171
Views
5
CrossRef citations to date
0
Altmetric
Articles

PLA/collagen hydrolysate/silver nanoparticles bionanocomposites for potential antimicrobial urinary drains

, , , , , , , & show all
Pages 2041-2055 | Received 07 Jan 2019, Accepted 29 Mar 2019, Published online: 22 Apr 2019

References

  • von Eiff, C.; Jansen, B.; Kohnen, W.; Becker, K. Infections Associated with Medical Devices: Pathogenesis, Management and Prophylaxis. Drugs. 2005, 65, 179–214. DOI: 10.2165/00003495-200565020-00003.
  • Saint, S.; Wiese, J.; Amory, J. K.; Bernstein, M. L.; Patel, U. D.; Zemencuk, J. K.; Bernstein, S. J.; Lipsky, B. A.; Hofer, T. P. Are Physicians Aware of Which of Their Patients Have Indwelling Urinary Catheters? Am. J. Med. 2000, 109, 476–480.
  • Humphreys, H.; Newcombe, R. G.; Enstone, J.; Smyth, E. T.; McIlvenny, G.; Fitzpatrick, F.; Fry, C.; Spencer, R. C. Four Country Healthcare Associated Infection Prevalence Survey 2006: Risk Factor Analysis. J. Hosp. Infect. 2008, 69, 249–257. DOI: 10.1016/j.jhin.2008.04.021.
  • Maki, D. G.; Tambyah, P. A. Engineering Out the Risk for Infection with Urinary Catheters. Emerg. Infect. Dis. Mar. 2001, 7, 342–347. DOI: 10.3201/eid0702.010240.
  • Ceri, H.; Olson, M.; Stremick, C.; Read, R. R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776.
  • Kaali, P.; Strömberg, E.; Karlsson, S. Prevention of Biofilm Associated Infections and Degradation of Polymeric Materials Used. In Biomedical Applications: Biomedical Engineering, Trends in Materials Science, Ed. Intech Open Access, A. N. Laskovski, 2011; pp 513–540. Available from: https://www.intechopen.com/books/biomedical-engineering-trends-in-materials-science/prevention-of-biofilm-associated-infections-and-degradation-of-polymeric-materials-used-in-biomedica.
  • McCann, M. T.; Gilmore, B. F.; Gorman, S. P. Staphylococcus Epidermidis Device-Related Infections: Pathogenesis and Clinical Management. J. Pharm. Pharmacol. 2008, 60, 1551–1571. DOI: 10.1211/jpp/60.12.0001.
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biochem. Adv. 2009, 27, 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.
  • Klasen, H. J.;. A Historical Review of the Use of Silver in the Treatment of Burns. Part I Early Uses. Burns. 2000, 30, 1–9. DOI: 10.1016/S0305-4179(99)00108-4.
  • Liau, S. Y.; Read, D. C.; Pugh, W. J.; Furr, J. R.; Russell, A. D. Interaction of Silver Nitrate with Readily Identifiable Groups: Relationship to the Antibacterial Action of Silver Ions. Lett. Appl. Microbiol. 1997, 25, 279–283. DOI: 10.1046/j.1472-765X.1997.00219.x.
  • Knetsch, M. L. W.; Koole, L. H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers. 2011, 3, 340–366. DOI: 10.3390/polym3010340.
  • Danilczuk, M.; Lund, A.; Saldo, J.; Yamada, H.; Michalik, J. Conduction Electron Spin Resonance of Small Silver Particles. Spectrochim. Acta A. 2006, 63, 189–191. DOI: 10.1016/j.saa.2005.05.002.
  • Balan, L.; Schneider, R.; Lougnot, D. J. A New and Convenient Route to Polyacrylate/Silver Nanocomposites by Light-Induced Cross-Linking Polymerization. Prog. Org. Coat. 2008, 62, 351–357. DOI: 10.1016/j.porgcoat.2008.01.017.
  • Smith, R.;. Biodegradable Polymers for Industrial Applications; CRC Press LLC: Boca Raton, 2005.
  • Darie-Niţă, R. N.; Munteanu, B. S.; Tudorachi, N.; Lipşa, R.; Stoleru, E.; Spiridon, I.; Vasile, C. Complex Poly(Lactic Acid)-Based Biomaterial for Urinary Catheters. I. Influence of Silver Nanoparticles Concentration on the Mechanical and Thermal Properties. Bioinspired, Biomimetic Nanobiomater. 2016, 5, 132–151. DOI: 10.1680/jbibn.15.00011.
  • Stoleru, E.; Munteanu, B. S.; Darie-Niţă, R. N.; Pricope, G. M.; Lungu, M.; Irimia, A.; Râpă, M.; Lipşa, R. D.; Vasile, C. Complex Poly(Lactic Acid)-Based Biomaterial for Urinary Catheters: II. Biocompatibility. Bioinspired, Biomimetic Nanobiomater. 2016, 5, 152–166. DOI: 10.1680/jbibn.15.00012.
  • Rapa, M.; Darie-Nita, R. N.; Irimia, A. M.; Sivertsvik, M.; Rosnes, J. T.; Trifoi, A. R.; Vasile, C.; Tanase, E. E.; Gherman, T.; Popa, M. E.; et al. Comparative Analysis of Two Bioplasticizers Used to Modulate the Properties of PLA Biocomposites. Mater. Plast. 2017, 54, 610–615.
  • Rapa, M.; Darie Nita, R. N.; Vasile, C. Influence of Plasticizers over Some Physico-Chemical Properties of PLA. Mater. Plast. 2017, 54, 73–78.
  • Darie-Niță, R. N.; Vasile, C.; Irimia, A.; Lipșa, R.; Râpă, M. Evaluation of Some Eco-Friendly Plasticizers for PLA Films Processing. J. Appl. Polym. Sci. 2016, 133. DOI: 10.1002/APP.43223.
  • Bellini, D.; Cencetti, C.; Sacchetta, A. C.; Battista, A. M.; Martinelli, A.; Mazzucco, L.; Scotto D’Abusco, A.; Matricardi, P. PLA-Grafting of Collagen Chains Leading to a Biomaterial with Mechanical Performances Useful in Tendon Regeneration. J. Mech. Behav. Biomed. Mater. 2016, 64, 151–160. DOI: 10.1016/j.jmbbm.2016.07.006.
  • Ruszczaka, Z.; Friessc, W. Collagen as a Carrier for On-Site Delivery of Antibacterial Drugs. Adv. Drug Delivery Rev. 2003. DOI: 10.1016/j.addr.2003.08.00703.
  • Safety Data Sheet. https://www.natureworksllc.com/~/media/Files/NatureWorks/Technical-Documents/Safety-Data-Sheets/NA-ENG/SDS_NatureWorks_Ingeo-2003D_pdf.pdf ( accessed Dec 13, 2018).
  • Lapol 108 Masterbatch Compounding Guide for PLA. http://lapol.net/images/Lapol_108_Masterbatch_Compounding_Guide_for_PLA_Rev._131105.pdf ( accessed Dec 13, 2018).
  • Getting Started with Lapol® 108 Bioplasticizerhttp. //www.lapol.net/images/Lapol_Getting_Started_Guide_and_Essential_Documentation_100930.pdf ( accessed Dec 22, 2018).
  • Silver (Ag) Nanopowder/Nanoparticles (Ag, 99.99%, 20nm, w/~0.2% PVP). https://www.us-nano.com/inc/sdetail/130 ( accessed Dec 13, 2018).
  • Stoica, P.; Râpă, M.; Chifiriuc, M. C.; Lungu, M.; Tatia, R.; Niță, M. I.; Grumezescu, A. M.; Bertesteanu, S.; Bezirtzoglou, E.; Lazăr, V. Antifungal Bionanocomposites Based on Poly(Lactic Acid) and Silver Nanoparticles for Potential Medical Devices. Rom. Biotechnol. Lett. 2015, 20, 10696–10707.
  • Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions. Kolloid-Z.u.Z.Polymere. 1973, 251, 980. DOI: 10.1007/BF01498927.
  • Araque-Monrós, M. C.; Vidaurre, A.; Gil-Santos, L.; Gironés Bernabé, S.; Monleón-Pradas, M.; Más-Estellés, J. Study of the Degradation of a New PLA Braided Biomaterial in Buffer Phosphate Saline, Basic and Acid Media, Intended for the Regeneration of Tendons and Ligaments. Polym. Degrad. Stab. 2013, 98, 1563–1570. DOI: 10.1016/j.polymdegradstab.2013.06.031.
  • ASTM F1635-16. Standard Test Method for in Vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants; ASTM International: West Conshohocken, PA, 2016. www.astm.org.
  • Cui, M.; Liu, L.; Guo, N.; Su, R.; Ma, F. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(Lactic Acid). Molecules. 2015, 20, 595–607. DOI: 10.3390/molecules20010595.
  • Anghel, I.; Grumezescu, A. M.; Holban, A. M.; Ficai, A.; Anghel, A. G.; Chifiriuc, M. C. Biohybrid Nanostructured Iron Oxide Nanoparticles and Satureja Hortensis to Prevent Fungal Biofilm Development. Int. J. Mol. Sci. 2013, 14, 18110–18123. DOI: 10.3390/ijms140918110.
  • Lazăr, V.; Balotescu, M. C.; Cernat, R.; Bulai, D. Method of Determining the Susceptiility to Antimicrobial Substances of Bacteria Developed in Biofilm in Liquid Medium. Patent no. 123145/-2010.
  • Fortunati, E.; Peltzer, M.; Armentano, I.; Torre, L.; Jiménez, A.; Kenny, J. M. Effects of Modified Cellulose Nanocrystals on the Barrier and Migration Properties of PLA Nano-Biocomposites. Carbohydr. Polym. 2012, 90, 948–956. DOI: 10.1016/j.carbpol.2012.06.025.
  • Vieira, A.; Vieira, J. C.; Ferra, J. M.; Magalães, F. D.; Guides, R. M.; Marques, A. T. Mechanical Study of PLA-PCL Fibers during in Vitro Degradation. J. Mech Behav. Biomed. Mater. 2011, 4, 451–460. DOI: 10.1016/j.jmbbm.2010.12.006.
  • Rapa, M.; Mitelut, A. C.; Tanase, E. E.; Grosu, E.; Popescu, P.; Popa, M. E.; Rosnes, J. T.; Sivertsvik, M.; Darie-Nita, R. N.; Vasile, C. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA-biocomposites for Food Packaging. Compos. Part B. 2016, 102, 112–121. DOI: 10.1016/j.compositesb.2016.07.016.
  • Yang, X.; Yuan, M.; Li, W.; Zhang, G. Synthesis and Properties of Collagen/Polylactic Acid Blends. J. Appl. Polym. Sci. 2004, 94, 1670–1675. DOI: 10.1002/app.21056.
  • Lazăr, V.; Chifiriuc, M. C. Medical Significances and New Therapeutical Strategies for Biofilm Associated Infections. Roum. Arch. Microbiol. Immunol. 2010, 69, 125–138.
  • Arciola, C. R.; Campoccia, D.; Gamberini, S.; Baldassarri, L.; Montanaro, L. Prevalence of Cna, fnbA and fnbB Adhesin Genes among Staphylococcus Aureus Isolates from Orthopedic Infections Associated to Different Types of Implant. FEMS Microbiol. Lett. 2005, 246, 81–86. DOI: 10.1016/j.femsle.2005.03.035.
  • Francolini, I.; Donelli, G. Preventionand Control of Biofilm-Based Medical-Device-Related Infection. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. DOI: 10.1111/j.1574-695X.2010.00665.x.
  • Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y. S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Control of Degradation Rate and Hydrophilicity in Electrospun Non-Woven Poly(D,L-Lactide) Nanofiber Scaffolds for Biomedical Applications. Biomaterials. 2003, 24, 4977–4985. DOI: 10.1016/S0142-9612(03)00407-1.
  • Beslikas, T.; Gigis, I.; Goulios, V.; Christoforides, J.; Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization Study and Comparative in Vitro–In Vivo Hydrolysis of PLA Reinforcement Ligament. Int. J. Mol. Sci. 2011, 12, 6597–6618. DOI: 10.3390/ijms12106597.
  • Kim, K. J.; Sung, W. S.; Suh, B. K.; Moon, S. K.; Choi, J. S.; Kim, J. G. Antifungal Activity and Mode of Action of Silver Nano-Particles on Candida Albicans. Biometals. 2009, 22, 235–242. DOI: 10.1007/s10534-008-9159-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.