editors. Regolith Science. Collingwood: CSIRO; p. 103–124.
  • Meshram RR, Randive KR. 2011. Geochemical study of laterites of the Jamnagar district, Gujarat, India: implications on parent rock, mineralogy, and tectonics. J Asian Earth Sci. 42:1271–1287. doi: 10.1016/j.jseaes.2011.07.014
  • Miller NR, Avigad D, Stern RJ, Beyth M. 2011. The Tambien Group, northern Ethiopia (Tigre). Geol Soc London, Memoirs. 36:263–276. doi: 10.1144/M36.21
  • Mongelli G. 2002. Growth of hematite and boehmite in concretions from ancient karst bauxite: Clue for past climate. Catena. 50:43–51. doi: 10.1016/S0341-8162(02)00067-X
  • Mongelli G, Boni M, Buccione R, Sinisi R. 2014. Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities. Ore Geol Rev. 63:9–21. doi: 10.1016/j.oregeorev.2014.04.012
  • Nesbitt HW. 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature. 279:206–210. doi: 10.1038/279206a0
  • Nesbitt HW, Wilson RE. 1992. Recent chemical weathering of basalts. Am J Sci. 292:740–777. doi: 10.2475/ajs.292.10.740
  • Nesbitt HW, Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element geochemistry of lutites. Nature. 299:715–717. doi: 10.1038/299715a0
  • Oyelami CA, Van Rooy JL. 2016. A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: a geological perspective. J Afr Earth Sci. 119:226–237. doi: 10.1016/j.jafrearsci.2016.03.018
  • Pandey S, Parcha SK. 2017. Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio valley in the Spiti basin, India. J Earth Syst Sci. 126:27. doi: 10.1007/s12040-017-0803-5
  • Pourret O, Gruau G, Dia A, Davranche M, Molénat J. 2010. Colloidal control on the distribution of rare earth elements in shallow groundwaters. Aquatic Geochem. 16:31–59. doi: 10.1007/s10498-009-9069-0
  • Ramanaidou ER, Morris RC. 2010. Comparison of supergene mimetic and supergene lateritic iron ore deposits. Appl Earth Sci. 119:35–39. doi: 10.1179/037174510X12853354810589
  • Ramos-Vazquez MA, Armstrong-Altrin JS. 2019. Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine Pet Geol. 110:650–657. doi: 10.1016/j.marpetgeo.2019.07.032
  • Schellmann W. 1983. A new definition of laterite. In: Hauser G. editor. Nat Res Dev. 18:7–21.
  • Schellmann W. 1986. A new definition of laterite. Geol Surv India Mem. 120:1–7.
  • Singh PK, Khan MS. 2017. Geochemistry of Palaeoproterozoic rocks of Aravalli supergroup: implications for weathering history and depositional sequence. Int J Geosci. 8:1278–1299. doi: 10.4236/ijg.2017.810074
  • Tadesse T. 1997. The geology of Axum area. Addis Ababa: Ethiopian Institute of Geological Survey. Memoir no 9, 184 p.
  • Tadesse S, Milesi J, Deschamps Y. 2003. Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia. J Afr Earth Sci. 36:273–313. doi: 10.1016/S0899-5362(03)00048-4
  • Tadesse TH, Sawada YM. 1999. Geochemistry of low grade meta-volcanic rocks from the Pan-African of the Axum area, northern Ethiopia. Precambrian Res. 99:101–124. doi: 10.1016/S0301-9268(99)00008-X
  • Tardy Y, Nahon DB. 1985. Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe3+- kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am J Sci. 285:865–903. doi: 10.2475/ajs.285.10.865
  • Taylor SR, McLennan SM. 1985. The continental crust: its composition and evolution. Oxford: Blackwell, pp. 1–312.
  • Taylor SR, McLennan SM. 1995. The geochemical evolution of the continental crust. Rev Geophy. 33:241–265. doi: 10.1029/95RG00262
  • Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. Am Min. 95:185–187. doi: 10.2138/am.2010.3371
  • Widdowson M. 2008. Laterite and ferricretes. In: Nash DJ, McLaren SJ, editors. Geochemical sediments and landscapes. Oxford: Blackwell; p. 46–94.
  • Yuan M, Liu C, Liu WS, Guo MN, Morel JL, Huot H, Yu HJ, Tang YT, Qiu RL. 2018. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int J Phytoremed. 20:415–423. doi: 10.1080/15226514.2017.1365336
  • Yuste A, Bauluz B, Mayayo MJ. 2017. Origin and geochemical evolution from ferrallitized clays to karst bauxite: an example from the lower Cretaceous of NE Spain. Ore Geol Rev. 84:67–79. doi: 10.1016/j.oregeorev.2016.12.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.