1,245
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: a review on fundamentals and advancements

Pages 691-706 | Received 10 Feb 2018, Accepted 20 Dec 2018, Published online: 17 Jan 2019

References

  • Dragan, E. S. Design and Applications of Interpenetrating Polymer Network Hydrogels. A Review. Chem. Eng. J. 2014, 243, 572–590. DOI: 10.1016/j.cej.2014.01.065.
  • Bulut, E. In-Vitro Evaluation of Ibuprofen-Loaded Microspheres Prepared from Novel Chitosan/Poly(Vinyl Alcohol) Interpenetrating Polymer Network. Polym. Plast. Technol. Eng. 2014, 53, 371–378. DOI: 10.1080/03602559.2013.844250.
  • Prabhakar, S.; Bajpai, J.; Bajpai, A. K. Fabrication of Interpenetrating Networks of Poly(Vinyl Alcohol-G-Acrylamide) and Chitosan-G-Polyacrylamide Chains and Evaluation of Water Sorption, Blood Compatibility and Cytotoxicity Behaviors. Polym. Plast. Technol. Eng. 2012, 51, 1443–1450. DOI: 10.1080/03602559.2012.709297.
  • Kausar, A. Polyurethane/Epoxy Interpenetrating Polymer Network. In Aspects of Polyurethanes; Yılmaz, F., Ed.; InTech: Rijeka, Croatia, 2017.
  • Kausar, A. Polyurethane Composite Foams in High Performance Applications: A Review. Polym. Plast. Technol. Eng. 2017. DOI: 10.1080/03602559.2017.1329433.
  • Das, S.; Pandey, P.; Mohanty, S.; Nayak, S. K. Insight on Castor Oil Based Polyurethane and Nanocomposites: Recent Trends and Development. Polym. Plast. Technol. Eng. 2017, 56, 1556–1585.
  • Alam, M.; Alandis, N. M. Corn Oil Based Poly (Ether Amide Urethane) Coating material – Synthesis, Characterization and Coating Properties. Indus. Crop. Prod. 2014, 57, 17–28. DOI: 10.1016/j.indcrop.2014.03.023.
  • Simendić, J. B.; Bjelović, Z.; Jovanović, S. S.; Aleksić, V.; Valentova, H.; Szecseny, K. M.; Krakovsky, I. Thermal Stability and Damping Properties of Polyurethane Hybrid Material Based on Castor Oil. Contemp. Mater. 2014, 1, 64–68.
  • Li, Y.; Mao, S. Study on the Properties and Application of Epoxy Resin/Polyurethane Semi-Interpenetrating Polymer Networks. J. Appl. Polym. Sci. 1996, 61, 2059–2063. DOI: 10.1002/(ISSN)1097-4628.
  • Hou, G. X.; Chen, X. G.; Liu, J. J.; Sang, X. M. Morphologies and Mechanical Properties of Polyurethane/Epoxy Resin Interpenetrating Network Composites Modified with Kaolin. Polym. Plast. Technol. Eng. 2011, 50, 1208–1213. DOI: 10.1080/03602559.2011.566239.
  • Ahmed, N.; Kausar, A.; Muhammad, B. Advances in Shape Memory Polyurethanes and Composites: A Review. Polym. Plast. Technol. Eng. 2015, 54, 1410–1423. DOI: 10.1080/03602559.2015.1021490.
  • Oprea, S. Synthesis and Properties of Polyurethane Elastomers with Castor Oil as Crosslinker. J. Am. Oil Chem. Soc. 2010, 87, 313–320. DOI: 10.1007/s11746-009-1501-5.
  • Kausar, A. Review on Technological Significance of Photoactive, Electroactive, pH Sensitive, Water-Active, and Thermo-Responsive Polyurethane Materials. Polym. Plast. Technol. Eng. 2016. DOI: 10.1080/03602559.2016.1233279.
  • Kausar, A.; Zulfiqar, S.; Sarwar, M. I. High Performance Segmented Polyurethanes Derived from a New Aromatic Diisocyanate and Polyol. Polym. Degrad. Stab. 2013, 98, 368–376. DOI: 10.1016/j.polymdegradstab.2012.09.004.
  • Kausar, A. Poly (Urethane Urea)/Polythiophene/Carbon Black Composite: Morphology, Mechanical, and Conducting Shape Memory Behavior. J. Thermoplast. Compos. Mater. 2016. DOI: 10.1177/0892705716679477.
  • Pham, H. Q.; Marks, M. J. Epoxy Resins. Encycl. Polym. Sci. Technol. 2004. DOI: 10.1002/0471440264.pst119.
  • Kwak, G. H.; Park, S. J.; Lee, J. R. Thermal Stability and Mechanical Behavior of cycloaliphatic–DGEBA Epoxy Blend System Initiated by Cationic Latent Catalyst. J. Appl. Polym. Sci. 2000, 78, 290–297. DOI: 10.1002/1097-4628(20001010)78:2<290::AID-APP80>3.0.CO;2-9.
  • Lin, P. H.; Khare, R. Molecular Simulation of Cross-Linked Epoxy and Epoxy− POSS Nanocomposite. Macromolecules. 2009, 42, 4319–4327. DOI: 10.1021/ma9004007.
  • Rakotomalala, M.; Wagner, S.; Döring, M. Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials. 2010, 3, 4300–4327. DOI: 10.3390/ma3084300.
  • Hsu, Y. G.; Lin, K. H.; Lin, T. Y.; Fang, Y. L.; Chen, S. C.; Sung, Y. C. Properties of Epoxy-Amine Networks Containing Nanostructured Ether-Crosslinked Domains. Mater. Chem. Phys. 2012, 132, 688–702. DOI: 10.1016/j.matchemphys.2011.11.087.
  • Frisch, K. C.; Klempner, D.; Frisch, H. L. Recent Advances in Polymer Alloys and IPN Technology. Mater. Des. 1983, 4, 821–827. DOI: 10.1016/0261-3069(83)90182-6.
  • Hsieh, K. H.; Han, J. L.; Yu, C. T.; Fu, S. C. Graft Interpenetrating Polymer Networks of Urethane-Modified Bismaleimide and Epoxy (I): Mechanical Behavior and Morphology. Polymer. 2001, 42, 2491–2500. DOI: 10.1016/S0032-3861(00)00641-8.
  • Kim, S. C.; Klempner, D.; Frisch, K. C.; Frisch, H. L. Polyurethane Interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly (Methyl Methacrylate) and Polyurethane-Polystyrene IPN’s. Macromolecules. 1976, 9, 263–266. DOI: 10.1021/ma60050a017.
  • Jeevananda, T. Synthesis and Characterization of Polyaniline Filled PU/PMMA Interpenetrating Polymer Networks. Eur. Polym. J. 2003, 39, 569–578. DOI: 10.1016/S0014-3057(02)00272-0.
  • Nowers, J. R. A Fundamental Study of the Complex Structure-Property-Processing Relationships in Interpenetrating Polymer Networks (IPNS). Doctoral dissertation, Iowa State University, 2007.
  • Han, J. L.; Lin, S. P.; Ji, S. B.; Hsieh, K. H. Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy Containing Rigid Rods in Side Chain. J. Appl. Polym. Sci. 2007, 106, 3298–3307. DOI: 10.1002/app.26874.
  • Zhu, Y. C.; Wang, B.; Gong, W.; Kong, L. M.; Jia, Q. M. Investigation of the Hydrogenbonding Structure and Miscibility for PU/EP IPN Nanocomposites by PALS. Macromolecules. 2006, 39, 9441–9445. DOI: 10.1021/ma0621066.
  • Wu, G. H.; Gu, J.; Zhao, X. Preparation and Dynamic Mechanical Properties of Polyurethane-Modified Epoxy Composites Filled with Functionalized Fly Ash Particulates. J. Appl. Polym. Sci. 2007, 105, 1118–1126. DOI: 10.1002/(ISSN)1097-4628.
  • Russell, B.; Chartoff, R. The Influence of Cure Conditions on the Morphology and Phase Distribution in a Rubber-Modified Epoxy Resin Using Scanning Electron Microscopy and Atomic Force Microscopy. Polymer. 2005, 46, 785–798. DOI: 10.1016/j.polymer.2004.11.090.
  • Byard, B.; Wang, K.; Morgan, A.; Benin, V. New Polyether Diols as Flame Retardants for Polyurethane: Derivatives of Epoxy-Functionalized Phosphonates and Phosphates. Fire Mater. 2017. DOI: 10.1002/fam.2452.
  • Brydson, J. A. Plastics Materials, 4th ed.; Chap. 27; Butterworth Scientific: London, 1982.
  • Bruins, P. F. Polyurethane Technology; Interscience Publishers: New York, 1969.
  • Hsieh, K. H.; Han, J. L. Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy. II. Toughening Mechanism. J. Polym. Sci. Part B: Polym. Phys. 1990, 28, 783–794. DOI: 10.1002/polb.1990.090280601.
  • Wang, H. H.; Chen, J. C. Modification and Compatibility of Epoxy Resin with Hydroxyl-Terminated or Amine‐Terminated Polyurethanes. Polym. Eng. Sci. 1995, 35, 1468–1475. DOI: 10.1002/pen.760351807.
  • Harani, H.; Fellahi, S.; Bakar, M. Toughening of Epoxy Resin Using Synthesized Polyurethane Prepolymer Based on Hydroxyl-Terminated Polyesters. J. Appl. Polym. Sci. 1998, 70, 2603–2618. DOI: 10.1002/(ISSN)1097-4628.
  • Takeda, S.; Akiyama, H.; Kakiuchi, H. Synthesis and Properties of Bismaleimide Resins Containing Ether Bonds. J. Appl. Polym. Sci. 1988, 35, 1341–1350. DOI: 10.1002/app.1988.070350519.
  • Stenzenberger, H. D.; Herzog, M.; Römer, W.; Scheiblich, R.; Reeves, N. J. Development of Thermosetting Polyimide Resins. Polym. Int. 1983, 15, 2–12.
  • Han, J. L.; Hsieh, K. H.; Chiu, W. Y.; Chen, L. W. Effect of Urethanes on Base-Catalyzed Epoxy Reaction. J. Polym. Res. 1995, 2, 115–120. DOI: 10.1007/BF01493211.
  • Han, J. L.; Chern, Y. C.; Hsieh, K. H.; Chiu, W. Y.; Ma, C. C. M. Kinetics of Curing Reaction of Urethane Function on Base-Catalyzed Epoxy Reaction. J. Appl. Polym. Sci. 1998, 68, 121–127. DOI: 10.1002/(ISSN)1097-4628.
  • Han, J. L.; Li, K. Y. Interpenetrating Polymer Networks of Bismaleimide and Polyether Polyurethane-Crosslinked Epoxy. J. Appl. Polym. Sci. 1998, 70, 2635–2645. DOI: 10.1002/(ISSN)1097-4628.
  • Hirose, M.; Kadowaki, F.; Zhou, J. The Structure and Properties of Core-Shell Type Acrylic-Polyurethane Hybrid Aqueous Emulsions. Prog. Org. Coat. 1997, 31, 157–169. DOI: 10.1016/S0300-9440(97)00032-5.
  • Dong, A.; Wan, T.; Feng, S.; Sun, D. IR Spectra Studies of Core-Shell Type Waterborne Polyacrylate-Polyurethane Microemulsions. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 2642–2650. DOI: 10.1002/(SICI)1099-0488(19990915)37:18<2642::AID-POLB8>3.0.CO;2-D.
  • Shi, S.; Kuroda, S.; Tadaki, S.; Kubota, H. Phase Distribution and Separation in Poly(2-Acetoxyethyl Methacrylate)/Polystyrene Latex Interpenetrating Polymer Networks. Polymer. 2002, 43, 7443–7450. DOI: 10.1016/S0032-3861(02)00683-3.
  • Vabrik, R.; Czajlik, I.; Tury, G.; Rusznak, I.; Ille, A.; Vig, A. A Study of Epoxy Resin-Acrylated Polyurethane Semi-Interpenetrating Polymer Networks. J. Appl. Polym. Sci. 1998, 68, 111–119. DOI: 10.1002/(SICI)1097-4628(19980404)68:1<111::AID-APP12>3.0.CO;2-3.
  • Chen, L.; Chen, S. Latex Interpenetrating Networks Based on Polyurethane, Polyacrylate and Epoxy Resin. Prog. Org. Coat. 2004, 49, 252–258. DOI: 10.1016/j.porgcoat.2003.10.010.
  • Harris, F. W.; Hsu, S. L. C. Synthesis and Characterization of Polyimides Based on 3,6-Diphenylpyromellitic Dianhydride. High Perform. Polym. 1989, 1, 3–16. DOI: 10.1177/095400838900100101.
  • Li, F.; Jason, J. G.; Honigfort, P. S.; Fang, S.; Chen, J. C.; Harris, F. W.; Cheng, S. Z. Dianhydride Architectural Effects on the Relaxation Behaviors and Thermal and Optical Properties of Organo-Soluble Aromatic Polyimide Films. Polymer. 1999, 40, 4987–5002. DOI: 10.1016/S0032-3861(98)00721-6.
  • Liao, D. C.; Hsieh, K. H.; Kao, S. C. Synthesis and Characterization of Bismaleimide-Polyurethane Crosslinked Copolymers. J. Polym. Sci. Part A: Polym. Chem. 1995, 33, 481–491. DOI: 10.1002/pola.1995.080330315.
  • Han, J. L.; Chern, Y. C.; Li, K. Y.; Hsieh, K. H. Interpenetrating Polymer Networks of Bismaleimide and Polyurethane-Crosslinked Epoxy. J. Appl. Polym. Sci. 1998, 70, 529–536. DOI: 10.1002/(ISSN)1097-4628.
  • Jin, J. F.; Chen, Y. L.; Wang, D. N.; Hu, C. P.; Zhu, S.; Vanoverloop, L.; Randall, D. Structures and Physical Properties of Rigid Polyurethane Foam Prepared with Rosin-Based Polyol. J. Appl. Polym. Sci. 2002, 84, 598–604. DOI: 10.1002/(ISSN)1097-4628.
  • Zhang, Y. D.; Shang, S. B.; Zhang, X. Y.; Wang, D.; Hourston, D. J. Influence of the Composition of Rosin-Based Rigid Polyurethane Foams on Their Thermal Stability. J. Appl. Polym. Sci. 1996, 59, 1167–1171. DOI: 10.1002/(ISSN)1097-4628.
  • Zhang, Y.; Shang, S.; Zhang, X.; Wang, D.; Hourston, D. J. Influence of Structure of Hydroxyl-Terminated Maleopimaric Acid Ester on Thermal Stability of Rigid Polyurethane Foams. J. Appl. Polym. Sci. 1995, 58, 1803–1809. DOI: 10.1002/app.1995.070581019.
  • Liu, X.; Li, C.; Zhang, D.; Xiao, Y.; Guan, G. Synthesis, Characterization and Properties of Poly (Butylene Succinate) Modified with Rosin Maleopimaric Acid Anhydride. Polym. Int. 2006, 55, 545–551. DOI: 10.1002/(ISSN)1097-0126.
  • Zhang, Y.; Hourston, D. J. Rigid Interpenetrating Polymer Network Foams Prepared from a Rosin-Based Polyurethane and an Epoxy Resin. J. Appl. Polym. Sci. 1998, 69, 271–281. DOI: 10.1002/(ISSN)1097-4628.
  • Barrett, L. W.; Ferguson, G. S.; Sperling, L. H. Bond Interchange Reactions in Functionalized Triglyceride Oil/Poly (Ethylene Terephthalate) Compositions. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 1287–1299. DOI: 10.1002/pola.1993.080310524.
  • Patel, P.; Shah, T.; Suthar, B. Interpenetrating Polymer Networks Based on Castor Oil, XVIII. J. Appl. Polym. Sci. 1990, 40, 1037–1047. DOI: 10.1002/app.1990.070400535.
  • Liu, T. M.; Bui, V. T. Instrumented Impact Testing of Castor-Oil-Based Polyurethanes. J. Appl. Polym. Sci. 1995, 56, 345–354. DOI: 10.1002/app.1995.070560305.
  • Chen, S.; Wang, Q.; Pei, X.; Wang, T. Dynamic Mechanical Properties of Castor Oil-Based Polyurethane/Epoxy Graft Interpenetrating Polymer Network Composites. J. Appl. Polym. Sci. 2010, 118, 1144–1151. DOI: 10.1002/app.31864.
  • Raymond, M. P.; Bui, V. T. Epoxy/Castor Oil Graft Interpenetrating Polymer Networks. J. Appl. Polym. Sci. 1998, 70, 1649–1659. DOI: 10.1002/(SICI)1097-4628(19981128)70:9<1649::AID-APP2>3.0.CO;2-A.
  • Chen, S.; Wang, Q.; Wang, T.; Pei, X. Preparation, Damping and Thermal Properties of Potassium Titanate Whiskers Filled Castor Oil-Based Polyurethane/Epoxy Interpenetrating Polymer Network Composites. Mater. Des. 2011, 32, 803–807. DOI: 10.1016/j.matdes.2010.07.021.
  • Guo, M. Dynamic Mechanical Thermal Analysis of Polymer Composites; PRC: Beijing, 2002.
  • Qu, M. ; Jian, X.; He, W.; Liao, G. Performance of Potassium Titanate Whisker Reinforced PPESK Composites. J. Mater. Sci. Technol. 2004, 20, 445–447.
  • Bai, Y.; Wang, Z.; Feng, L. Interface Properties of Carbon Fiber/Epoxy Resin Composite Improved by Supercritical Water and Oxygen in Supercritical Water. Mater. Des. 2010, 31, 1613–1616. DOI: 10.1016/j.matdes.2009.09.003.
  • Feng, X.; Wang, H.; Shi, Y.; Chen, D.; Lu, X. The Effects of the Size and Content of Potassium Titanate Whiskers on the Properties of PTW/PTFE Composites. Mater. Sci. Eng., A. 2007, 448, 253–258. DOI: 10.1016/j.msea.2006.10.021.
  • Koratkar, N.; Wei, B. Q.; Ajayan, P. M. Carbon Nanotube Films for Damping Applications. Adv. Mater. 2002, 14, 997–1000. DOI: 10.1002/(ISSN)1521-4095.
  • Ji, L. J.; Stevens, M. M.; Zhu, Y. F.; Gong, Q. M.; Wu, J. J.; Liang, J. Preparation and Properties of Multi-Walled Carbon Nanotube/Carbon/Polystyrene Composites. Carbon. 2009, 47, 2733–2741. DOI: 10.1016/j.carbon.2009.05.031.
  • Hube, P.; Ashrafi, B.; Adhikari, K.; Meredith, J.; Vengallatore, S.; Guan, J. W. Synthesis and Characterization of Carbon Nanotube-Reinforced Epoxy: Correlation between Viscosity and Elastic Modulus. Compos. Sci. Technol. 2009, 69, 2274–2280. DOI: 10.1016/j.compscitech.2009.04.023.
  • Lee, J. H.; Rhee, K. Y.; Park, S. J. Effects of Silane Modification and Temperature on Tensile and Fractural Behaviors of Carbon Nanotube/Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2011, 11, 275–280.
  • Chen, S.; Wang, Q.; Wang, T. Damping, Thermal, and Mechanical Properties of Carbon Nanotubes Modified Castor Oil-Based Polyurethane/Epoxy Interpenetrating Polymer Network Composites. Mater. Des. 2012, 38, 47–52. DOI: 10.1016/j.matdes.2012.02.003.
  • Zhang, Q.; Li, Q. L.; Xiang, S.; Wang, Y.; Wang, C.; Jiang, W.; Zhou, H.; Yang, Y. W.; Tang, J. Covalent Modification of Graphene Oxide with Polynorbornene by Surface-Initiated Ring-Opening Metathesis Polymerization. Polymer. 2014, 55, 6044–6050. DOI: 10.1016/j.polymer.2014.09.049.
  • Liu, X.; Kuang, W.; Guo, B. Preparation of Rubber/Graphene Oxide Composites with In-Situ Interfacial Design. Polymer. 2015, 56, 553–562. DOI: 10.1016/j.polymer.2014.11.048.
  • Li, X.; Warzywoda, J.; McKenna, G. B. Mechanical Responses of a Polymer Graphene-Sheet Nano-Sandwich. Polymer. 2014, 55, 4976–4982. DOI: 10.1016/j.polymer.2014.08.008.
  • Zhang, M.; Li, Y.; Su, Z.; Wei, G. Recent Advances in the Synthesis and Applications of Graphene–Polymer Nanocomposites. Polym. Chem. 2015, 6, 6107–6124. DOI: 10.1039/C5PY00777A.
  • Chand, N.; Sharma, P.; Fahim, M. Correlation of Mechanical and Tribological Properties of Organosilane Modified Cenosphere Filled High Density Polyethylene. Mater. Sci. Eng., A. 2010, 527, 5873–5878. DOI: 10.1016/j.msea.2010.06.022.
  • Shen, X. J.; Pei, X. Q.; Fu, S. Y.; Friedrich, K. Significantly Modified Tribological Performance of Epoxy Nanocomposites at Very Low Graphene Oxide Content. Polymer. 2013, 54, 1234–1242. DOI: 10.1016/j.polymer.2012.12.064.
  • Wang, J.; Jia, H.; Tang, Y.; Ji, D.; Sun, Y.; Gong, X.; Ding, L. Enhancements of the Mechanical Properties and Thermal Conductivity of Carboxylated Acrylonitrile Butadiene Rubber with the Addition of Graphene Oxide. J. Mater. Sci. 2013, 48, 1571–1577. DOI: 10.1007/s10853-012-6913-1.
  • Li, Y.; Wang, Q.; Wang, T.; Pan, G. Preparation and Tribological Properties of Graphene Oxide/Nitrile Rubber Nanocomposites. J. Mater. Sci. 2012, 47, 730–738. DOI: 10.1007/s10853-011-5846-4.
  • Sadasivuni, K. K.; Ponnamma, D.; Thomas, S.; Grohens, Y. Evolution from Graphite to Graphene Elastomer Composites. Prog. Polym. Sci. 2014, 39, 749–780. DOI: 10.1016/j.progpolymsci.2013.08.003.
  • Xia, S.; Liu, Y.; Pei, F.; Zhang, L.; Gao, Q.; Zou, W.; Peng, J.; Cao, S. Identical Steady Tribological Performance of Graphene-Oxide-Strengthened Polyurethane/Epoxy Interpenetrating Polymer Networks Derived from Graphene Nanosheet. Polymer. 2015, 64, 62–68. DOI: 10.1016/j.polymer.2015.03.036.
  • Jabeen, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polym. Plast. Technol. Eng. 2015, 54, 1379–1409. DOI: 10.1080/03602559.2015.1021489.
  • Tcharkhtchi, A.; Farzaneh, S.; Abdallah-Elhirtsi, S.; Esmaeillou, B.; Nony, F.; Baron, A. Thermal Aging Effect on Mechanical Properties of Polyurethane. Int. J. Polym. Anal. Charact. 2014, 19, 571–584. DOI: 10.1080/1023666X.2014.932644.
  • Agavriloaie, L.; Oprea, S.; Barbuta, M.; Luca, F. Characterisation of Polymer Concrete with Epoxy Polyurethane Acryl Matrix. Constr. Build. Mater. 2012, 37, 190–196. DOI: 10.1016/j.conbuildmat.2012.07.037.
  • Kausar, A. Waterborne Polyurethane Coated Polyamide/Fullerene Composite Films: Mechanical, Thermal and Flammability Properties. Int. J. Polym. Anal. Charact. 2016. DOI: 10.1080/1023666X.2016.1147729.
  • Kausar, A. Nanodiamond Tethered Epoxy/Polyurethane Interpenetrating Network Nanocomposite: Physical Properties and Thermoresponsive Shape-Memory Behavior. Int. J. Polym. Anal. Charact. 2016, 21, 348–358. DOI: 10.1080/1023666X.2016.1156911.
  • Liu, H. Z.; Zhang, W.; Zheng, S. X. Montmorillonite Intercalated by Ammonium of Octaaminopropyl Polyhedral Oligomeric Silsesquioxane and Its Nanocomposites with Epoxy Resin. Polymer. 2005, 46, 157–165. DOI: 10.1016/j.polymer.2004.10.078.
  • Xiong, J. W.; Liu, Y. H.; Yang, X. H.; Wang, X. L. Thermal and Mechanical Properties of Polyurethane/Montmorillonite Nanocomposites Based on a Novel Reactive Modifier. Polym. Degrad. Stab. 2004, 86, 549–555. DOI: 10.1016/j.polymdegradstab.2004.07.001.
  • Voorn, D. J.; Ming, W.; van Herk, A. M. Polymer-Clay Nanocomposite Latex Particles by Inverse Pickering Emulsion Polymerization Stabilized with Hydrophobic Montmorillonite Platelets. Macromolecules. 2006, 39, 2137–2143. DOI: 10.1021/ma052539t.
  • Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. Adv. Polym. Sci. 1999, 138, 107–147.
  • Winberg, P.; Eldrup, M.; Maurer, F. H. J. Nanoscopic Properties of Silica Filled Polydimethylsiloxane by Means of Positron Annihilation Lifetime Spectroscopy. Polymer. 2004, 45, 8253–8264. DOI: 10.1016/j.polymer.2004.09.080.
  • Serrano, B.; Baselga, J.; Esteban, I.; Sese, L. M.; Pierola, I. F. Morphology of Phase Separated Blends of Poly(Cyclohexyl Methacrylate) with Poly(Vinyl Acetate). J. Appl. Polym. Sci. 2003, 89, 1284–1290. DOI: 10.1002/app.12239.
  • Feldstein, M. M.; Kuptsov, S. A.; Shandryuk, G. A.; Plate, N. A. Relation of Glass Transition Temperature to the Hydrogenbonding Degree and Energy in poly(N-vinyl Pyrrolidone) Blends with Hydroxyl-Containing Plasticizers. Part 2. Effects of Poly(Ethylene Glycol) Chain Length. Polymer. 2001, 42, 981–990. DOI: 10.1016/S0032-3861(00)00439-0.
  • Kuo, S. W.; Kao, H. C.; Chang, F. C. Thermal Behavior and Specific Interaction in High Glass Transition Temperature PMMA Copolymer. Polymer. 2003, 44, 6873–6881. DOI: 10.1016/j.polymer.2003.08.026.
  • Jia, Q. M.; Zheng, M.; Chen, H. X.; Shen, R. J. Synthesis and Characterization of Polyurethane/Epoxy Interpenetrating Network Nanocomposites with Organoclays. Polym. Bull. 2005, 54, 65–73. DOI: 10.1007/s00289-005-0372-7.
  • Jia, Q. M.; Zheng, M.; Zhu, Y. C.; Li, J. B.; Xu, C. Z. Effects of Organophilic Montmorillonite on Hydrogen Bonding, Free Volume and Glass Transition Temperature of Epoxy Resin/Polyurethane Interpenetrating Polymer Networks. Eur. Polym. J. 2007, 43, 35–42. DOI: 10.1016/j.eurpolymj.2006.10.016.
  • Petrović, Z. S.; Javni, I.; Waddon, A.; Bánhegyi, G. Structure and Properties of Polyurethane–Silica Nanocomposites. J. Appl. Polym. Sci. 2000, 76, 133–151. DOI: 10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K.
  • Lopez-Quintela, M. A. Synthesis of Nanomaterials in Microemulsions: Formation Mechanisms and Growth Control. Curr. Opin. Coll. Interface Sci. 2015, 8, 137–144. DOI: 10.1016/S1359-0294(03)00019-0.
  • Kausar, A. An Investigation on Epoxy/Poly (Urethane-Amide)-Based Interpenetrating Polymer Network Reinforced with an Organic Nanoparticle. Mater. Res. Innovat. 2016, 22, 58–68.
  • Zhang, H.; Wang, B.; Li, H.; Jiang, Y.; Wang, J. Synthesis and Characterization of Nanocomposites of Silicon Dioxide and Polyurethane and Epoxy Resin Interpenetrating Network. Polym. Int. 2003, 52, 1493–1497. DOI: 10.1002/(ISSN)1097-0126.
  • Yu, M.; Qi, S.; Fu, J.; Zhu, M.; Chen, D. Understanding the Reinforcing Behaviors of Polyaniline-Modified Carbonyl Iron Particles in Magnetorheological Elastomer Based on Polyurethane/Epoxy Resin IPNs Matrix. Compos. Sci. Technol. 2017, 139, 36–46. DOI: 10.1016/j.compscitech.2016.12.010.
  • Li,J. High Performance Epoxy Resin Nanocomposites Containing Both Organic Montmorillonite and Castor Oil-Polyurethane. Polym. Bull. 2006, 56, 377–384. DOI: 10.1007/s00289-005-0492-0.
  • Cerqueira, D. A.; Rodrigues Filho, G.; Assunção, R. M. A New Value for the Heat of Fusion of A Perfect Crystal of Cellulose Acetate. Polym. Bull. 2006, 56, 475–484. DOI: 10.1007/s00289-006-0511-9.
  • Yang, J.; Winnik, M. A.; Ylitalo, D.; Devoe, R. J. Polyurethane-Polyacrylate Interpenetrating Networks. 1. Preparation and Morphology. Macromolecules. 1996, 29, 7047–7054. DOI: 10.1021/ma9601373.
  • Rosu, D.; Rosu, L.; Mustata, F.; Varganici, C. D. Effect of UV Radiation on Some Semi-Interpenetrating Polymer Networks Based on Polyurethane and Epoxy Resin. Polym. Degrad. Stab. 2012, 97, 1261–1269. DOI: 10.1016/j.polymdegradstab.2012.05.035.
  • Zhanzheng, B.; Xiuli, Z.; Xuefang, L.; Shikai, L. U. Preparation and Characterization of Epoxy Encapsulating Materials Toughened by Polyurethane. Chem. Indus. Eng. Prog. 2009, 28, 1010–1085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.