260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-objective programming for designing sustainable biogas supply chain: a case study in North Dakota, USA

, , , &
Pages 188-200 | Received 14 Nov 2020, Accepted 08 Jul 2022, Published online: 25 Jul 2022

References

  • Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117
  • Ali, M. M., Ndongo, M., Bilal, B., Yetilmezsoy, K., Youm, I., & Bahramian, M. (2020). Mapping of biogas production potential from livestock manures and slaughterhouse waste: A case study for African countries. Journal of Cleaner Production 20, 256. https://doi.org/10.1016/j.jclepro.2020.120499
  • Caballero, R., González, M., Guerrero, F. M., Molina, J., & Paralera, C. (2007). Solving a multi-objective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia. European Journal of Operational Research, 177(3), 1751–1763. https://doi.org/10.1016/j.ejor.2005.10.017
  • Cambero, C., & Sowlati, T. (2014). Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives - A review of literature. Renewable and Sustainable Energy Reviews, 36, 62–73. https://doi.org/10.1016/j.rser.2014.04.041
  • Cambero, C., & Sowlati, T. (2016). Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains. Applied Energy, 178(15), 721–735. https://doi.org/10.1016/j.apenergy.2016.06.079
  • Chankong, V., & Haimes, Y. Y. (2008). Multi-objective decision making: Theory and methodology. Courier Dover Publications.
  • Chen, C.-W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1, SI), 150–164. https://doi.org/10.1016/j.tre.2011.08.004.
  • Dale, V. H., Efroymson, R. A., Kline, K. L., Langholtz, M. H., Leiby, P. N., and Oladosu, G. A. , & Hilliard, M. R. (2013). Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures. Ecological Indicators, 26, 87–102. https://doi.org/10.1016/j.ecolind.2012.10.014
  • Díaz-Trujillo, L. A., & Nápoles-Rivera, F. (2019). Optimization of biogas supply chain in Mexico considering economic and environmental aspects. Renewable Energy, 139, 1227–1240. https://doi.org/10.1016/j.renene.2019.03.027
  • Egieya, J. M., Čuček, L., Zirngast, K., Isafiade, A. J., & Kravanja, Z. (2020). Optimization of biogas supply networks considering multiple objectives and auction trading prices of electricity. BMC Chemical Engineering, 2(1), 1–23. https://doi.org/10.1186/s42480-019-0025-5
  • Esfandiari, S., Khosrokhavar, R., & Masih, S. (2011). Greenhouse Gas emissions reduction through a biogas plant: A case study of waste management systems at feka dairy farm. 2011 2nd International Conference on Environmental Science and Technology IPCBEE, 6, 445–448.
  • Felfel, H., Ayadi, O., & Masmoudi, F. (2016). A decision-making approach for a multi-objective multisite supply network planning problem. International Journal of Computer Integrated Manufacturing, 29(7), 754–767. https://doi.org/10.1080/0951192X.2015.1107916
  • Ghezavati, V. R., & Beigi, M. (2016). Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure. Journal of Industrial Engineering International, 12(4), 469–483. https://doi.org/10.1007/s40092-016-0154-x
  • Giarola, S., Shah, N., & Bezzo, F. (2012). A comprehensive approach to the design of ethanol supply chains including carbon trading effects. Bioresource Technology, 107, 175–185. https://doi.org/10.1016/j.biortech.2011.11.090
  • Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. https://doi.org/10.1016/j.renene.2009.07.027.
  • Hardisty, P. E., Clark, T. S., & Hynes, R. G. (2012). Life cycle greenhouse gas emissions from electricity generation: A comparative analysis of Australian energy sources. Energies, 5(4), 872–897. https://doi.org/10.3390/en5040872
  • Jensen, I. G., Münster, M., & Pisinger, D. (2017). Optimizing the supply chain of a biogas plant from farmers to energy consumers including mass and energy losses. European Journal of Operational Research, Submitted(2), 1–33. https://doi.org/10.1016/j.ejor.2017.03.071
  • Kim, J., Realff, M. J., & Lee, J. H. (2011). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Computers & Chemical Engineering, 35(9), 1738–1751. https://doi.org/10.1016/j.compchemeng.2011.02.008
  • Kizil, U. (2017). North Dakota State Feedlot Database. North Dakota State University. https://www.ag.ndsu.edu/archive/dickinso/staff/radtke/index.html
  • Kumar, K., Lopez, C. J. C., Sanchez, O. A. T., Gupta, A., Péton, O., and Yeung, T. G., & Vanuxem, A. (2016). Integrated strategic and tactical optimization of animal-waste sourced biopower supply chains. Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM 2015, 1367–1373. https://doi.org/10.1109/IESM.2015.7380330
  • Liu, Z., Qiu, T., & Chen, B. (2014). A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China. Applied Energy, 126(1), 221–234. https://doi.org/10.1016/j.apenergy.2014.04.001
  • Mahjoub, N., Sahebi, H., Mazdeh, M., & Teymouri, A. (2020). Optimal design of the second and third generation biofuel supply network by a multi-objective model. Journal of Cleaner Production, 256(20), 120355. https://doi.org/10.1016/j.jclepro.2020.120355
  • McBride, A. C., Dale, V. H., Baskaran, L. M., Downing, M. E., Eaton, L. M., and Efroymson, R. A., & Storey, J. M. (2011). Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators, 11(5), 1277–1289. https://doi.org/10.1016/j.ecolind.2011.01.010
  • Mohamed Abdul Ghani, N. M. A., Szmerekovsky, J. G., & Vogiatzis, C. (2019). Plant capacity level and location as a mechanism for sustainability in biomass supply chain. Energy Systems 11:1075–1109. https://doi.org/10.1007/s12667-019-00361-z
  • Mohammed, A., Wang, Q., & Li, X. (2017). A cost-effective decision-making algorithm for an RFID-enabled HMSC network design: A multi-objective approach. Industrial Management & Data Systems.
  • Mohammed, A., & Wang, Q. (2017). The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics, 184, 47–58. https://doi.org/10.1016/j.ijpe.2016.11.016
  • Mohammed, A., Harris, I., Soroka, A., & Nujoom, R. (2019). A hybrid MCDM-fuzzy multi-objective programming approach for a G-resilient supply chain network design. Computers & Industrial Engineering, 127, 297–312. https://doi.org/10.1016/j.cie.2018.09.052
  • Moheb-Alizadeh, H., & Handfield, R. (2019). Sustainable supplier selection and order allocation: A novel multi-objective programming model with a hybrid solution approach. Computers & Industrial Engineering, 129, 192–209. https://doi.org/10.1016/j.cie.2019.01.011
  • Mohebalizadehgashti, F., Zolfagharinia, H., & Amin, S. H. (2020). Designing a green meat supply chain network: A multi-objective approach. International Journal of Production Economics, 219, 312–327. https://doi.org/10.1016/j.ijpe.2019.07.007
  • Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105(15), 14–27. https://doi.org/10.1016/j.jclepro.2014.07.052
  • Oklahoma State University. (2009). Value of Animal Waste Calculator. http://agecon.okstate.edu/faculty/publications_results.asp?page=1
  • Osmani, A., & Zhang, J. (2014). Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment. Applied Energy, 114, 572–587. https://doi.org/10.1016/j.apenergy.2013.10.024
  • Park, Y. S., Szmerekovsky, J., Osmani, A., & Aslaam, N. M. (2017). Integrated multimodal transportation model for a switchgrass-Based bioethanol supply chain. Transportation Research Record: Journal of the Transportation Research Board, 2628(1), 32–41. https://doi.org/10.3141/2628-04
  • Park, Y. S., Szmerekovsky, J., Dybing, A., Lee, G., & Hong, J. (2019). Optimal location of biogas plants in supply chains under carbon effects: insight from a case study on animal manure in North Dakota. Journal of Advanced Transportation, 2019, 1–13. https://doi.org/10.1155/2019/5978753
  • Poudel, S. R., Marufuzzaman, M., & Bian, L. (2016). A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty. Transportation Research Part E: Logistics and Transportation Review, 94, 1–25. https://doi.org/10.1016/j.tre.2016.07.004
  • Roni, M. S., Eksioglu, S. D., Searcy, E., & Jacobson, J. J. (2014). Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel. Transportation Research Part D: Transport and Environment, 29, 40–55. https://doi.org/10.1016/j.trd.2014.04.003
  • Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste location-routing problem. European Journal of Operational Research, 226(2), 332–340. https://doi.org/10.1016/j.ejor.2012.11.019
  • Silva, S., Alcada-Almeida, L., & Dias, L. C. (2017). Multi-objective programming for sizing and locating biogas plants: A model and an application in a region of Portugal. Computers & Operations Research, 83, 189–198. https://doi.org/10.1016/j.cor.2017.02.016.
  • Unal, H. B., Yilmaz, H. I., & Miran, B. (2011). Optimal planning of central biogas plants and evaluation of their environmental impacts: A case study from Tire, Izmir, Turkey. Ekoloji, 79, 21–28. https://doi.org/10.5053/ekoloji.2011.793
  • U.S. EIA. (2016). International energy outlook 2016.
  • USDA. (2007). An Analysis of Energy Production Costs from Anaerobic Digestion System on U.S. Livestock Production Facilities. http://www.agmrc.org/media/cms/manuredigesters_FC5C31F0F7B78.pdf
  • Xie, F., Huang, Y., & Eksioglu, S. (2014). Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresource Technology, 152, 15–23. https://doi.org/10.1016/j.biortech.2013.10.074
  • Yalcinkaya, S. (2020). A spatial modeling approach for siting, sizing and economic assessment of centralized biogas plants in organic waste management. Journal of Cleaner Production 10, 255. https://doi.org/10.1016/j.jclepro.2020.120040
  • You, F., Graziano, D. J., Snyder, S. W., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains multi-objective optimization coupled with life cycle assessment and input – output analysis. AIChE Journal, 58(4), 1157–1180. https://doi.org/10.1002/aic

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.