498
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Polymer and modified chitosan-based nanocomposite: impending material for technical application

Pages 934-947 | Received 30 Nov 2018, Accepted 23 Feb 2019, Published online: 19 Mar 2019

References

  • Ji, J.; Wang, L.; Yu, H.; Chen, Y.; Zhao, Y.; Zhang, H.; Amer, W. A.; Sun, Y.; Huang, L.; Saleem, M. Chemical Modifications of Chitosan and Its Applications. Polym. Plast. Technol. Eng. 2014, 53, 1494–1505. DOI: 10.1080/03602559.2014.909486.
  • Mondal, S. Review on Nanocellulose Polymer Nanocomposites. Polym. Plast. Technol. Eng. 2018, 57, 1377–1391. DOI: 10.1080/03602559.2017.1381253.
  • Safdar, R.; Omar, A. A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of Chitosan and Its Derivatives for Controlled Drug Release applications–A Review. J. Drug Delivery Sci. Technol. 2019, 49, 642–659.
  • Kurniasih, M.; Dewi, R. S.; Purwati, P.; Hermawan, D.; Aboul-Enein, H. Y. Synthesis, Characterization and Antifungal Activity of N-Methyl Chitosan and Its Application on the Gauze. Curr. Bioact. Compd. 2018, 14, 347–356. DOI: 10.2174/1573407213666170420171005.
  • Abere, D.; Oyatogun, G.; Oluwasegun, K.; Ayodele, T.; Ajayi, S.; Ohwoekevwo, J.; Adejo, O. Synthesis and Characterization of Alumina-ChitosanHydroxyapatite Biocomposites for Load Bearing Application. Eur. Sci. J. 2018, 14, 145. DOI: 10.19044/esj.2018.v14n30p145.
  • Rajesh, R.; Ravichandran, Y. D.; Nambi Raj, N. A.; Senthilkumar, N. Development of a Biodegradable Composite (Hydroxyapatite-Chitosan-Coir Pith) as a Packing Material. Polym. Plast. Technol. Eng. 2014, 53, 1105–1110. DOI: 10.1080/03602559.2014.886075.
  • Naskar, S.; Sharma, S.; Koutsu, K. Chitosan-Based Nanoparticles: An Overview of Biomedical Applications and Its Preparation. J. Drug Delivery Sci. Technol. 2019, 49, 66–81.
  • Başargan, T.; Nasün-Saygılı, G. Spray-Dried Mesoporous Hydroxyapatite–Chitosan Biocomposites. Polym. Plast. Technol. Eng. 2015, 54, 1172–1183. DOI: 10.1080/03602559.2014.1003235.
  • Butola, B. Recent Advances in Chitosan Polysaccharide and Its Derivatives in Antimicrobial Modification of Textile Materials. Int. J. Biol. Macromol.. 2019, 121, 905–912.
  • Triana-Guzmán, V. L.; Ruiz-Cruz, Y.; Romero-Peñaloza, E. L.; Zuluaga-Corrales, H. F.; Chaur-Valencia, M. N. New Chitosan-Imine Derivatives: From Green Chemistry to Removal of Heavy Metals from Water. Revista Facultad De Ingenieria Universidad De Antioquia. 2018, 89, 9–18.
  • Fayomi, O.; Akande, I. Corrosion Protection Effect of Chitosan on the Performance Characteristics of A6063 Alloy. J. Bio. Tribo-Corrosion. 2018, 4, 73. DOI: 10.1007/s40735-018-0192-6.
  • Kausar, A. Scientific Potential of Chitosan Blending with Different Polymeric Materials: A Review. J. Plast. Film Sheeting. 2017, 33, 384–412. DOI: 10.1177/8756087916679691.
  • Andrew, L.; Hangkun, K. Layered Double Hydroxide/Chitosan Nanocomposite Beads as Sorbents for Selenium Oxoanions. Ind. Eng. Chem. Res. 2018, 57, 4978–4987.
  • Asadzadeh-Firouzabadi, A.; Zare, H. R. Development of Highly Sensitive Electrochemical Genosensor Based on Gold/Graphene–Chitosan Nanocomposite for the Detection of Target DNA Sequence; Iranian Chemical Society: Semnan university, Iran, 2015, 18.
  • Kloster, G. A.; Muraca, D.; Londoño, O. M.; Knobel, M.; Marcovich, N. E.; Mosiewicki, M. A. Structural Analysis of Magnetic Nanocomposites Based on Chitosan. Polym. Test. 2018. DOI: 10.1016/j.polymertesting.2018.10.022.
  • Hall, L. D.; Yalpani, M. Formation of Branched-Chain, Soluble Polysaccharides from Chitosan. J. Chem. Soc. Chem. Commun. 1980, 1153–1154. DOI: 10.1039/c39800001153.
  • Agrawal, P.; Strijkers, G. J.; Nicolay, K. Chitosan-Based Systems for Molecular Imaging. Adv. Drug Delivery Rev. 2010, 62, 42–58. DOI: 10.1016/j.addr.2009.09.007.
  • Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules. 2001, 2, 765–772.
  • Hamed, I.; Özogul, F.; Regenstein, J. M. Industrial Applications of Crustacean By-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8, 203. DOI: 10.1007/s10126-005-6150-6.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Taravel, M.; Domard, A. Collagen and Its Interactions with Chitosan: III. Some Biological and Mechanical Properties. Biomaterials. 1996, 17, 451–455.
  • Hps, A. K.; Saurabh, C. K.; Adnan, A.; Fazita, M. N.; Syakir, M.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.; Haafiz, M.; Dungani, R. A Review on Chitosan-Cellulose Blends and Nanocellulose Reinforced Chitosan Biocomposites: Properties and Their Applications. Carbohydr. Polym. 2016, 150, 216–226. DOI: 10.1016/j.carbpol.2016.05.028.
  • Jao, Y.-T.; Yang, P.-K.; Chiu, C.-M.; Lin, Y.-J.; Chen, S.-W.; Choi, D.; Lin, Z.-H. A Textile-Based Triboelectric Nanogenerator with Humidity-Resistant Output Characteristic and Its Applications in Self-Powered Healthcare Sensors. Nano Energy. 2018. DOI: 10.1016/j.nanoen.2018.05.071.
  • Yang, Z.; Li, P.; McDonagh, A.; Li, S.; Lv, M.; Li, Y.; Yu, Z.; Feng, C. Chitosan-Based Nano-Biocomposites and Their Applications in Medicine and Pharmaceutics. Curr. Org. Chem. 2018, 22, 628–640. DOI: 10.2174/1385272821666170825120835.
  • Manzoor, K.; Ahmad, S.; Soundarajan, A.; Ikram, S.; Ahmed, S. Chitosan Based Nanomaterials for Biomedical Applications. In Handbook of Nanomaterials for Industrial Applications, Chaudhery Mustansar Hussain, Ed.; Elsevier, 2018; pp 543–562.
  • Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • Anitha, A.; Sowmya, S.; Kumar, P. S.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667. DOI: 10.1016/j.progpolymsci.2014.02.008.
  • Cheung, R. C. F.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13, 5156–5186. DOI: 10.3390/md13085156.
  • Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-Based Nanomaterials: A State-Of-The-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. DOI: 10.1016/j.ijbiomac.2013.04.043.
  • Ravichandran, K.; Praseetha, P. K.; Arun, T.; Gobalakrishnan, S. Synthesis of Nanocomposites. In Synthesis of Inorganic Nanomaterials, Sneha Mohan Bhagyaraj, Oluwatobi Samuel Oluwafemi, Nandakumar Kalarikkal, Sabu Thomas, Eds.; Elsevier, 2018; pp 141–168.
  • Prashanth, K. H.; Tharanathan, R. Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. DOI: 10.1016/j.tifs.2006.10.022.
  • Jia, Y.-T.; Gong, J.; Gu, X.-H.; Kim, H.-Y.; Dong, J.; Shen, X.-Y. Fabrication and Characterization of Poly (Vinyl Alcohol)/Chitosan Blend Nanofibers Produced by Electrospinning Method. Carbohydr. Polym. 2007, 67, 403–409. DOI: 10.1016/j.carbpol.2006.06.010.
  • Kim, J. H.; Kim, J. Y.; Lee, Y. M.; Kim, K. Y. Properties and Swelling Characteristics of Cross‐Linked Poly (Vinyl Alcohol)/Chitosan Blend Membrane. J. Appl. Polym. Sci. 1992, 45, 1711–1717. DOI: 10.1002/app.1992.070451004.
  • Hadjianfar, M.; Semnani, D.; Varshosaz, J. Polycaprolactone/Chitosan Blend Nanofibers Loaded by 5‐Fluorouracil: An Approach to Anticancer Drug Delivery System. Polym. Adv. Technol. 2018. DOI: 10.1002/pat.4417.
  • Srinivasa, P.; Ramesh, M.; Tharanathan, R. Effect of Plasticizers and Fatty Acids on Mechanical and Permeability Characteristics of Chitosan Films. Food Hydrocolloids. 2007, 21, 1113–1122. DOI: 10.1016/j.foodhyd.2006.08.005.
  • Kasai, D.; Chougale, R.; Masti, S.; Narasgoudar, S. Thermal Degradation of Ternary Blend Films Containing PVA/chitosan/vanillin. In AIP Conference Proceedings, 2018; AIP Publishing: Bikaner, India, 2018; Vol. 1953; p 030226.
  • Aysa, N. H. Improvement of the Mechanical Properties of Pores Silicone Rubber/Chitosan/Sodium Bicarbonate Composites Using for Burn Dressings. Muthanna Medical Journal. 2018, 4, 120–125.
  • Isa, S. A. M.; Mohamed, R.; Tahir, H.; Mohamed, R. R. R.; Ahmad, R. Tensile and Antimicrobial Properties of Linear Low Density Polyethylene (LLDPE) and Chitosan Blend. In AIP Conference Proceedings, 2018; AIP Publishing: Selangor, Malaysia, 2018; Vol. 1985; 030010.
  • Huang, H.; Yuan, Q.; Yang, X. Preparation and Characterization of Metal–Chitosan Nanocomposites. Colloids Surf. B. 2004, 39, 31–37. DOI: 10.1016/j.colsurfb.2004.08.014.
  • Fadli, A. L.; Hanifah, A.; Fitriani, A.; Rakhmawati, A.; Dwandaru, W. S. B. Application of Silver-Chitosan Nanoparticles as a Prevention and Eradication of Nosocomial Infections Due to Staphylococcus Aureus Sp. In AIP Conference Proceedings, 2018; AIP Publishing: Surakarta, Indonesia, 2018; Vol. 2014; 020017.
  • Sharma, B.; Malik, P.; Jain, P. Biopolymer Reinforced Nanocomposites: A Comprehensive Review. Mater. Today Commun. 2018, 16, 353–363. DOI: 10.1016/j.mtcomm.2018.07.004.
  • Tang, Q.; Huang, G. Preparation and Applications of Glyconanoparticles. Int. J. Biol. Macromol. 2018, 116, 927–930. DOI: 10.1016/j.ijbiomac.2018.05.103.
  • Bakhtiari, S. S. E.; Karbasi, S.; Tabrizi, S. A. H.; Ebrahimi‐Kahrizsangi, R. Chitosan/MWCNTs Composite as Bone Substitute: Physical, Mechanical, Bioactivity, and Biodegradation Evaluation. Polym. Compos. 2018. DOI: 10.1002/pc.25104.
  • Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers. 2017, 9, 689. DOI: 10.3390/polym9120689.
  • İlk, S.; Şener, M.; Vural, M.; Serçe, S. Chitosan/Octadecylamine-Montmorillonite Nanocomposite Containing Nigella Arvensis Extract as Improved Antimicrobial Biofilm against Foodborne Pathogens. BioNanoScience. 2018, 8, 1040–1020.
  • Shariatinia, Z.; Jalali, A. M. Chitosan Nanocomposite Drug Delivery Systems Designed for the Ifosfamide Anticancer Drug Using Molecular Dynamics Simulations. J. Mol. Liq. 2019, 272, 346–367.
  • Han, D.; Chen, Y. Application of Graphene Nanocomposite in Motion Sensing of Human Body. Int. J. Bioautomation. 2018, 22, 349–362.
  • Wu, Q. 3D Printing of Multifunctional Chitosan-Based Hydrogels and Nanocomposites; École Polytechnique de Montréal: Montreal, Canada, 2018.
  • Wang, S.-F.; Shen, L.; Zhang, W.-D.; Tong, Y.-J. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules. 2005, 6, 3067–3072. DOI: 10.1021/bm050378v.
  • Xu, Z.; Gao, N.; Chen, H.; Dong, S. Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11. Langmuir. 2005, 21, 10808–10813. DOI: 10.1021/la051445+.
  • Wu, Z.; Feng, W.; Feng, Y.; Liu, Q.; Xu, X.; Sekino, T.; Fujii, A.; Ozaki, M. Preparation and Characterization of Chitosan-Grafted Multiwalled Carbon Nanotubes and Their Electrochemical Properties. Carbon. 2007, 45, 1212–1218. DOI: 10.1016/j.carbon.2007.02.013.
  • Liu, Y.-L.; Chen, W.-H.; Chang, Y.-H. Preparation and Properties of Chitosan/Carbon Nanotube Nanocomposites Using Poly (Styrene Sulfonic Acid)-Modified CNTs. Carbohydr. Polym. 2009, 76, 232–238. DOI: 10.1016/j.carbpol.2008.10.021.
  • Tsai, Y.-C.; Chen, S.-Y.; Liaw, H.-W. Immobilization of Lactate Dehydrogenase within Multiwalled Carbon Nanotube-Chitosan Nanocomposite for Application to Lactate Biosensors. Sens. Actuators B Chem. 2007, 125, 474–481. DOI: 10.1016/j.snb.2007.02.052.
  • Pan, Y.; Wu, T.; Bao, H.; Li, L. Green Fabrication of Chitosan Films Reinforced with Parallel Aligned Graphene Oxide. Carbohydr. Polym. 2011, 83, 1908–1915. DOI: 10.1016/j.carbpol.2010.10.054.
  • Yang, X.; Tu, Y.; Li, L.; Shang, S.; X.-M., T. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces. 2010, 2, 1707–1713. DOI: 10.1021/am100222m.
  • Zuo, -P.-P.; Feng, H.-F.; Xu, -Z.-Z.; Zhang, L.-F.; Zhang, Y.-L.; Xia, W.; Zhang, W.-Q. Fabrication of Biocompatible and Mechanically Reinforced Graphene Oxide-Chitosan Nanocomposite Films. Chem. Cent. J. 2013, 7, 39. DOI: 10.1186/1752-153X-7-39.
  • Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of Chitosan/Graphene Oxide Composite Film with Enhanced Mechanical Strength in the Wet State. Carbohydr. Polym. 2011, 83, 653–658. DOI: 10.1016/j.carbpol.2010.08.038.
  • Lim, H.; Huang, N.; Loo, C. Facile Preparation of Graphene-Based Chitosan Films: Enhanced Thermal, Mechanical and Antibacterial Properties. J. Non-Cryst. Solids. 2012, 358, 525–530. DOI: 10.1016/j.jnoncrysol.2011.11.007.
  • Xu, P.; Erdem, T.; Eiser, E. A Facile Approach to Prepare Self-Assembled, Nacre-Inspired Clay/Polymer Nano-Composites. arXiv preprint arXiv:1808.03972. 2018.
  • Kerakra, S. Preparation, Fabrication and Characterization of Reinforced Frame Polymer/Clay Nanocomposites; Université Ferhat ABBAS Sétif-1: Setif, Algeria, 2018.
  • Luecha, W.; Magaraphan, R.; Novel, A. Facile Nanoclay Aerogel Masterbatch toward Exfoliated Polymer-Clay Nanocomposites through a Melt-Mixing Process. Adv. Mater. Sci. Eng. 2018. DOI: 10.1155/2018/8106189.
  • Zhang, J.; Wang, L.; Wang, A. Preparation and Properties of Chitosan-G-Poly (Acrylic Acid)/Montmorillonite Superabsorbent Nanocomposite via in Situ Intercalative Polymerization. Ind. Eng. Chem. Res. 2007, 46, 2497–2502. DOI: 10.1021/ie061385i.
  • Wu, T.-M.; Wu, C.-Y. Biodegradable Poly (Lactic Acid)/Chitosan-Modified Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2006, 91, 2198–2204. DOI: 10.1016/j.polymdegradstab.2006.01.004.
  • Mbhele, Z.; Salemane, M.; Van Sittert, C.; Nedeljković, J.; Djoković, V.; Luyt, A. Fabrication and Characterization of Silver− Polyvinyl Alcohol Nanocomposites. Chem. Mater. 2003, 15, 5019–5024. DOI: 10.1021/cm034505a.
  • Ahmed, T. A.; Aljaeid, B. M. Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery. Drug Des. Devel. Ther. 2016, 10, 483. DOI: 10.2147/DDDT.
  • An, J.; Luo, Q.; Yuan, X.; Wang, D.; Li, X. Preparation and Characterization of Silver‐Chitosan Nanocomposite Particles with Antimicrobial Activity. J. Appl. Polym. Sci. 2011, 120, 3180–3189. DOI: 10.1002/app.33532.
  • Qiu, J.-D.; Zhou, W.-M.; Guo, J.; Wang, R.; Liang, R.-P. Amperometric Sensor Based on Ferrocene-Modified Multiwalled Carbon Nanotube Nanocomposites as Electron Mediator for the Determination of Glucose. Anal. Biochem. 2009, 385, 264–269. DOI: 10.1016/j.ab.2008.12.002.
  • Pedroni, V.; Schulz, P.; De Ferreira, M. G.; Morini, M. A Chitosan-Templated Monolithic Siliceous Mesoporous-Macroporous Material. Colloid Polym. Sci. 2000, 278, 964–971. DOI: 10.1007/s003960000348.
  • Zhang, M.; Smith, A.; Gorski, W. Carbon Nanotube− Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal. Chem. 2004, 76, 5045–5050. DOI: 10.1021/ac049519u.
  • Nagarale, R.; Lee, J. M.; Shin, W. Electrochemical Properties of Ferrocene Modified Polysiloxane/Chitosan Nanocomposite and Its Application to Glucose Sensor. Electrochim. Acta. 2009, 54, 6508–6514. DOI: 10.1016/j.electacta.2009.06.027.
  • Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Glucose Oxidase–Graphene–Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing. Biosens. Bioelectron. 2009, 25, 901–905. DOI: 10.1016/j.bios.2009.09.004.
  • Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical Sensor Based on Gold Nanoparticles Fabricated Molecularly Imprinted Polymer Film at Chitosan–Platinum Nanoparticles/Graphene–Gold Nanoparticles Double Nanocomposites Modified Electrode for Detection of Erythromycin. Biosens. Bioelectron. 2012, 38, 163–169. DOI: 10.1016/j.bios.2012.05.017.
  • Ngah, W. W.; Teong, L.; Hanafiah, M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  • Zhu, H.; Jiang, R.; Fu, Y.-Q.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M. Preparation, Characterization and Dye Adsorption Properties of γ-Fe2O3/SiO2/chitosan Composite. Appl. Surf. Sci. 2011, 258, 1337–1344. DOI: 10.1016/j.apsusc.2011.09.045.
  • Zhu, H.-Y.; Jiang, R.; Xiao, L. Adsorption of an Anionic Azo Dye by chitosan/kaolin/γ-Fe2O3 Composites. Appl. Clay Sci. 2010, 48, 522–526. DOI: 10.1016/j.clay.2010.02.003.
  • Nesic, A. R.; Velickovic, S. J.; Antonovic, D. G. Characterization of Chitosan/Montmorillonite Membranes as Adsorbents for Bezactiv Orange V-3R Dye. J. Hazard. Mater. 2012, 209, 256–263. DOI: 10.1016/j.jhazmat.2012.01.020.
  • Jiang, R.; Fu, Y. Q.; Zhu, H. Y.; Yao, J.; Xiao, L. Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films: Adsorption Kinetics and Equilibrium. J. Appl. Polym. Sci. 2012, 125, E540–E549. DOI: 10.1002/app.37003.
  • Soltani, R. D. C.; Khataee, A.; Safari, M.; Joo, S. Preparation of Bio-Silica/Chitosan Nanocomposite for Adsorption of a Textile Dye in Aqueous Solutions. Int. Biodeterior. Biodegrad. 2013, 85, 383–391. DOI: 10.1016/j.ibiod.2013.09.004.
  • Gassara, S.; Cambedouzou, J.; Bechelany, M.; Miele, P. Development of Novel h-BNNS/PVA Porous Membranes via Pickering Emulsion Templating. Green Chem. 2018, 20, 4319–4329.
  • Feng, X.; Huang, R. Y. Pervaporation with Chitosan Membranes. I. Separation of Water from Ethylene Glycol by a Chitosan/Polysulfone Composite Membrane. J. Membr. Sci. 1996, 116, 67–76.
  • Ansarizadeh, M.; Mashayekhan, S.; Saadatmand, M.; Khashabi, E. Empirical Modeling of Mechanical Properties of Modified Collagen/Chitosan Membrane by Response Surface Methodology. In 2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), 2017; IEEE: Tehran, Iran, 2017; pp 1–6.
  • Khan, Z. U.; Kausar, A.; Ullah, H. A Review on Composite Papers of Graphene Oxide, Carbon Nanotube, Polymer/ GO,And Polymer/CNT: Processing Strategies, Properties, and Relevance. Polym.-Plast. Technol. Eng. 2016, 55, 559–581. DOI: 10.1080/03602559.2015.1098693.
  • Peng, F.; Pan, F.; Sun, H.; Lu, L.; Jiang, Z. Novel Nanocomposite Pervaporation Membranes Composed of Poly (Vinyl Alcohol) and Chitosan-Wrapped Carbon Nanotube. J. Membr. Sci. 2007, 300, 13–19. DOI: 10.1016/j.memsci.2007.06.008.
  • Tripathi, S.; Mehrotra, G.; Dutta, P. Physicochemical and Bioactivity of Cross-Linked chitosan–PVA Film for Food Packaging Applications. Int. J. Biol. Macromol. 2009, 45, 372–376. DOI: 10.1016/j.ijbiomac.2009.07.006.
  • Kittur, F. S.; Kumar, K. R.; Tharanathan, R. N. Functional Packaging Properties of Chitosan Films. Zeitschrift für Lebensmitteluntersuchung und-Forschung A. 1998, 206, 44–47. DOI: 10.1007/s002170050211.
  • Ouattara, B.; Simard, R.; Piette, G.; Begin, A.; Holley, R. Diffusion of Acetic and Propionic Acids from Chitosan‐Based Antimicrobial Packaging Films. J. Food Sci. 2000, 65, 768–773. DOI: 10.1111/jfds.2000.65.issue-5.
  • Khan, A.; Khan, R. A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M. R.; Lacroix, M. Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydr. Polym. 2012, 90, 51601–51608. DOI: 10.1016/j.carbpol.2012.07.037.
  • Azeredo, H. M.; Mattoso, L. H. C.; Avena‐Bustillos, R. J.; Filho, G. C.; Munford, M. L.; Wood, D.; McHugh, T. H. Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content. J. Food Sci. 2010, 75, N1–N7. DOI: 10.1111/j.1750-3841.2009.01386.x.
  • Gomes, L. P.; Andrade, C. T.; Del Aguila, E. M.; Alexander, C.; Paschoalin, V. M. Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling. Int. J. Biotechnol. Bioeng. 2018, 12, 111–117.
  • Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-Sodium Alginate Nanoparticle as a Delivery System for ε-polylysine: Preparation, Characterization and Antimicrobial Activity. Food Control. 2018, 91, 302–310. DOI: 10.1016/j.foodcont.2018.04.020.
  • Wang, X.; Du, Y.; Yang, J.; Wang, X.; Shi, X.; Hu, Y. Preparation, Characterization and Antimicrobial Activity of Chitosan/Layered Silicate Nanocomposites. Polymer. 2006, 47, 6738–6744. DOI: 10.1016/j.polymer.2006.07.026.
  • Vigneshwaran, N.; Kumar, S.; Kathe, A.; Varadarajan, P.; Prasad, V. Functional Finishing of Cotton Fabrics Using Zinc Oxide–Soluble Starch Nanocomposites. Nanotechnology. 2006, 17, 5087. DOI: 10.1088/0957-4484/17/20/008.
  • Gouda, M.; Hebeish, A. Preparation and Evaluation of CuO/chitosan Nanocomposite for Antibacterial Finishing Cotton Fabric. J. Ind. Text. 2010, 39, 203–214. DOI: 10.1177/1528083709103142.
  • Rhim, J.-W.; Hong, S.-I.; Park, H.-M.; Ng, P. K. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. J. Agric. Food Chem. 2006, 54, 5814–5822. DOI: 10.1021/jf060658h.
  • Hong, S.-I.; Rhim, J.-W. Antimicrobial Activity of Organically Modified Nano-Clays. J. Nanosci. Nanotechnol. 2008, 8, 5818–5824.
  • Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2011, 79, 784–788. DOI: 10.1016/j.saa.2010.08.053.
  • Nikpour, M.; Rabiee, S.; Jahanshahi, M. Synthesis and Characterization of Hydroxyapatite/Chitosan Nanocomposite Materials for Medical Engineering Applications. Compos. B Eng. 2012, 43, 1881–1886. DOI: 10.1016/j.compositesb.2012.01.056.
  • He, M.; Zhao, Z.; Yin, L.; Tang, C.; Yin, C. Hyaluronic Acid Coated Poly (Butyl Cyanoacrylate) Nanoparticles as Anticancer Drug Carriers. Int. J. Pharmaceutics. 2009, 373, 165–173. DOI: 10.1016/j.ijpharm.2009.02.012.
  • Qu, G.; Yao, Z.; Zhang, C.; Wu, X.; Ping, Q. PEG Conjugated N-octyl-O-sulfate Chitosan Micelles for Delivery of Paclitaxel: In Vitro Characterization and in Vivo Evaluation. Eur. J. Pharm. Sci. 2009, 37, 98–105. DOI: 10.1016/j.ejps.2009.01.004.
  • Venkatesan, P.; Puvvada, N.; Dash, R.; Kumar, B. P.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S. C.; Fisher, P. B.; Mandal, M. The Potential of Celecoxib-Loaded Hydroxyapatite-Chitosan Nanocomposite for the Treatment of Colon Cancer. Biomaterials. 2011, 32, 3794–3806. DOI: 10.1016/j.biomaterials.2011.01.027.
  • Paulson, S. K.; Zhang, J. Y.; Breau, A. P.; Hribar, J. D.; Liu, N. W.; Jessen, S. M.; Lawal, Y. M.; Cogburn, J. N.; Gresk, C. J.; Markos, C. S. Pharmacokinetics, Tissue Distribution, Metabolism, and Excretion of Celecoxib in Rats. Drug Metab. Dispos. 2000, 28, 514–521.
  • Wan, S.; Peng, J.; Li, Y.; Hu, H.; Jiang, L.; Cheng, Q. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. ACS Nano. 2015, 9, 9830–9836. DOI: 10.1021/acsnano.5b02902.
  • Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Chitosan‐Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small. 2011, 7, 1569–1578. DOI: 10.1002/smll.201100191.
  • Aerogels, A. Ab-Initio Methods, 130 Aerobic Biodegradation, 153 Aerogel Monoliths, 47 Aerospace Applications in Aeronautics. Biobased Aerogels Polysaccharide Protein-Based Mater. 2018, 58, 324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.