818
Views
19
CrossRef citations to date
0
Altmetric
Articles

Green synthesized materials for sensor, actuator, energy storage and energy generation: a review

, , , , , , & show all
Pages 1-62 | Received 28 Nov 2018, Accepted 24 Mar 2019, Published online: 20 May 2019

References

  • Kiddee, P.; Naidu, R.; Wong, M. H. Electronic Waste Management Approaches: An Overview. Waste Manag 2013, 33, 1237–1250. DOI: 10.1016/j.wasman.2013.01.006.
  • Lemaire, E.; Moser, R.; Borsa, C. J.; Briand, D. Green Paper-Based Piezoelectronics for Sensors and Actuators. Sens. Actuators A. 2016, 244, 285–291.
  • Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renewable Sustainable Energy Rev.. 2015, 41, 402–412.
  • Vladu, M. I.;. “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future. Chem. Soc. Rev. 2014, 43, 588–610.
  • La Mantia, F. P.; Morreale, M. Green Composites: A Brief Review. Composites: Part A. 2011, 42, 579–588.
  • Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002, 10, 19–26.
  • Adhikari, B.; Kar, P. Chemical Sensors; Momentum Press: LLC New Jersey, 2010.
  • Kar, P.; Choudhury, A.; Verma, S. K. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites; Wiley-Scrivener: New Jersey, 2015.
  • Kar, P.; Tatard, F.; Lamblin, G.; Banet, P.; Aubert, P. H.; Plesse, C.; Chevrot, C. Silver Nanoparticles to Improve Electron Transfer at Interfaces of Gold Electrodes Modified by Biotin or Avidin. J. Electroanal. Chem. 2013, 692, 17–25.
  • Cho, J.; Jeong, S.; Kim, Y. Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. DOI: 10.1016/j.pecs.2015.01.002.
  • Sullivan, A. C. O.;. Cellulose: The Structure Slowly Unravels. Cellulose. 1997, 4, 173–207.
  • Cunha, A. G.; Fernandes, S. C. M.; Freire, C. S. R.; Silvestre, A. J. D.; Pascoal, C.; Gandini, A. What Is the Real Value of Chitosan’s Surface Energy? Biomacromolecules. 2008, 9, 610–614.
  • Seppanen, R.; Von Bahr, M.; Tiberg, F.; Zhmud, B. Surface Energy Characterization Of AKD-sized Papers. J.Pulp Pap. Sci.. 2004, 30, 70–73.
  • Hu, J.; Wang, S. Q.; Wang, L.; Li, F.; Murphy, B. P.; Lu, T. J.; Xu, F. Advances in Paper-Based Point-Of-Care Diagnostics. Biosens. Bioelectron. 2014, 54, 585–597.
  • Pelton, R.;. Bioactive Paper Provides A Low-Cost Platform For Diagnostics, TrAC Trends In Anal. Chem. 2009, 28, 925–942.
  • Majumdar, S.; Adhikari, B. Polyvinyl Alcohol–Cellulose Composite: A Taste Sensing Material. Bull. Mater. Sci. 2005, 28, 703–712.
  • Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Educ. 2005, 44, 3358–3393.
  • Rao, K. M. M.; Rao, K. M. Extraction and Tensile Properties of Natural Fibers: Vakka, Date and Bamboo. Compos. Struct. 2007, 77, 288–295.
  • Li, X.; Tabil, L. G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33.
  • Kalia, S.; Kaith, B. S.; Kaur, I. Pretreatments Of Natural Fibers And Their Application As Reinforcing Material In Polymer composites-A Review. Polym. Eng. Sci. 2009, 49, 1253–1272.
  • Bledzki, A. K.; Fink, H. P.; Specht, K. Unidirectional Hemp And Flax Ep And PP-composites: Influence Of Defined Fiber Treatments. J. Appl. Polym. Sci. 2004, 93, 2150–2156.
  • Aziz, S. H.; Ansell, M. P. The Effect of Alkalization and Fibres Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bastfibre Composites. Part I. Polyester Resin Matrix. Compos. ScI. Technol. 2003, 64, 1219–1230.
  • Mishra, S.; Mishra, M.; Tripathy, S. S.; Nayak, S. K.; Mohanty, A. K. Graft Copolymerisation of Acrylonitrile on Chemically Modified Sisal Fibers. Macromol. Mater. Eng. 2001, 286, 107–113.
  • Mohanty, S.; Nayak, S. K.; Verma, S. K.; Triphacy, S. S. Effect Of Mapp As A Coupling Agent On The Performance Of jute-PP Composites. J. Reinf. Plast. Comp. 2004, 23, 625–637.
  • Mohanty, A.; Mubarak, K.; Khan, A.; Hinrichsen, G. Surface Modification of Jute and Its Influence on Performance of Biodegradable Jute-Fabric. Comput. Sci. Technol. 2000, 60, 1115–1124.
  • Majumdar, S.; Dey, J.; Adhikari, B. Taste Sensing with Polyacrylicacid Grafted Cellulose Membrane. Talanta. 2006, 69, 131–139.
  • George, O.;. Principles of Polymerization; John Wiley & Sons: Hoboken, New Jersey, 2004.
  • Novell, M.; Parrilla, M.; Crespo, G. A.; Xavier Rius, F.; Andrade, F. J. Paper-Based Ion-Selective Potentiometric Sensors. Anal. Chem. 2012, 84, 4695–4702.
  • Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S. Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Anal. Chem. 2011, 83, 4273–4280.
  • Han, J. W.; Kim, B.; Li, J.; Meyyappan, M. Carbon Nanotube Based Humidity Sensor on Cellulose Paper. J. Phys. Chem C. 2012, 116, 22094−22097.
  • Hu, C.; Li, Z.; Wang, Y.; Gao, J.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Song, H.; Guo, Z. Comparative Assessment of the Strain-Sensing Behaviors of Polylactic Acid Nanocomposites: Reduced Graphene Oxide or Carbon Nanotubes. J. Phys. Chem C. 2017, 5, 2318–2328.
  • Kumar, B.; Castro, M.; Feller, J. F. Poly (Lactic Acid)–Multi-Wall Carbon Nanotube Conductive Biopolymer Nanocomposite Vapours Sensors. Sens. Actuators B. 2012, 161, 621–628.
  • Barkauskas, J.;. Investigation of Conductometric Humidity Sensors. Talanta. 1997, 44, 1107–1112.
  • Şentürk, S. B.; Kahraman, D.; Alkan, C.; Gökçe, İ. Biodegradable PEG/cellulose, PEG/agarose And PEG/chitosan Blends As Shape Stabilized Phase Change Materials For Latent Heat Energy Storage. Carbohyd. Polym. 2011, 84, 141–144.
  • Li, Y.; Deng, C.; Yang, M. A Novel Surface Acoustic Wave-Impedance Humidity Sensor Based on the Composite of Polyaniline and Poly (Vinyl Alcohol) with A Capability of Detecting Low Humidity. Sens. Actuators B. 2012, 165, 7–12.
  • Agarwal, M.; Lvov, Y.; Varahramyan, K. Conductive Wood Microfibres for Smart Paper through Layer-By-Layer Nanocoating. Nanotechnology. 2006, 17, 5319–5325.
  • Sung, W. J.; Bae, Y. H. A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Polyanion-Enzyme Conjugated Dopant. Anal. Chem. 2000, 72, 2177–2181.
  • Hu, W.; Niu, X.; Zhao, R.; Pei, Q. Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane. Appl. Phys. Lett. 2013, 102, 083303–083308.
  • Richardson, M. J.; Johnston, J. H.; Borrmann, T. Electronic Properties of Intrinsically Conducting Polymer-Cellulose Based Composites, Curr. Appl. Phys. 2006, 6, 462–465.
  • Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-Coated Paper for Flexible Solid-State Energy Storage. Energy Environ. Sci. 2013, 6, 470–476.
  • Winther-Jensen, B.; Clark, N.; Subramanian, P.; Helmer, R.; Ashraf, S.; Wallace, G.; Spiccia, L.; MacFarlane, D. Application of Polypyrrole to Flexible Substrates. J. Appl. Polym. Sci. 2007, 104, 3938–3947.
  • Niu, L.; Luo, Y.; Li, Z. A Highly Selective Chemical Gas Sensor Based on Functionalization of Multi-Walled Carbon Nanotubes with Poly (Ethylene Glycol). Sens. Actuators B. 2007, 126, 361–367.
  • Li, S.; Huang, D.; Yang, J.; Zhang, B.; Zhang, X.; Yang, G.; Wang, M.; Shen, Y. Freestanding Bacterial Cellulose-Polypyrrolenanofibres Paper Electrodes for Advanced Energy Storage Devices. Nano Energy. 2014, 9, 309–317.
  • Majumdar, S.; Adhikari, B. Taste Sensing with Cellophane Phosphate Membrane. Anal. Chimi. Acta. 2005, 554, 105–112.
  • Xu, M.; Bunes, B. R.; Zang, L. Paper-Based Vapor Detection of Hydrogen Peroxide: Colorimetric Sensing with Tunable Interface. ACS Appl. Mater. Interface. 2011, 3, 642–647.
  • Li, D.; Frey, M. W.; Vynias, D.; Baeumner, A. J. Availability of Biotin Incorporated in Electrospun PLA Fibers for Streptavidin Binding. Polymer. 2007, 48, 6340–6347.
  • Li, D.; Frey, M. W.; Baeumner, A. J. Electrospun Polylactic Acid Nanofiber Membranes as Substrates for Biosensor Assemblies. J. Membr. Sci. 2006, 279, 354–363.
  • Koschwanez, H. E.; Yap, F. Y.; Klitzman, B.; Reichert, W. M. In Vitro And In Vivo Characterization Of Porous poly-L-lactic Acid Coatings For Subcutaneously Implanted Glucose Sensors. J. Biomed. Mater. Res A. 2008, 87, 792–807.
  • Kim, J.; Jung, W.; Kim, H. S. In-Plane Strain of Electro-Active Paper under Electric Fields. Sens. Actuators A. 2007, 140, 225–231.
  • Wu, Y.; Xue, P.; Hui, K. M.; Kang, Y. A Paper-Based Microfluidic Electrochemical Immunodevice Integrated with Amplification-By-Polymerization for the Ultrasensitive Multiplexed Detection of Cancer Biomarkers. Biosens. Bioelectron. 2014, 52, 180–187.
  • Penza, M.; Cassano, G. Relative Humidity Sensing By PVA-coated Dual Resonator Saw Oscillator. Sens. Actuators B. 2000, 68, 300–306.
  • Aussawasahien, D.; Dong, J. H.; Dai, L. Electrospun Polymer Nanofiber Sensors. Synth. Met. 2005, 154, 37–40.
  • Yu, J.; Liu, Z.; Liu, Q.; Yuen, K. T.; Mak, A. F. T.; Yang, M.; Leung, P. A Polyethylene Glycol (PEG) Microfluidic Chip with Nanostructures for Bacteria Rapid Patterning and Detection. Sens. Actuators A. 2009, 154, 288–294.
  • Lleixa, C. P.; Jimenez, C.; Alonso, J.; Bartroli, J. Polyurethane-Acrylate Photocurable Polymeric Membrane for Ion-Sensitive Field-Effect Transistor Based Urea Biosensors. Anal. Chim. Acta. 1999, 389, 179–188.
  • Bratov, A.; Abramova, N.; Dominguez, C.; Baldi, A. Ion-Selective Field Effect Transistor (Isfet)-Based Calcium Ion Sensor with Photocured Polyurethane Membrane Suitable for Ionised Calcium Determination in Milk. Anal. Chim. Acta. 2000, 408, 57–64.
  • McGovern, S. T.; Spinks, G. M.; Wallace, G. G. Micro-Humidity Sensors Based on a Processable Polyaniline Blend. Sens. Actuators B. 2005, 107, 657–665.
  • Han, J. H.; Taylor, J. D.; Kim, D. S.; Kim, Y. S.; Kim, Y. T.; Cha, G. S.; Nam, H. Glucose Biosensor with Hydrophilic Polyurethane (HPU) Blended with Polyvinyl Alcohol/Vinyl Butyral Copolymer (PVAB) Outer Membrane. Sens. Actuators B. 2007, 123, 384–390.
  • Buvailo, A.; Xing, Y.; Hines, J.; Borguet, E. Thin Polymer Film Based Rapid Surface Acoustic Wave Humidity Sensors. Sens. Actuators B. 2011, 156, 444–449.
  • Khan, S. B.; Rahman, M. M.; Jang, E. S.; Akhtar, K.; Han, H. Special Susceptive Aqueous Ammonia Chemi-Sensor: Extended Applications Of Novel UV-curable Polyurethane-Clay Nanohybrid. Talanta. 2011, 84, 1005–1010.
  • Yu, B.; Long, N.; Moussy, Y.; Moussy, F. A Long-Term Flexible Minimally-Invasive Implantable Glucose Biosensor Based on an Epoxy-Enhanced Polyurethane Membrane. Biosens. Bioelectron. 2006, 21, 2275–2282.
  • Filippo, E.; Serra, A.; Manno, D. Poly (Vinyl Alcohol) Capped Silver Nanoparticles as Localized Surface Plasmon Resonance-Based Hydrogen Peroxide Sensor. Sens. Actuators B. 2009, 138, 625–630.
  • Greenshields, M. W.; Meruvia, M. S.; Hümmelgen, I. A.; Coville, N. J.; Mhlanga, S. D.; Ceragioli, H. J.; Quispe, J. C. R.; Baranauskas, V. AC-conductance And Capacitance Measurements For Ethanol Vapor Detection Using Carbon Nanotube-Polyvinyl Alcohol Composite Based Devices. J. Nanosci. Nanotech. 2010, 10, 1–5.
  • Greenshields, M. W.; Meruvia, M. S.; Hümmelgen, I. A.; Mamo, M. A.; Shaikjee, A.; Mhlanga, S. D.; van Otterlo, W. A. L.; Coville, N. J. Composites of Polyvinyl Alcohol and Carbon (Coils, Undoped and Nitrogen Doped Multiwalled Carbon Nanotubes) as Ethanol, Methanol and Toluene Vapor Sensors. J. Nanosci. Nanotech. 2011, 11, 10211–10218.
  • Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity Switching Properties of Sensors Based on Multiwalled Carbon Nanotubes/Polyvinyl Alcohol Composite Films. J. Appl. Polym. Sci. 2014, 131, 39726–39732.
  • Singhal, A.; Kaur, M.; Dubey, K. A.; Bhardwaj, Y. K.; Jain, D.; Pillai, C. G. S.; Tyagi, A. K. Polyvinyl alcohol–In2O3 Nanocomposite Films: Synthesis, Characterization And Gas Sensing Properties. RSC Adv. 2012, 2, 7180–7189.
  • Mai, F.; Habibi, Y.; Raquez, J. M.; Dubois, P.; Feller, J. F.; Peijs, T.; Bilotti, E. Poly (Lactic Acid)/Carbon Nanotube Nanocomposites with Integrated Degradation Sensing. Polymer. 2013, 54, 6818–6823.
  • Navarro, A. V.; Castillo, A. L. M.; Sanchez, J. F. F.; Gutiérrez, A. F. Synthesis of a Novel Polyurethane-Based-Magnetic Imprinted Polymer for the Selective Optical Detection of 1-Naphthylamine in Drinking Water. Biosens. Bioelectron. 2011, 26, 4520–4525.
  • Farjana, S. S.; Toomadj, F.; Lundgren, P.; Sanz-Velasco, A.; Naboka, O.; Enoksson, P. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose. J. Sens. 2013, 2013, 7. Article ID 741248.
  • George, S. M.; Santhi, M.; Senthilnathan, T. A Paper-Based Colorimetric Assay for the Detection of Hg (II) in Aqueous Solutions Using Silver Nanoparticles Green Synthesized with Garcinia Cambogia and Their Application for Environmental Samples. Sens. Lett. 2017, 15, 156–161.
  • Wei, Y.; Chen, S.; Li, F.; Lin, Y.; Zhang, Y.; Liu, L. Highly Stable and Sensitive Paper-Based Bending Sensor Using Silver Nanowires/Layered Double Hydroxides Hybrids. ACS Appl. Mater. Interface. 2015, 7, 14182−14191.
  • Wu, X.; Han, Y.; Zhang, X.; Lu, C. Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Appl. Mater. Interface. 2016, 8, 9936−9945.
  • Narvaez, E. M.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, U.; Horak, D.; Pourreza, N.; Merkoci, A. Nanopaper as an Optical Sensing Platform. ACS Nano. 2015, 9, 7296–7305.
  • Jiang, K.; Fei, T.; Jiang, F.; Wang, G.; Zhang, T. A Dew Sensor Based on Modified Carbon Black and Polyvinyl Alcohol Composites. Sens. Actuators B. 2014, 192, 658–663.
  • Cho, Y. Y. A.; Lee, H. S.; Cha, G. S.; Lee, Y. T. Fabrication of Butyryl Cholinesterase Sensor Using Polyurethane-Based Ion-Selective Membrane. Biosens. Bioelectron. 1999, 14, 435–438.
  • Faria, F. A. C.; Evtuguin, D. V.; Rudnitskaya, A.; Gomes, M. T. S. R.; Oliveira, J. A. B. P.; Gracm, M. P. F.; Costa, L. C. Lignin-Based Polyurethane Doped with Carbon Nanotubes for Sensor Applications. Polym. Int. 2012, 61, 788–794.
  • Pang, J.; Fan, C.; Liu, X.; Chen, T.; Li, G. A Nitric Oxide Biosensor Based on the Multi-Assembly of Hemoglobin/Montmorillonite/Polyvinylalcohol at A Pyrolytic Graphite Electrode. Biosens. Bioelectron. 2003, 19, 441–445.
  • Lad, U.; Kale, G. M.; Bryaskova, R. Glucose Oxidase Encapsulated Polyvinyl Alcohol-Silica Hybrid Films for an Electrochemical Glucose Sensing Electrode. Anal, Chem. 2013, 85, 6349−6355.
  • Zainab, Y.; Mohd Nizar, H.; Ahsanul, K.; Awang, Z. Gas Sensors: A Review. Sens. Transducers J. 2014, 168, 61–75.
  • Hübert, T.; Brett, L. B.; Black, G.; Banach, U. Hydrogen Sensors–A Review. Sens. Actuators B. 2011, 157, 329–352.
  • Tardy, P.; Coulon, J. R.; Lucat, C.; Menil, F. Dynamic Thermal Conductivity Sensor for Gas Detection. Sens. Actuators B. 2004, 98, 63–68.
  • De Graaf, G.; Wolffenbuttel, R. F. Surface-Micromachined Thermal Conductivity Detectors for Gas Sensing. In Instrumentation and Measurement Technology Conference. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Proceedings, Graz, Austria, 2012, 1861–1864. DOI: 10.1109/I2MTC.2012.6229412
  • Simon, I.; Arndt, M. Thermal and Gas-Sensing Properties of a Micromachined Thermal Conductivity Sensor for the Detection of Hydrogen in Automotive Applications. Sens. Actuators A. 2002, 97, 104–108. DOI: 10.1016/S0924-4247(01)00825-1.
  • Focke, M.; Kosse, D.; Müller, C.; Reinecke, H.; Zengerle, R.; Stetten, F. V. Lab-On-a-Foil: Microfluidics On Thin And Flexible Films. Lab Chip. 2010, 10, 1365–1386.
  • Safavieh, R.; Zhou, G. Z.; Juncker, D. Microfluidics Made of Yarns and Knots: From Fundamental Properties to Simple Networks and Operations. Lab Chip. 2011, 11, 2618–2624.
  • Nilghaz, A.; Wicaksono, D. H.; Gustiono, D.; Abdul Majid, F. A.; Supriyanto, E.; Abdul Kadir, M. R. Flexible Microfluidic Cloth-Based Analytical Devices Using a Low-Cost Wax Patterning Technique. Lab Chip. 2012, 12, 209–218.
  • Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J. A Disposable Electrochemical Immunosensor Based on Carbon Screen-Printed Electrodes for the Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2012, 38, 355–361.
  • Young, R. O.; Young, S. R. The pH Miracle: Balance Your Diet, Reclaim Your Health, Revised ed.; Grand Central Life & Style: New York, 2010.
  • Liu, D.; Meyerhoff, M. E.; Goldberg, H. D.; Brown, R. B. Potentiometric Ion-And Bioselective Electrodes Based on Asymmetric Polyurethane Membranes. Anal. Chim. Acta. 1993, 274, 37–46.
  • Wong, R. C.; Tse, H. Y. Lateral Flow Immunoassay; Humana Press: New York, 2009.
  • Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10.
  • Lu, J.; Ge, S.; Ge, L.; Yan, M.; Yu, J. Electrochemical DNA Sensor Based on Three-Dimensional Folding Paper Device for Specific and Sensitive Point-Of-Care Testing. Electrochim. Acta. 2012, 80, 334–341.
  • Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J. Paper-Based Three-Dimensional Electrochemical Immunodevice Based on Multi-Walled Carbon Nanotubes Functionalized Paper for Sensitive Point-Of-Care Testing. Biosens. Bioelectron. 2012, 32, 238–243.
  • Yabuki, S.; Mizutani, F.; Katsura, T. Glucose-Sensing Carbon Paste Electrode Containing Polyethylene Glycol-Modified Glucose Oxidase. Biosens. Bioelectron. 1992, 7, 695–700.
  • Ouyang, Z.; Li, J.; Wang, J.; Li, Q.; Ni, T.; Zhang, X.; Wang, H.; Li, Q.; Su, Z.; Wei, G. Fabrication, Characterization and Sensor Application of Electrospun Polyurethane Nanofibers Filled with Carbon Nanotubes and Silver Nanoparticles. J. Mater. Chem. B. 2013, 1, 2415–2424.
  • Majumdar, S.; Adhikari, B. Polyvinyl Alcohol: A Taste Sensing Material. Sens. Actuators B. 2006, 114, 747–755.
  • Plaza, N.; Zelinka, S. L.; Stone, D. S.; Jakes, J. E. Plant Based Torsional Actuator with Memory. Smart Mater. Struct. 2013, 22, 072001.
  • Mahadeva, S. K.; Yun, S.; Kim, J. Flexible Humidity and Temperature Sensor Based on Cellulose-Polypyrrole Nanocomposite. Sens. Actuators A. 2011, 165, 194–199.
  • Jiang, L.; Jun, H. K.; Hoh, Y. S.; Lim, J. O.; Lee, D. D.; Huh, J. S. Sensing Characteristics of Polypyrrole-Poly (Vinyl Alcohol) Methanol Sensors Prepared by in Situ Vapor State Polymerization. Sens. Actuators B. 2005, 105, 132–137.
  • Jing, X.; Zou, D.; Meng, Q.; Zhang, W.; Zhang, F.; Feng, W.; Han, X. Fabrication and Visible-Light Photochromism of Novel Hybridinorganic-Organic Film Based on Polyoxometalates and Ethyl Cellulose. Inorg. Chem. Commun. 2014, 46, 149–154.
  • Mahadeva, S. K.; Kang, B. W.; Kim, J. Detection of Urea and Rancidity of Milk Using Inter-Digitated Cellulose–Tin Oxide Hybrid Composite. Sens. Lett. 2014, 12, 39–43.
  • Yun, S.; Kim, J. Multi-Walled Carbon Nanotubes-Cellulose Paper for a Chemical Vapor Sensor. Sens. Actuators B. 2010, 150, 308–313.
  • Mohiuddin, M.; Sadasivuni, K. K.; Mun, S.; Kim, J. Flexible Cellulose Acetate/Graphene Blueprints for Vibrotactile Actuator. RSC Adv. 2015, 5, 34432–34438.
  • Kafy, A.; Sadasivuni, K. K.; Kim, H. C.; Akther, A.; Kim, J. Designing Flexible Energy and Memory Storage Materials Using Cellulose Modified Graphene Oxide Nanocomposites. Phys. Chem. Chem. Phys. 2015, 17, 5923–5931.
  • Lin, Y. Y.; Chen, C. W.; Yen, W. C.; Su, W. F.; Ku, C. H.; Wu, J. J. Near-Ultraviolet Photo- Detector Based on Hybrid Polymer/Zincoxide Nanorods by Low Temperature Solution Processes. Appl. Phys. Lett. 2008, 92, 233301.
  • Wang, L.; Zhao, D.; Su, Z.; Fang, F.; Li, B.; Zhang, Z.; Shen, D.; Wang, X. High Spectrum Selectivity Organic/Inorganic Hybrid Visible-Blind Ultraviolet Photo Detector Based On ZnO Nanorods. Org. Electron. 2010, 11, 1318–1322.
  • Li, H.; Wu, G.; Chen, H.; Wang, M. Polymer/ZnO Hybrid Materials For Near Uv Sensors With Wavelength Selective Response. Sens. Actuators B. 2011, 160, 1136–1140.
  • Mun, S.; Chen, Y.; Kim, J. Cellulose–Titanium Dioxide–Multiwalled Carbon Nanotube Hybrid Nanocomposite and Its Ammonia Gas Sensing Properties at Room Temperature. Sens. Actuators B. 2012, 171–172, 1186–1191.
  • Chen, Y.; Mun, S.; Kim, J. A Wide Range Conductometric pH Sensor Made With Titanium Dioxide/Multiwall Carbon Nanotube/Cellulose Hybrid Nanocomposite. IEEE Sens. J. 2013, 13, 4157–4162.
  • Bailey, T.; Ubbard, J. E. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam. J. Guidance Control Dyn. 1985, 8, 605–611.
  • Baz, A.; Poh, S.; Fedor, J. Independent Modal Space Control with Positive Position Feedback. J. Dyn. Sys. Meas. Control. 1992, 114, 96–103.
  • Lazarus, K. B.; Crawley, E. Multivariable High-Authority Control of Plate-Like Active Structures. J. Guidance Control Dyn. 1996, 19, 1357–1363.
  • Wang, B. T.; Rogers, C. A. Laminate Plate Theory for Spatially Distributed Induced Strain Actuators. J. Compos. Mater. 1991, 25, 433–452.
  • Reddy, J.; Barbero, E.; Teply, J. A Plate Bending Element Based on A Generalized Laminate Plate Theory. Int. J. Numer. Methods Eng. 1989, 28, 2275–2292.
  • Han, J. H.; Rew, K. H.; Lee, I. An Experimental Study of Active Vibration Control of Composite Structures with a Piezo-Ceramic Actuator and a Piezo-Film Sensor. Smart Mater. Struct. 1997, 6, 549.
  • Saliba, M. A.; Ellul, C. Dexterous Actuation. Mech. Mach. Theory. 2013, 70, 45–61.
  • Crawley, E. F.; De Luis, J. Use of Piezoelectric Actuators as Elements of Intelligent Structures. Aiaa J. 1987, 25, 1373–1385.
  • https://www.coursehero.com/file/6561844/Hydraulic-Systems/, Copyright © 2019. Course Hero, Inc. Hydraulic Systems Chapter 11 Course title ABE 4171, University of Florida.
  • Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; et al. Carbon Nanotube Actuators. Science. 1999, 284, 1340–1344.
  • Tombler, T. W.; Zhou, C.; Alexseyev, L.; Kong, J.; Dai, H.; Liu, L.; Wu, S. Y. Reversible Electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation. Nature. 2000, 405, 769–772.
  • Thostenson, E. T.; Chou, T. W. Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites. Carbon. 2006, 44, 3022–3029.
  • Miyagawa, H.; Drzal, L. T. Thermo-Physical and Impact Properties of Epoxy Nanocomposites Reinforced by Single-Wall Carbon Nanotubes. Polymer. 2004, 45, 5163–5170.
  • Zhu, J.; Kim, J.; Peng, H.; Margrave, J. L.; Khabashesku, V. N.; Barrera, E. V. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Lett. 2003, 3, 1107–1113.
  • Yasmin, A.; Abot, J. L.; Daniel, I. M. Processing of Clay/Epoxy Nanocomposites by Shear Mixing. Scr. Mater. 2003, 49, 81–86.
  • Yun, Y. H.; Shanov, V.; Schulz, M. J.; Narasimhadevara, S.; Subramaniam, S.; Hurd, D.; Boerio, F. J. Development of Novel Single-Wall Carbon Nanotube-Epoxy Composite Ply Actuators. Smart Mater. Struct. 2005, 14, 1526–1532.
  • Li, C.; Thostenson, E. T.; Chou, T. W. Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review. Comput. Sci. Technol. 2008, 68, 1227–1249.
  • Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Comput. Sci. Technol. 2004, 64, 2363–2371.
  • Thostenson, E. T.; Chou, T. W. On the Elastic Properties of Carbon Nanotube-Based Composites: Modelling and Characterization. J. Phys. D Appl. Phys. 2003, 36, 573–582.
  • Tahhan, M.; Truong, V. T.; Spinks, G. M.; Wallace, G. G. Carbon Nanotube and Polyaniline Composite Actuators. Smart Mater. Struct. 2003, 626, 12.
  • Li, C.; Chou, T. W. Elastic Moduli of Multi-Walled Carbon Nanotubes and the Effect of Van Der Waals Forces. Comput. Sci. Technol. 2003, 63, 1517–1524.
  • Wei, C.; Dai, L.; Roy, A.; Tolle, T. B. Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites. J. Am. Chem. Soc. 2006, 128, 1412–1413.
  • Levitsky, I. A.; Kanelos, P.; Euler, W. B. Electromechanical Actuation of Composite Material from Carbon Nanotubes and Ionomeric Polymer. J. Chem. Phys. 2004, 121, 1058–1065.
  • Landi, B. J.; Raffaelle, R. P.; Heben, M. J.; Alleman, J. L.; Van Derveer, W.; Gennett, T. Development and Characterization of Single Wall Carbon Nanotube-Nafion Composite Actuators. Mater. Sci. Eng: B. 2005, 116, 359–362.
  • Lee, D. Y.; Park, I. S.; Lee, M. H.; Kim, K. J.; Heo, S. Ionic Polymer–Metal Composite Bending Actuator Loaded with Multi-Walled Carbon Nanotubes. Sens. Actuators A. 2007, 133, 117–127.
  • Zhang, S.; Zhang, N.; Huang, C.; Ren, K.; Zhang, Q. M. Microstructure and Electromechanical Properties of Carbon Nanotube/Poly(Vinylidenefluoride-Trifluoroethylene-Chlorofluoroethylene) Composites. Adv. Mater. 2005, 17, 1897–1901.
  • Courty, S.; Mine, J.; Tajbakhsh, A. R.; Terentjev, E. M. Nematic Elastomers with Aligned Carbon Nanotubes: New Electromechanical Actuators. Europhys. Lett. 2003, 64, 654–660.
  • Wilson, S. A.; Jourdain, R.; Zhang, Q.; Dorey, R. A.; Bowen, C. R.; Willander, M.; Johansson, C. New Materials for Micro-Scale Sensors and Actuators: An Engineering Review. Mater. Sci. Eng: R: Rep. 2007, 56, 1–129.
  • Madden, J. D.; Cush, R. A.; Kanigan, T. S.; Hunter, I. W. Fast Contracting Polypyrrole Actuators. Synth. Met. 2000, 113, 185–192.
  • Madden, J. D.; Lafontaine, S. R.; Hunter, I. W. Fabrication by Electrodeposition: Building 3D Structures and Polymer Actuators. In micro machine and human science, Proceedings of the Sixth International Symposium, IEEE, Nagoya, Japan, 1995, 77–81.
  • Hunter, I. W.; Lafontaine, S. A. Comparison of Muscle with Artificial Actuators. In solid-state sensor and actuator workshop, 5th technical digest. IEEE, Hilton Head Island, SC, USA, 1992, 178–185.
  • Otero, T. F.; Sansieña, J. M. Soft and Wet Conducting Polymers for Artificial Muscles. Adv. Mater. 1998, 10, 491–494.
  • Otero, T. F.; Cortes, M. T. Artificial Muscles with Tactile Sensitivity. Adv. Mater. 2003, 15, 279–282.
  • Sansinena, J. M.; Olazabal, V.; Otero, T. F.; Da Fonseca, C. P.; De Paoli, M. A. A Solid State Artificial Muscle Based on Polypyrrole and A Solid Polymeric Electrolyte Working in Air. Chem. Commun. 1997, 22, 2217–2218.
  • Takashima, W.; Pandey, S. S.; Kaneto, K. Bi-Ionic Actuator by Polypyrrole Films. Synth, Met. 2003, 135, 61–62.
  • Takashima, W.; Pandey, S. S.; Kaneto, K. Investigation of Bi-Ionic Contribution for the Enhancement of Bending Actuation in Polypyrrole Film. Sens. Actuators B. 2003, 89, 48–52.
  • Madden, J. D.; Cush, R. A.; Kanigan, T. S.; Brenan, C. J.; Hunter, I. W. Encapsulated Polypyrrole Actuators. Synth. Met. 1999, 105, 61–64.
  • Sansinen, J. M.; Olazabal, V. Electroactive Polymer Actuators as Artificial Muscles. In Proc. SPIE; Bar-Cohen, Y., Ed.; SPIE Press: Bellingham, WA, 2001; pp 193–221.
  • De Paoli, M. A.; Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers; Wiley Publication: Michigan, USA, 1997.
  • Hohnholz, D.; MacDiarmid, A. G. Line Patterning of Conducting Polymers: New Horizons for Inexpensive, Disposable Electronic Devices. Synth. Met. 2001, 121, 1327–1328.
  • Chen, Z.; Tan, X. A Control-Oriented and Physics-Based Model for Ionic Polymer-Metal Composite Actuators. IEEE/ASME Trans. Mechatron. 2008, 13, 519–529.
  • Shahinpoor, M.; Kim, K. J. Ionic Polymer-Metal Composites: I Fundamentals. Smart Mater. Struct. 2001, 10, 819.
  • Sun, C. M.; Wu, C. L.; Wang, C.; Chang, C. I.; Yip, M. C.; Fang, W. Implementation of Complementary Metal-Oxide-Semiconductor Microelectromechanical Systems Lorentz Force Two Axis Angular Actuator. Jpn. J. Appl. Phys. 2012, 51, 06–09.
  • Chen, X.; Su, C. Y. Control Design for Ionic Polymer-Metal Composite Based Actuators. In Information and Automation (ICIA). IEEE Intern. Conf. Loughborough, UK, 2014, 806–811.
  • Chung, C. K.; Fung, P. K.; Hong, Y. Z.; Ju, M. S.; Lin, C. C. K.; Wu, T. C. A Novel Fabrication of Ionic Polymer-Metal Composites (IPMC) Actuator with Silver Nano-Powders. Sens. Actuators B. 2006, 117, 367–375.
  • Chen, Z.; Tan, X. Monolithic Fabrication of Ionic Polymer–Metal Composite Actuators Capable of Complex Deformation. Sens. Actuators A. 2010, 157, 246–257.
  • Bar-Cohen, Y.;. Biomimetics: Reality, Challenges, and Outlook. In Biomimetics: Biologically Inspired Technologies; Bar-Cohen, Y., Ed.; CRC–Taylor and Francis: New York, 2006; pp 513.
  • Guo, S.; Fukuda, T.; Asaka, K. A New Type of Fish-Like Underwater Microrobot. IEEE/ASME Trans. Mechatron. 2003, 8, 136–141.
  • Kim, B.; Kim, D. H.; Jung, J.; Park, J. O. A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer–Metal Composite Actuators. Smart Mater. Struct. 2005, 14, 1579–1585.
  • Tan, X.; Kim, D.; Usher, N.; Laboy, D.; Jackson, J.; Kapetanovic, A.; Zhou, X. An Autonomous Robotic Fish for Mobile Sensing. In Intelligent Robots and Systems, IEEE/RSJ Inter. Conf. Beijing, China, 2006, 5424–5429.
  • Kamamichi, N.; Yamakita, M.; Asaka, K.; Luo, Z. W. A Snake-Like Swimming Robot Using IPMC Actuator/Sensor. In Robotics and Automation, ICRA. Proceedings of IEEE Inter. Conf. Orlando, FL, USA, 2006, 1812–1817.
  • Dai, C. L.; Liu, M. C. Complementary Metal–Oxide–Semiconductor Microelectromechanical Pressure Sensor Integrated with Circuits on Chip. Jpn. J. Appl. Phys. 2007, 46, 843.
  • Ko, J. S.; Lee, M. L.; Lee, D. S.; Choi, C. A.; Tae Kim, Y. Development and Application of a Laterally Driven Electromagnetic Microactuator, Appl. Phys. Lett. 2002, 81, 547–549.
  • Chen, W. C.; Chu, C. C.; Hsieh, J.; Fang, W. A Reliable Single-Layer Out-Of-Plane Micromachined Thermal Actuator. Sens. Actuators A. 2003, 103, 48–58.
  • Chen, W. C.; Lee, C.; Wu, C. Y.; Fang, W. A New Latched 2 × 2 Optical Switch Using Bi-Directional Movable Electrothermal H-Beam Actuators. Sens. Actuators A. 2005, 123, 563–569.
  • Wu, M.; Fang, W. A Molded Surface-Micromachining and Bulk Etching Release (MOSBE) Fabrication Platform on (1 1 1) Si for MOEMS. J. Micromech. Microeng. 2006, 16, 260.
  • Xie, H.; Pan, Y.; Fedder, G. K. A CMOS-MEMS Mirror with Curled-Hinge Comb Drives. J. Microelectromech. Syst. 2003, 12, 450–457.
  • Xie, H.; Fedder, G. K.; Pan, Z.; Frey, W. Design and Fabrication of an Integrated CMOS-MEMS 3-Axis Accelerometer. Nanotech. 2003, 2, 420–423.
  • Ahn, S. H.; Kim, Y. K. Silicon Scanning Mirror of Two DOF with Compensation Current Routing. J. Micromech. Microeng. 2004, 14, 1455–1461.
  • Yalcinkaya, A. D.; Urey, H.; Brown, D.; Montague, T.; Sprague, R. Two-Axis Electromagnetic Microscanner for High Resolution Displays. J. Microelectromech. Syst. 2006, 15, 786–794.
  • Yang, H. A.; Tang, T. L.; Lee, S. T.; Fang, W. A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force. J. Microelectromech. Syst. 2007, 16, 511–520.
  • Keplinger, F.; Kvasnica, S.; Jachimowicz, A.; Kohl, F.; Steurer, J.; Hauser, H. Lorentz Force Based Magnetic Field Sensor with Optical Readout. Sens. Actuators A. 2004, 110, 112–118.
  • Chou, S. S.; Kim, Y. Y.; Srivastava, A.; Murphy, B.; Balogun, O.; Tark, S. H.; Dravid, V. P. Microcantilever Array with Embedded Metal Oxide Semiconductor Field Effect Transistor Actuators for Deflection Control, Deflection Sensing, and High Frequency Oscillation. Appl. Phys. Lett. 2009, 94, 224103.
  • Park, N. G.; Ryu, K. S.; Park, Y. J.; Kang, M. G.; Kim, D. K.; Kang, S. G.; Chang, S. H. Synthesis and Electrochemical Properties of V2O5 Intercalated with Binary Polymers. J. Power Sources. 2002, 103, 273–279.
  • Malinauskas, A.; Malinauskiene, J.; Ramanavičius, A. Conducting Polymer-Based Nanostructurized Materials: Electrochemical Aspects. Nanotechnology. 2005, 16, 51–62.
  • Han, S.; Briseno, A. L.; Shi, X.; Mah, D. A.; Zhou, F. Polyelectrolyte-Coated Nanosphere Lithographic Patterning of Surfaces: Fabrication and Characterization of Electropolymerized Thin Polyaniline Honeycomb Films. J. Phys. Chem. B. 2002, 106, 6465–6472.
  • Park, M. K.; Onishi, K.; Locklin, J.; Caruso, F.; Advincula, R. C. Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells. Langmuir. 2003, 19, 8550–8554.
  • Ma, M.; Guo, L.; Anderson, D. G.; Langer, R. Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science. 2013, 339, 186–189.
  • Chen, G. Z.; Shaffer, M. S.; Coleby, D.; Dixon, G.; Zhou, W.; Fray, D. J.; Windle, A. H. Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Adv. Mater. 2000, 12, 522–526.
  • Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Yang, S. X.; Wen, J. G.; Ren, Z. F. Electrochemical Synthesis of Polypyrrole/Carbon Nanotube Nanoscale Composites Using Well-Aligned Carbon Nanotube Arrays. Appl. Phys. A: Mater. Sci. Process. 2001, 73, 129–131.
  • Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Yang, S. X.; Li, W. Z.; Wen, J. G.; Ren, Z. F. Electrochemical Synthesis of Polypyrrole Films over Each of Well-Aligned Carbon Nanotubes. Synth. Met. 2001, 125, 289–294.
  • Huang, J. E.; Li, X. H.; Xu, J. C.; Li, H. L. Well-Dispersed Single-Walled Carbon Nanotube/Polyaniline Composite Films. Carbon. 2003, 41, 2731–2736.
  • Zimer, A. M.; Bertholdo, R.; Grassi, M. T.; Zarbin, A. J.; Mascaro, L. H. Template Carbon Dispersed in Polyaniline Matrix Electrodes: Evaluation and Application as Electrochemical Sensors to Low Concentrations of Cu2+ and Pb2+. Electrochem. Commun. 2003, 5, 983–988.
  • Ma, P. C.; Siddiqui, N. A.; Maromm, G.; Kim, J. K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 1345–1367.
  • Zhang, Y.; Iijima, S. Elastic Response of Carbon Nanotube Bundles to Visible Light. Phys. Rev. Lett. 1999, 82, 3472–3475.
  • Landi, B. J.; Raffaelle, R. P.; Heben, M. J.; Alleman, J. L.; Van Derveer, W.; Gennett, T. Single Wall Carbon Nanotube-Nafion Composite Actuators. Nano Lett. 2002, 2, 1329–1332.
  • Ahir, S. V.; Terentjev, E. M. Photomechanical Actuation in Polymer–Nanotube Composites. Nature Mater. 2005, 4, 491–495.
  • Akle, B. J.; Leo, D. J. Single-Walled Carbon Nanotubes-Ionic Polymer Electroactive Hybrid Transducers. J. Intell. Mater. Syst. Struct. 2008, 19, 905–915.
  • Liu, S.; Liu, Y.; Cebeci, H.; de Villoria, R. G.; Lin, J. H.; Wardle, B. L.; Zhang, Q. M. High Electromechanical Response of Ionic Polymer Actuators with Controlled‐Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes. Adv. Funct. Mater. 2010, 20, 3266–3271.
  • Liu, D. Y.; Reynolds, J. R. Dioxythiophene-Based Polymer Electrodes for Supercapacitor Modules. ACS Appl. Mater. Interface. 2010, 2, 3586–3593.
  • Bhat, D. K.; Kumar, M. S. N and P Doped Poly (3, 4-Ethylenedioxythiophene) Electrode Materials for Symmetric Redox Supercapacitors. J. Mater. Sci. 2007, 42, 8158–8162.
  • Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. D. Recent Advances in Metal Oxide‐Based Electrode Architecture Design for Electrochemical Energy Storage. Adv. Mater. 2012, 24, 5166–5180.
  • Xu, X.; Li, H.; Zhang, Q.; Hu, H.; Zhao, Z.; Li, J.; Gogotsi, Y. Self-Sensing, Ultralight and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano. 2015, 9, 3969–3977.
  • Liang, J.; Huang, Y.; Oh, J.; Kozlov, M.; Sui, D.; Fang, S.; Baughman, R. H.; Ma, Y.; Chen, Y. Electromechanical Actuators Based On Graphene And Graphene/Fe3O4 Hybrid Paper. Adv. Funct. Mater. 2011, 21, 3778–3784.
  • Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Muñoz, E.; Baughman, R. H. V2O5 Nanofibre Sheet Actuators. Nat. Mater. 2003, 2, 316–319.
  • Liang, J.; Xu, Y.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Li, F.; Guo, T.; Chen, Y. Infrared-Triggered Actuators from Graphene-Based Nanocomposites. J. Phys. Chem. C. 2009, 113, 9921–9927.
  • Liu, X.; He, B.; Wang, Z.; Tang, H.; Su, T.; Wang, Q. Tough Nanocomposite Ionogel-Based Actuator Exhibits Robust Performance. Sci. Rep. 2014, 4, 6673.
  • Swallow, L. M.; Luo, J. K.; Siores, E.; Patel, I.; Dodds, D. A Piezoelectric Fibre Composite Based Energy Harvesting Device for Potential Wearable Applications. Smart Mater. Struct. 2008, 17, 025017.
  • Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011, 334, 928–935.
  • Winter, M.; Brodd, R. J. What are Batteries, Fuel Cells and Supercapacitors? Chem. Rev. 2005, 105, 1021.
  • Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2009, 22, 587–603.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854.
  • Shi, F.; Li, L.; Wang, X. L.; Gu, C. D.; Tu, Z. P. Metal Oxide/Hydroxide-Based Materials for Supercapacitors. RSC Adv. 2014, 4, 41910–41921.
  • Conway, B. E.;. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Plenum Publishers: New York, 1999.
  • Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes. ACS Nano. 2013, 7, 5940–5947.
  • Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. A.; Pasha, S. K. K.; Deshmukh, R. R.; Chidambaram, K. Graphene Oxide Reinforced Poly (Styrenesulfonic Acid)/Polyvinylalcohol Blend Composites with Enhanced Dielectric Properties for Portable and Flexible Electronics. Mater. Chem. Phys. 2017, 186, 188–201.
  • Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K.; Deshmukh, R. R.; Bhagat, P. R. Highly Dispersible Graphene Oxide Reinforced Polypyrrole/Polyvinyl Alcohol Blend Nanocomposites with High Dielectric Constant and Low Dielectric Loss. RSC Adv. 2015, 5, 61933–61945.
  • Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon. 2017, 114, 209–216.
  • Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater.. 2005, 4, 366–377.
  • Pech, D.; Brunet, M.; Taberna, P. L.; Simon, P.; Fabne, N.; Mesnilgrente, F.; Conedera, V. H.; Durou, H. Elaboration of a Microstructure Inkjet Printed Carbon Electrochemical Capacitor. J. Pow. Sour. 2010, 195, 1266–1269.
  • Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J.; Yushin, G. Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons. J. Am. Chem. Soc. 2010, 132, 3252–3253.
  • Brezinska, M. E.; Palkar, A.; Winkler, K.; Echegoyen, L. Electrochemical Properties of Small Carbon Nano- Onion Films. Electrochem. Solid State Lett. 2010, 113, 35–38.
  • Jung, H. Y.; Karimi, M. B.; Hahm, M. G.; Ajayan, P. M.; Jung, Y. Transparent, Flexible Supercapacitors from Nano-Engineered Carbon Films. Sci. Rep. 2012, 2, 773.
  • Hahm, M. G.; Mohana Reddy, A. L.; Cole, D. P.; Rivera, M.; Vento, J. A.; Nam, J.; HYung, H. Y.; Kim, Y. L.; Narayanan, T.; Hashim, P.; et al. Carbon Nanotube-Naonocup Hybrid Structures for High Power Supercapaictor Applications. Nano Lett. 2010, 12, 5616–5621.
  • Chen, D. Z.; Yu, J.; Lu, W.; Zhao, Y.; Yan, Y.; Chou, T. W. Temperature Effects on Electrochemical Performance of Carbon Nanotube Film Based Flexible All-State Supercapacitors. Electrochim. Acta. 2017, 233, 181–189.
  • Zhang, D.; Yuan, T.; Shi, L.; Peng, Z.; Wen, X.; Zhang, J. Enhanced Capacitve Deionization Performance of Graphene/Carbon Nanotube Composites. J. Mater. Chem. 2012, 22, 14696–14704.
  • Trigueiro, J. P. C.; Lavall, R. L.; Silva, G. G. Nanocomposites of Graphene Nanosheets/Multiwalled Carbon Nanotubes as Electrodes for In-Plane Supercapacitors. Electrochim. Acta. 2016, 187, 312–322.
  • Meher, S. K.; Justin, P.; Rao, G. R. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Appl. Mater. Interface. 2011, 3, 2063–2073.
  • Saravanakumar, B.; Purushothaman, K. K.; Muralidharan, G. Interconnected V2O5 Nanoporous Network for High-Performance Supercapacitors. ACS Appl. Mater. Interface. 2012, 49, 4484−4490.
  • Kang, J.; Wei, S. H.; Zhu, K.; Kim, Y. H. First-Principles Theory Of Electrochemical Capacitance Of Nanostructured Materials: Dipole Assisted Subsurface Intercalation Of Lithium In Pseudocapacitive TiO2 Anatase Nanosheets. J. Phys. Chem. C. 2011, 115, 4909−4915.
  • Meher, S. K.; Rao, G. R. Effect Of Microwave On The Nanowire Morphology, Optical, Magnetic And Pseudocapacitance Behavior Of Co3O4. J. Phys. Chem. C. 2011, 115, 25543−25556.
  • Deng, W.; Liu, Y.; Zhang, Y.; Lu, F.; Chen, Q.; Ji, X. Enhanced Electrochemical Capacitance Of Nanoporous NiO Based On An Eggshell Membrane. RSC Adv. 2012, 2, 1743−1745.
  • Fan, L.; Tang, L.; Gong, H.; Yao, Z.; Guo, R. Carbon-Nanoparticles Encapsulated in Hollow Nickel Oxides for Supercapacitor Application. J. Mater. Chem. 2012, 22, 16376.
  • Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile Synthesis And Self-Assembly Of Hierarchical Porous NiO Nano/Micro Spherical Superstructures For High Performance Supercapacitors. J. Mater. Chem. 2009, 19, 5772.
  • Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile Approach To Prepare Loose-Packed NiO Nano-Flakes Materials For Supercapacitors. Chem. Commun. 2008, 35, 4213–4215.
  • Qiu, Y. J.; Yu, J.; Zhou, X. S.; Tan, C. L.; Yin, J. Synthesis Of Porous NiO And ZnO Submicro And Nanofibers From Electrospun Polymer Fiber Templates. Nanoscale Res. Lett. 2009, 4, 173.
  • Vijayakumar, S.; Nagamuthu, S.; Muralidharan, G. Supercapacitor Studies On NiO Nanoflakes Synthesized Through A Microwave Route. ACS Appl. Mater. Interface. 2013, 5, 2188−2196.
  • Wang, H.; Yi, H.; Chen, X.; Wang, X. Facile Synthesis of a Nano-Structured Nickel Oxide Electrode with Outstanding Pseudocapacitive Properties. Electrochim. Acta. 2013, 105, 353–361.
  • Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu., C. D.; Wang, X. L. Co-Doped NiO Nanoflake Arrays Toward Superior Anode Materials For Lithium Ion Batteries. J.Pow. Sources. 2011, 196, 6388–6393.
  • Han, D.; Jing, X.; Wang, J.; Yang, P.; Song, D.; Liu, J. Porous Lanthanum Doped NiO Microspheres For Supercapacitor Application. J. Electroanal. Chem. 2012, 682, 37–44.
  • Gokul, B.; Matheswaran, P.; Abhirami, K. M.; Sathyamoorthy, R. Structural And Dielectric Properties Of NiO Nanoparticles. J. Non-Cryst. Solids. 2013, 363, 161–166.
  • Rai, A.; Anh, L.; Park, C.; Kim, J. Electrochemical Study Of NiO Nanoparticles Electrode For Application In Rechargeable Lithium-Ion Batteries. Ceram. Int. 2013, 39, 6611–6618.
  • Usha, V.; Kalyanaramana, S.; Vettumperumala, R.; Thangavel, R. A Study Of Frequency Dependent Electrical And Dielectric Properties Of NiO Nanoparticles. Phys. B. 2017, 504, 63–68.
  • Biswas, S.; Drzal, L. T. Multilayered Nano-Architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance. ACS Appl. Mater. Interface. 2010, 2, 2293–2300.
  • Mondal, C.; Ganguly, M.; Manna, P. K.; Yusuf, S. M.; Pal, T. Fabrication Of Porous β-Co (Oh)2 Architecture At Room Temperature: A High Performance Supercapacitor. Langmuir. 2013, 29, 9179−9187.
  • Vijayakumar, S.; Kiruthika Ponnalagi, A.; Nagamuthu, S.; Muralidharan, G. Microwave Assisted Synthesis Of Co3O4 Nanoparticles For High-Performance Supercapacitors. Electrochim. Acta. 2013, 106, 500–505.
  • Wang, X.; Xi, H.; Wang, X.; Gao, J.; Shi, B.; Fang. Facile Synthesis Ultrathin Mesoporous Co3O4 Nanosheets For High-Energy Asymmetric Supercapacitor. J. Alloys Compd. 2016, 686, 969–975.
  • Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Xie, Y. Rational Growth Of Various α-MnO2 Hierarchical Structures And β-MnO2 Nanorods Via A Homogeneous Catalytic Route. Cryst. Growth Des. 2005, 5, 1953–1958.
  • Sundara Raj, B. G.; Asiri, A. M.; Qusti, A. H.; Wu, J. J.; Anandan, S. Sonochemically Synthesized MnO2 Nanoparticles As Electrode Material For Supercapacitors. Ultrason. Sonochem. 2014, 21, 1933–1938.
  • Wang, L.; Chen, L.; Li, Y.; Ji, H.; Yang, G. Preparation Of Mn3O4 Nanoparticles At Room Condition For Supercapacitor Application. Powder. Technol. 2013, 235, 76–81.
  • Khoon, T. F.; Hassan, J.; Wahab, Z. A.; Azis, R. S. Electrical Conductivity And Dielectric Studies Of MnO2 Doped V2o5. Results. Phys. 2016, 6, 420–427.
  • Singh, A. K.; Sarkar, D.; Karmakar, K.; Mandal, K.; Khan, G. G. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes. ACS Appl, Mater, Interf. 2016, 8, 20786−20792.
  • Li, L.; Zhang, Y.; Shi, F.; Zhang, Y.; Zhang, J.; Gu, C.; Wang, X.; Tu, J. Spinel Manganese-Nickel-Cobalt Ternary Oxide Nanowire Array for High-Performance Electrochemical Capacitor Applications. ACS Appl. Mater. Interface. 2014, 6, 18040–18047.
  • Li, P.; Yang, Y.; Shi, E.; Shen, Q.; Shang, Y.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; et al. Core-Double-Shell, Carbon nanotube@polypyrrole@MnO2 Sponge As Freestanding, Compressible Supercapacitor Electrode. ACS Appl. Mater. Interface. 2014, 6, 5228−5234.
  • Fang, Y.; Jiang, X.; Niu, L.; Wang, S. Constructing Polypyrrole/Aligned Carbon Nanotubes Composite Materials as Electrodes for High-Performance Supercapacitors. Mater. Lett. 2017, 190, 232–235.
  • Zhou, H.; Han, G. One-Step Fabrication of Heterogeneous Conducting Polymers-Coated Graphene Oxide/Carbon Nanotubes Composite Films for High-Performance Supercapacitors. Electrochim. Acta. 2016, 192, 448–455.
  • Parveen, N.; Ansari, M. O.; Cho, M. H. Simple Route for Gram Synthesis of Less Defective Few Layered Graphene and Its Electrochemical Performance. RSC Adv. 2015, 5, 44920–44927.
  • Wang, W.; Wu, S. A New Ternary Composite Based on Carbon Nanotubes/Polyindole/Graphene with Preeminent Electrocapacitive Performance for Supercapacitors. Appl. Surf. Sci. 2017, 396, 1360–1367.
  • Zhang, X.; Ma, L.; Gan, M.; Fu, G.; Jin, M.; Lei, Y.; Yang, P.; Yan, M. Fabrication of 3D Lawn-Shaped N-Doped Porous Carbon Matrix/Polyaniline Nanocomposite as the Electrode Material for Supercapacitors. J. Pow. Sour. 2017, 340, 22–31.
  • Zhang, Y.; Cui, X.; Zu, L.; Cai, X.; Liu, Y.; Wang, X.; Lian, H. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Materials. 2016, 9, 734.
  • Dhibar, S.; Bhattacharya, P.; Ghosh, D.; Hatui, G.; Kumar Das, C. Graphene-Single-Walled Carbon Nanotubes-Poly(3-Methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials. Ind. Eng. Chem. Res. 2014, 53, 13030−13045.
  • Yao, Y.; Ma, C.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core-Shell Nanocomposites for Supercapacitor Electrodes. ACS Appl. Mater. Interface. 2015, 7, 4817–4825.
  • Yao, L.; Yang, G.; Han, P.; Tang, Z.; Yang, J. Three-Dimensional Beehive-Like Hierarchical Porous Polyacrylonitrile-Based Carbons as a High Performance Supercapacitor Electrodes. J. Pow. Sour. 2016, 315, 209–217.
  • Simotwo, S. K.; DelRe, C.; Kalra, V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers. ACS Appl. Mater. Interface. 2016, 8, 21261–21269.
  • Bo, Y.; Yang, H. Y.; Hu, Y.; Yao, T. M.; Huang, S. S. A Novel Electrochemical DNA Biosensor Based on Graphene and Polyaniline Nanowires. Electrochim. Acta. 2011, 56, 2676–2681.
  • Jang, H.; Yoon, H.; Ko, Y.; Choi, J.; Lee, S.; Jeon, I.; Kim, J.; Kim, H. Enhanced Performance in Capacitive Force Sensors Using Carbon Nanotube/Polydimethylsiloxane Nanocomposites with High Dielectric Properties. Nanoscale. 2016, 8, 5667–5675.
  • Guo, Q.; Xue, Q.; Sun, J.; Dong, M.; Xia, F.; Zhang, Z. Gigantic Enhancement In The Dielectric Properties Of Polymer-Based Composites Using Core/Shell MWCNT/amorphous Carbon Nanohybrids. Nanoscale. 2015, 7, 3660–3667.
  • Pawar, P. B.; Shukla, S.; Saxena, S. Graphene Oxide-Polyvinyl Alcohol Nanocomposite Based Electrode Material for Supercapacitors. J. Pow. Sour. 2016, 321, 102–105.
  • Pang, L.; Zou, B.; Zou, Y.; Han, X.; Cao, L.; Wang, W.; Guo, Y. A New Route for the Fabrication of Corn Starch-Based Porous Carbon as Electrochemical Supercapacitor Electrode Material. Colloids Surf. A. 2016, 504, 26–33.
  • Islam, M. M.; Aboutalebi, S. H.; Cardillo, D.; Liu, H. K.; Konstantinov, K.; Dou, S. X. Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices. ACS Cent. Sci. 2015, 1, 206−216.
  • Wang, K.; Zhao, C.; Min, S.; Qian, X. Facile Synthesis Of Cu2O/RGO/Ni(OH)2 Nanocomposite And Its Double Synergistic Effect On Supercapacitor Performance. Electrochim. Acta. 2015, 165, 314–322.
  • Kim, J. H.; Lee, S.; Lee, J. W.; Song, T.; Paik, U. 3d-Interconnected Nanoporous RGO-CNT Structure for Supercapacitors Application. Electrochim. Acta. 2014, 125, 536–542.
  • Shaheen, W.; Warsi, M. F.; Shahid, M.; Khan, M. A.; Asghar, M.; Ali, Z.; Sarfrazd, M.; Anwar, H.; Nadeem, M.; Shakir, I. Carbon Coated MoO3 Nanowires/Graphene Oxide Ternary Nanocomposite For High-Performance Supercapacitors. Electrochim. Acta. 2016, 219, 330–338.
  • Haldorai, Y.; Giribabu, K.; Hwang, S.; Kwak, C. H.; Huh, Y. S.; Han, Y. Facile Synthesis Of α-MnO2 Nanorod/Graphene Nanocomposite Paper Electrodes Using A 3d Precursor For Supercapacitors And Sensing Platform To Detect 4-Nitrophenol. Electrochim. Acta. 2016, 222, 717–727.
  • Abioyea, A. M.; Noorden, Z. A.; Ania, F. N. Synthesis and Characterizations of Electroless Oil Palm Shell Based-Activated Carbon/Nickel Oxide Nanocomposite Electrodes for Supercapacitor Applications. Electrochim. Acta. 2017, 225, 493–502.
  • Rakhi, R. B.; Lekshmi, M. L. Reduced Graphene Oxide Based Ternary Nanocomposite Cathodes for High-Performance Aqueous Asymmetric Supercapacitors. Electrochim. Acta. 2017, 231, 539–548.
  • Bai, C.; Sun, S.; Xu, Y.; Yu, R.; Li, H. Facile One-Step Synthesis of Nanocomposite Based on Carbon Nanotubes and Nickel-Aluminum Layered Double Hydroxides with High Cycling Stability for Supercapacitors. J. Colloid. Interf. Sci. 2016, 480, 57–62.
  • Gao, Y.; Wu, D.; Wang, T.; Jia, D.; Xia, W.; Lv, Y.; Cao, Y.; Tan, Y.; Liu, P. One- Step Solvothermal Synthesis Of Quasi-Hexagonal Fe2O3 Nanotubes/Graphene Composites As High Performance Electrode Material For Supercapaciotr. Electrochim. Acta. 2016, 191, 275–283.
  • Nathan, D. M.; Melvin Boby, S. J. Hydrothermal Preparation of Hematite Nanotubes/Reduced Graphene Oxide Nanocomposites as Electrode Material for High Performance Supercapacitors. J. Alloys Compd. 2017, 700, 67–74.
  • Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One Pot Synthesis Of α- Fe2O3 Nanoplates- Reduced Graphene Oxide Composites For Supercapacitor Application. Chem. Eng. J. 2016, 286, 165–173.
  • Wang, D.; Li, Y.; Wang, Q.; Wang, T. Nanostructured Fe2O3-Graphene Composites As A Novel Electrode Material For Supercapacitors. J. Solid State Electrochem. 2012, 16, 2095–2102.
  • Song, Z.; Liu, W.; Wei, W.; Quan, C.; Sun, N.; Zhou, Q.; Liu, G.; Wen, X. Preparation And Electrochemical Properties Of Fe2O3/reduced Graphene Oxide Aerogel (Fe2o3/Rgoa) Composites For Supercapacitors. J. Alloys Compd. 2016, 685, 355–363.
  • Li, J.; Sun, Y.; Li, D.; Yang, H.; Zhang, X.; Lin, B. Novel Ternary Composites Reduced-Graphene Oxide/Zine Oxide/Poly (Pphenylenediamine) for Supercapacitor: Synthesis and Properties. J. Alloys Compd. 2017, 708, 787–795.
  • Jinlong, L.; Meng, Y.; Suzuki, K.; Miura, H. Synthesis Of CoMoO4@RGO Nanocomposites As High-Performance Supercapacitor Electrodes. Micropor. Mesopor. Mater. 2017, 242, 264–270.
  • Zhang, X.; Luo, J.; Tang, P.; Yed, X.; Pengd, X.; Tange, H.; Sund, S.; Fransaera, J. A Universal Strategy for Metal Oxide Anchored and Binder-Free Carbon Matrix Electrode: A Supercapacitor Case with Superior Rate Performance and High Mass Loading. Nano Energy. 2017, 31, 311–321.
  • Madhu, R.; Veeramani, V.; Chen, S.; Manikandan, A.; Lo, A. Y.; Chueh, Y. L. Honeycomb-Like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications. ACS Appl. Mater. Interface. 2015, 7, 15812−15820.
  • Kumar, R. K.; Singh, R. K.; Dubey, P. K.; Singh, D. P.; Yadav, R. M. Self-Assembled Hierarchical Formation Of Conjugated 3d Cobalt Oxide nanobead-CNT-graphene Nanostructure Using Microwaves For High-Performance Supercapacitor Electrode. ACS Appl. Mater. Interface. 2015, 7, 5042–15051.
  • Yang, M.; Lee, K. G.; Lee, S. J.; Lee, S. B.; Han, Y. K.; Choi, B. G. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid- State Microwave Irradiation for Aqueous Asymmetric Supercapacitors. ACS Appl. Mater. Interface. 2015, 7, 22364−22371.
  • Shi, P.; Li, L.; Hua, L.; Qian, Q.; Wang, P.; Zhou, J.; Sun, G.; Huang, W. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS Nano. 2017, 11, 444−452.
  • Unnikrishnan, B.; Wu, C. W.; Chen, W. P.; Chang, H. T.; Lin, C. H.; Huang, C. C. Carbon Dot Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustain. Chem. Eng. 2016, 4, 3008−3016.
  • Sahoo, S.; Shim, J. J. Facile Synthesis Of Three-Dimensional Ternary ZnCo2O4/reduced Graphene oxide/NiO Composite Film On Nickel Foam For Next Generation Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2017, 5, 241−251.
  • Xu, H.; Zhanga, H.; Ouyanga, Y.; Liua, L.; Wanga, Y. Two-Dimensional Hierarchical Porous Carbon Composites Derived from Corn Stalks for Electrode Materials with High Performance. Electrochim. Acta. 2016, 214, 119–128.
  • Veeramani, V.; Madhu, R.; Chen, S. M.; Sivakumar, M. Flower-Like Nickel−Cobalt Oxide Decorated Dopamine-Derived Carbon Nanocomposite for High Performance Supercapacitor Applications. ACS Sustain. Chem. Eng. 2016, 4, 5013–5020.
  • Xiong, W.; Gao, Y.; Wu, X.; Hu, X.; Lan, D.; Chen, Y.; Pu, X.; Zeng, Y.; Su, J.; Zhu, Z. Composite Of Macroporous Carbon With Honeycomb-Like Structure From Mollusk Shell And NiCo2O4 Nanowires For High-Performance Supercapacitor. ACS Appl. Mater. Interface. 2014, 6, 19416–19423.
  • Qaid, M.; Alsalhi, M. S. High Aspect Ratio and Low Leakage Current Carbon Nanosheets Based High-K Nanostructure for Energy Storage Applications. Microelectron. Eng. 2017, 169, 1–8.
  • Yao, S.; Yuan, J.; Mehedi, H.; Gheeraert, E.; Sylvestre, A. Carbon Nanotube Forest Based Electrostatic Capacitor with Excellent Dielectric Performances. Carbon. 2017, 116, 648–654.
  • Ponnamma, D.; Vijayan, P.; Al-Maadeed, M. A. 3D Architectures of Titania Nanotubes and Graphene with Efficient Nanosynergy for Supercapacitors. Mater. Des. 2017, 117, 203–212.
  • Chen, X.; Chen, X.; Zhang, F.; Yang, Z.; Huang, S. One-Pot Hydrothermal Synthesis Of Reduced Graphene Oxide/Carbon nanotube/a-Ni(OH)2 Composites For High Performance Electrochemical Supercapacitor. J.Pow. Sour. 2013, 243, 555–561.
  • Aravinda, L. S.; Nagaraja, K. K.; Nagaraja, H. S.; Bhat, K. U.; Bhat, B. R. ZnO/carbon Nanotube Nanocomposite For High Energy Density Supercapacitors. Electrochim. Acta. 2013, 95, 119–124.
  • Javed, M. S.; Han, X.; Hu, C.; Zhou, M.; Huang, Z.; Tang, X.; Gu, X. Tracking Pseudocapacitive Contribution To Superior Energy Storage Of MnS Nanoparticles Grown On Carbon Textile. ACS Appl. Mater. Interface. 2016, 8, 24621–24628.
  • Leontyeva, D. V.; Leontyev, I. N.; Avramenko, M. V.; Yuzyuk, Y. I.; Kukushkina, A.; Smirnova, N. V. Electrochemical Dispergation As A Simple And Effective Technique Toward Preparation Of NiO Based Nanocomposite For Supercapacitor Application. Electrochim. Acta. 2013, 114, 356–362.
  • Cakici, M.; Raghava Reddy, K.; Alonso-Marroquin, F. Advanced Electrochemical Energy Storage Supercapacitors Based On The Flexible Carbon Fiber Fabric-Coated With Uniform Coral-Like MnO2 Structured Electrodes. Chem. Eng. J. 2017, 309, 151–158.
  • Majumdar, D.; Baugh, N.; Bhattacharya, S. K. Ultrasound Assisted Formation of Reduced Graphene Oxide-Copper (II) Oxide Nanocomposite for Energy Storage Applications. Colloids Surf A: Physicochem. Eng. Aspects. 2017, 512, 158–170.
  • Pan, G. X.; Xia, X. H.; Cao, F.; Chen, J.; Tang, P. S.; Zhang, Y. J.; Chen, H. F. High-Performance Asymmetric Supercapacitors Based on Core/Shellcobalt Oxide/Carbon Nanowire Arrays with Enhanced Electrochemicalenergy Storage. Electrochim. Acta. 2014, 133, 522–528.
  • Sahoo, S.; Zhang, S.; Shima, J. Porous Ternary High Performance Supercapacitor Electrode Based On Reduced Graphene Oxide, NiMn2O4 And Polyaniline. Electrochim. Acta. 2016, 216, 386–396.
  • Meng, T.; Xu, Q.; Li, Y.; Xing, X.; Li, C.; Ren, T. Graphene Supported Ni-Based Nanocomposites as Electrode Materials with High Capacitance. Electrochim. Acta. 2015, 155, 69–77.
  • Puli, V. S.; Ejaz, M.; Elupula, R.; Kothakonda, M.; Adireddy, S.; Katiyar, R. S.; Grayson, S. M.; Chrisey, D. B. Core-Shell like Structured Barium Zirconium Titanate-Barium Calcium Titanate Poly (Methyl Methacrylate) Nanocomposites for Dielectric Energy Storage Capacitors. Polymer. 2016, 105, 35–42.
  • Huang, Q.; Luo, H.; Chen, C.; Zhou, X.; Zhou, K.; Zhang, D. Enhanced Energy Density in P(VDF-HFP) Nanocomposites with Gradient Dielectric Fillers and Interfacial Polarization. J. Alloys Compd.. 2017, 696, 1220–1227.
  • Maji, P.; Choudhary, R. B. Facile Synthesis, Dielectric Properties And Electrocatalytic Activities Of PMMA-NiFe2O4 Nanocomposite. Mater. Chem. Phys. 2017, 193, 391–400.
  • Nardi, T.; Mora, N.; Rachidi, F.; Leterrier, Y. Graded-Permittivity Polymer Nanocomposites as Superior Dielectrics. Compos. Sci. Tech. 2016, 129, 1–9.
  • Ehrhardt, C.; Fettkenhauer, C.; Glenneberg, J.; Munchgesang, W.; Pientschke, C.; Großmann, T.; Zenkner, M.; Wagner, G.; Leipner, H. S.; Buchsteiner, A.; et al. BaTiO3-P(VDF-HFP) Nanocomposite dielectrics-Influence Of Surface Modification And Dispersion Additives. Mater. Sci. Eng. B. 2013, 178, 881–888.
  • Sengwa, R.; Choudhary, S. Dielectric And Electrical Properties Of PEO/Al2O3 Nanocomposites. J. Alloys Compd. 2017, 701, 652–659.
  • Wang, G.; Zhang, L. A Review of Electrode Materials for Electrochemical Supercapacitors. J. Chem. Soc. Rev. 2012, 41, 797–828.
  • Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of Conducting Polymers Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724.
  • Potphode, D. D.; Mishra, S. P.; Patri, P. S. M. Asymmetric Supercapacitor Devices Based on Dendritic Conducting Polymer and Activated Carbon. Electrochim. Acta. 2017, 230, 29–38.
  • Shayeh, J. S.; Sadeghinia, M.; Siadat, S. O. R.; Ehsani, A.; Rezaei, M.; Omid, M. A Novel Route For Electrosynthesis Of CuCr2O4 Nanocomposite With P-Type Conductive Polymer As A High Performance Material For Electrochemical Supercapacitors. J. Colloid. Interf. Sci. 2017, 496, 401–406.
  • Yuksel, R.; Durucan, C.; Unalan, H. E. Ternary Nanocomposite SWNT/WO3/PANI Thin Film Electrodes for Supercapacitors. J. Alloys Compd. 2016, 658, 183–189.
  • Xie, A.; Tao, F.; Jiang, C.; Sun, W.; Li, Y.; Hu, L.; Du, X.; Luo, S.; Yao, C. A Coralliform-Structured γ-MnO2/polyaniline Nanocomposite For High-Performance Supercapacitors. J. Electroanal. Chem. 2017, 789, 29–37.
  • Bavio, M. A.; Acosta, G. G.; Kessler, T. Synthesis and Characterization of Polyaniline and Polyaniline-Carbon Nanotubes Nanostructures for Electrochemical Supercapacitors. J. Pow. Sour. 2014, 245, 475–481.
  • Malik, R.; Zhang, L.; Connell, C.; Schott, M.; Hsieh, Y.; Noga, R.; Alvarez, N. T.; Shanov, V. Three-Dimensional, Free-Standing Polyaniline/Carbon Nanotube Composite-Based Electrode for High-Performance Supercapacitors. Carbon. 2017, 116, 579–590.
  • Sen, P.; De, A.; Chowdhury, A. D.; Bandyopadhyay, S. K.; Agnihotri, N.; Mukherjee, M. Conducting Polymer Based Manganese Dioxide Nanocompositeas Supercapacitor. Electrochim. Acta. 2013, 108, 265–273.
  • Zhou, Z.; Wu, X. F. High-Performance Porous Electrodes for Pseudosupercapacitors Based on Graphene-Beaded Carbon Nanofibers Surface-Coated with Nanostructured Conducting Polymers. J. Pow. Sour. 2014, 262, 44–49.
  • Thines, K. R.; Abdullah, E. C.; Ruthiraan, M.; Mubarak, N. M.; Tripathi, M. A New Route of Magnetic Biochar Based Polyaniline Composites Forsupercapacitor Electrode Materials. J. Anal. Appl. Pyrolysis. 2016, 121, 240–257.
  • Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumali, J. A Review on Recent Advances in Hybrid Supercapacitors: Design Fabrication and Application. Renew. Sust. Energy Rev. 2019, 101, 123–145.
  • Muzaffar, A.; Ahamed, M. B. Iron Molybdate and Manganese Dioxide Microrods as a Hybrid Structure for High Performance Supercapacitor Application. Ceram. Int. 2019, 45, 4009–4015.
  • Zhao, Y.; Xie, F.; Zhang, C.; Kong, R.; Feng, S.; Jiang, J. X. Porous Carbons Derived from Pyrene-Based Conjugated Microporous Polymer for Supercapacitors. Micropor. Mesopor. Mater. 2017, 240, 73–79.
  • Shobha, P.; Gnana, D. M.; Nathan, T.; Mahesh, R.; Sagayaraj, P. A Comparative Study On The Structural And Supercapacitive Properties Of TiO2 Nanotubes Fabricated By Potentiostatic And Galvanostatic Anodization. Der. Pharma. Chemica. 2016, 8, 64.
  • Farrar, D.; West, J. T.; Bush-Vishniac, I. J.; Seungju, M. Y. Fabrication of Polypeptide-Based Piezoelectric Composite Polymer Film. Scripta. Mater. 2008, 59, 1051.
  • Yun, S.; Kim, J. Mechanical, Electrical, Piezoelectric and Electro-Active Nanotube/Cellulose Composites. Carbon. 2011, 49, 518–527.
  • Ponnamma, D.; Chamakh, M. M.; Deshmukh, K.; Ahamed, M. B.; Erturk, A.; Sharma, P.; AlMaadeed, M. A. A. Ceramic Based Polymer Nanocomposites as Piezoelectric Materials. In: Smart Polymer Nanocomposites; Ponnamma, D., Sadasivuni, K. K., Cabibihan J. J., AlMaadeed, M. A., Eds.; Springer International Publications: Switzerland, 2017; pp 77–93.
  • Banos, R.; Manzano-Agugliaro, F.; Montoya, F. G.; Gil, C.; Alcaydeand, A.; Gómez, J. Optimization Methods Applied to Renewable and Sustainable Energy: A Review. Renew. Sustain. Ener. Rev. 2011, 15, 1753–1766.
  • Mastral, A. M.; Callen, M. S. A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environ. Sci. Technol. 2000, 34, 3051–3057.
  • Jacques, E.; Lindbergh, G.; Zenkert, D.; Leijonmarck, S.; Hellqvist Kjell, M. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating, Carbon Fibers. ACS Appl. Mater. Interface. 2015, 7, 13898−13904.
  • Zhao, L.; Sun, X.; Lei, Z.; Zhao, J.; Wu, J.; Li, Q.; Zhang, A. Thermoelectric Behavior of Aerogels Based on Graphene and Multiwalled Carbon Nanotube Nanocomposites. Compos. Part B. 2015, 83, 317–322.
  • Wang, Z. L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006, 312, 242−246.
  • Zhang, Y.; Liu, C.; Liu, J.; Xiong, J.; Liu, J.; Zhang, K.; Liu, Y.; Peng, M.; Yu, A.; Zhang, A.; et al. Lattice Strain Induced Remarkable Enhancement In Piezoelectric Performance Of ZnO-based Flexible Nanogenerators. ACS Appl. Mater. Interface. 2016, 8, 1381–1387.
  • Zhang, Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y. Synthesis, Characterization And Applications Of ZnO Nanowires. J. Nanomater. 2012, 2012, 1−22.
  • Vayssieres, L.;. Growth Of Arrayed Nanorods And Nanowires Of ZnO From Aqueous Solutions. Adv. Mater. 2003, 15, 464−466.
  • Ou, C.; Sanchez-Jimenez, P. E.; Datta, A.; Boughey, F. L.; Whiter, R. A.; Sahonta, S. L.; Narayan, S. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications. ACS Appl. Mater. Interface. 2016, 8, 13678−13683.
  • Gazia, R.; Motto, P.; Stassi, S.; Sacco, A.; Virga, A.; Lamberti, A.; Canavese, G. Photodetection And Piezoelectric Response From Hard And Flexible Sponge-Like ZnO-based Structures. Nano Energy. 2013, 2, 1294–1302.
  • Suyitno, S.; Purwanto, A.; Lambang, R. L.; Hidayat, G.; Sholahudin, I.; Yusuf, M.; Huda, S.; Arifin, Z. Fabrication and Characterization of Zinc Oxide-Based Electrospun Nanofibers for Mechanical Energy Harvesting. J. Nanotech. Eng. Med. 2014, 5, 011001.
  • Ye, F.; Su, X. Q.; Cai, X. M.; Zheng, Z. H.; Liang, G. X.; Zhang, D. P.; Luo, J. T.; Fan, P. The Electrical and Thermoelectric Properties of Zn-Doped Cuprous Oxide. Thin Solid Films. 2016, 603, 395–399.
  • Park, Y.; Cho, K.; Kim, S. Thermoelectric Characteristics Of Glass Fibers Coated With ZnO And Al-Doped ZnO. Mater. Res. Bull. 2017, 96, 246–249.
  • Norouzi, M.; Kolahdouz, M.; Ebrahimi, P.; Ganjian, M.; Soleimanzadeh, R.; Narimani, K.; Radamson, H. Thermoelectric Energy Harvesting Using Array Of Vertically Aligned Al-Doped ZnO Nanorods. Thin Solid Films. 2016, 619, 41–47.
  • Tohmyoh, H.; Daimon, T. A Plate-Type Thermoelectric Power Generator with an Oxidized Bi-Metal Interface for Power Generation from A Small Temperature Difference. Microelectron. Eng. 2016, 159, 38–41.
  • Zhou, C.; Dun, C.; Wang, K.; Zhang, X.; Shia, Z.; Liu, G.; Hewitt, C. A.; Qiao, G.; Carroll, D. L. General Method of Synthesis Ultrathin Ternary Metal Chalcogenide Nanowires for Potential Thermoelectric Applications. Nano Energy. 2016, 30, 709–716.
  • Liu, J.; Wang, J.; Wang, C.; Xia, S. Ce1-xSrxZnSbO: New Thermoelectric Materials Formed Between Intermetallics And Oxides. J. Alloys Comp. 2016, 688, 849–853.
  • Toshima, N.; Oshima, K.; Anno, H.; Nishinaka, T.; Ichikawa, S.; Iwata, A.; Shiraishi, Y. Novel Hybrid Organic Thermoelectric Materials: Three-Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer. Adv. Mater. 2015, 27, 2246–2251.
  • Cho, C.; Stevens, B.; Hsu, J. H.; Bureau, R.; Hagen, D. A.; Regev, O.; Yu, C.; Grunlan, J. C. Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides. Adv. Mater. 2015, 27, 2996.
  • Suemori, K.; Kamata, T. Thermoelectric Characteristics in Out-Of Plane Direction of Thick Carbon Nanotube-Polystyrene Composites Fabricated by the Solution Process. Synth. Met. 2017, 227, 177–181.
  • Zhao, L.; Zhao, J.; Sun, X.; Li, Q.; Wu, J.; Zhang, A. Enhanced Thermoelectric Properties of Hybridized Conducting Aerogels Based on Carbon Nanotubes and Pyrolyzed Resorcinol–Formaldehyde Resin. Synth. Met. 2015, 205, 64–69.
  • Oshima, K.; Yanagawa, Y.; Asano, H.; Shiraishi, Y.; Toshima, N. Improvement Of Stability Of N-Type Super Growth CNTs By Hybridization With Polymer For Organic Hybrid Thermoelectric. Synth. Met. 2017, 225, 81–85.
  • Nakashima, Y.; Nakashima, N.; Fujigaya, T. Development of Air-Stable N-Type Single-Walled Carbon Nanotubes by Doping with 2-(2-Methoxyphenyl)-1, 3-Dimethyl-2, 3-Dihydro-1h-Benzo[D] Imidazole and Their Thermoelectric Properties. Synth. Met. 2017, 225, 76–80.
  • He, L.; Xia, G.; Sun, J.; Zhao, Q.; Song, R.; Ma, Z. Unzipped Multiwalled Carbon Nanotubes-Incorporated Poly (Vinylidene Fluoride) Nanocomposites With Enhanced Interface And Piezoelectric β Phase. J. Colloid. Interf. Sci. 2013, 393, 97–103.
  • Mallada, C.; Menéndez, J. L.; Dura, O. J.; López de la Torre, M. A.; Menéndez, R.; Santamaría, R. Spark Plasma Sintered BaTiO3/graphene Composites Forthermoelectric Applications. J. Eur. Ceram. Soc. 2017, 37, 3741–3746.
  • Agarwal, K.; Kaushik, V.; Varandani, D.; Dhar, A.; Mehta, B. R. Nanoscale Thermoelectric Properties Of Bi2Te3-Graphene Nanocomposites: Conducting Atomic Force, Scanning Thermal And Kelvin Probe Microscopy Studies. J. Alloys Compd. 2016, 681, 394–401.
  • Sun, H.; Tian, H.; Yang, Y.; Xie, D.; Chi Zhang, Y.; Liu, X.; Ma, S.; Zhao, H.; Ren, T. A Novel Flexible Nanogenerator Made Of ZnO Nanoparticles And Multiwall Carbon Nanotube. Nanoscale. 2013, 5, 6117–6123.
  • Stassia, S.; Cauda, V.; Ottonea, C.; Hiodoni, A. C.; Pirri, C.; Canavese, G. Flexible Piezo Electric Energy Nanogenerator Based On ZnO Nanotubes Hosted In A Polycarbonate Membrane. Nano Energy. 2015, 13, 474–481.
  • Noura, E. S.; Sandberg, M. O.; Willander, M.; Nura, O. Handwriting Enabled Harvested Piezoelectric Power Using ZnO Nanowires/Polymer Composite On Paper Substrate. Nano Energy. 2014, 9, 221–228.
  • Shin, S.; Kim, Y.; Hyung Lee, M.; Jung, J.; Seol, J.; Nah, J. Lithium-Doped Zinc Oxide Nanowires Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator. ACS Nano. 2014, 8, 10844–10850.
  • Karan, S.; Mandal, D.; Khatua, B. Self-Powered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester. Nanoscale. 2015, 7, 10655–10666.
  • Ummer, R. P.; Thevenot, R. C.; Rouxel, D.; Thomas, S.; Kalarikkal, N. Electric, Magnetic, Piezoelectric and Magnetoelectric Studies of Phase Pure (Bifeo3–Nanbo3)–(P(Vdf-Trfe)) Nanocomposite Films Prepared by Spin Coating. RSC Adv. 2016, 6, 28069–28080.
  • Pereira, J. N.; Sencadas, V.; Correia, V.; Cardoso, V. F.; Han, W.; Rocha, J. G.; Méndez, S. L. Energy Harvesting Performance Of BaTiO3/poly (Vinylidenefluoride–Trifluoroethylene) Spin Coated Nanocomposites. Compos. Part B. 2015, 72, 130–136.
  • Fiorido, T.; Galineau, J.; Salles, V.; Seveyrat, L.; Belhora, F.; Cottinet, P.; Hu, L.; Liu, Y.; Guiffard, B.; Moortele, A. B.; et al. Bifunctional Organic/Inorganic Nanocomposites for Energy Harvesting, Actuation and Magnetic Sensing Applications. Sens. Actuators A. 2014, 211, 105–114.
  • Bafqi, M. S.; Bagherzadeh, R.; Latifi, M. Fabrication Of Composite PVDF-ZnO Nanofiber Mats By Electrospinning For Energy Scavenging Application With Enhanced Efficiency. J. Polym. Res. 2015, 22, 130.
  • Martins, P.; Goncalves, R.; Lanceros-Mendez, S.; Lasheras, A.; Gutiérrez, J.; Barandiarán, J. Effect Of Filler Dispersion And Dispersion Method On The Piezoelectric And Magnetoelectric Response Of CoFe2O4/P(VDF-TrFE) Nanocomposites. Appl. Surf. Sci. 2014, 313, 215–219.
  • Yaqoob, U.; Uddin, A. S. M.; Chung, G. S. A Novel Tri-Layer Flexible Piezoelectric Nanogenerator Based On Surface-Modified Graphene And PVDF-BaTiO3 Nanocomposites. J. Appl. Surf. Sci. 2017, 405, 420–426.
  • Bubnova, O.; Crispin, X. Towards Polymer-Based Organic Thermoelectric Generators. Energy Environ. Sci. 2012, 5, 9345–9362.
  • Li, F.; Cai, K.; Shen, S.; Chen, S. Preparation And Thermoelectric Properties Of Reduced Graphene oxide/PEDOT: Pss Composite Films, Synth. Met. 2014, 197, 58–61.
  • Lee, W.; Kang, Y. H.; Lee, J. Y.; Jang, K. S.; Cho, S. Y. Hot-Pressing For Improving Performance Of CNT/conjugated Polymer Thermoelectric Films And Power Generators. Mater. Today Commun. 2017, 10, 41–45.
  • Riquelme, R. S.; Fernández, G. R.; Gullon, I. M.; Weisenberger, M. C. Synergistic Effect of Graphene Oxide and Wet-Chemical Hydrazine/Deionized Water Solution Treatment on the Thermoelectric Properties of PEDOT: PSS Sprayed Films. Synth. Met. 2016, 222, 330–337.
  • Narducci, D.; Selezneva, E.; Cerofolini, G.; Frabboni, S.; Ottaviani, G. Impact of Energy Filtering and Carrier Localization on the Thermoelectric Properties of Granular Semiconductors. J. Solid State Chem. 2012, 193, 19–25.
  • Wang, J.; Cai, K.; Yin, J.; Shen, S. Thermoelectric Properties of the PEDOT/SWCNT Composite Films Prepared by a Vapor Phase Polymerization. Synth. Met. 2017, 224, 27–32.
  • Hsu, J. H.; Choi, W.; Yang, G.; Yu, C. Origin of Unusual Thermoelectric Transport Behaviors in Carbon Nanotube Filled Polymer Composites after Solvent/Acid Treatments. Org. Electron. 2017, 45, 182–189.
  • Ail, U.; Khan, Z. U.; Granberg, H.; Berthold, F.; Parasuraman, R.; Umarji, A. M.; Slettengren, K.; Pettersson, H.; Crispin, X. Room Temperature Synthesis of Transition Metal Silicide-Conducting Polymer Micro-Composites for Thermoelectric Applications. Synth. Met. 2017, 225, 55–63.
  • Ju, H.; Kim, M.; Kim, J. Enhanced Thermoelectric Performance of Highly Conductive Poly (3, 4-Ethylenedioxythiophene)/Carbon Black Nanocomposites for Energy Harvesting. Microelectron. Eng. 2015, 136, 8–14.
  • Hu, X.; Chen, G.; Wang, X.; Wang, H. Tuning Thermoelectric Performance by Nanostructure Evolution of a Conducting Polymer. J. Mater. Chem. A. 2015, 3, 20896–20902.
  • Liang, L.; Chen, G.; Guo, C. Y. Polypyrrole Nanostructures and Their Thermoelectric Performance. Mater. Chem. Front. 2017, 1, 380–386.
  • Li, X.; Liang, L.; Yang, M.; Chen, G.; Guo, C. Y. Poly (3, 4-Ethylenedioxythiophene)/Graphene/Carbon Nanotube Ternary Composites with Improved Thermoelectric Performance. Org. Electron. 2016, 38, 200–204.
  • Ju, H.; Kim, J. Fabrication of Conductive Polymer/Inorganic Nanoparticles Composite Films: PEDOT: PSS with Exfoliated Tin Selenide Nanosheets for Polymer-Based Thermoelectric Devices. Chem. Eng. J. 2016, 297, 66–73.
  • Liang, L.; Chen, G.; Guo, C. Y. Enhanced Thermoelectric Performance by Self-Assembled Layered Morphology of Polypyrrole Nanowire/Single-Walled Carbon Nanotube Composites. Compos. Sci. Tech.. 2016, 129, 130–136.
  • Dorling, B.; Sandoval, S.; Kankla, P.; Fuertes, A.; Tobias, G.; Quiles, M. C. Exploring Different Doping Mechanisms in Thermoelectric Polymer/Carbon Nanotube Composites. Synth. Met. 2017, 225, 70–75.
  • Song, H.; Cai, K.; Wang, J.; Shen, S. Influence of Polymerization Method on the Thermoelectric Properties of Multi-Walled Carbon Nanotubes/Polypyrrole Composites. Synth. Met. 2016, 211, 58–65.
  • Mukaida, M.; Wei, Q.; Ishida, T. Polymer Thermoelectric Devices Prepared by Thermal Lamination. Synth. Met. 2017, 225, 64–69.
  • Culebras, M.; Barberá, A. G.; Serrano-Claumarchirant, J. F.; Gomez, C. M.; Cantarero, A. Hybrids Composites of NCCO/PEDOT for Thermoelectric Applications. Synth. Met. 2017, 225, 103–107.
  • Jella, V.; Kang, S. H.; Pammi, S. V. N.; Eom, J. H.; Jeong, J. R.; Yoon, S. G. Thermoelectric Properties Of Nanocomposite N-Type Cr2O3/Cr Thin Films Deposited By A Reactive Sputtering. Vacuum. 2017, 140, 71–75.
  • Yang, S.; Si, J.; Su, Q.; Wu, H. Enhanced Thermoelectric Performance Of SnSe Doped With Layered MoS2/graphene. Mater. Lett. 2017, 193, 146–149.
  • Tang, G.; Cai, K.; Cui, J.; Yin, J.; Shen, S. Preparation And Thermoelectric Properties Of MoS2/Bi2Te3 Nanocomposites. Ceram. Intern. 2016, 42, 17972–17977.
  • Zhang, C.; Mata, M.; Li, Z.; Belarre, F. J.; Arbiol, J.; Khor, K. A.; Polettie, D.; Zhu, B.; Yan, Q.; Xion, Q. Enhanced Thermoelectric Performance of Solution-Derived Bismuth Telluride Based Nanocomposites via Liquid-Phase Sintering. Nano Energy. 2016, 30, 630–638.
  • Li, C.; Qin, X.; Li, Y.; Li, D.; Zhang, J.; Guo, H.; Xin, H.; Song, C. Simultaneous Increase In Conductivity And Phonon Scattering In A Graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8. Thermoelectric Nanocomposite. J. Alloys Comput. 2016, 661, 389–395.
  • Ye, Y.; Wang, Y.; Shen, Y. W.; Wang, Y.; Pan, L.; Tu, R.; Lu, C.; Huang, R.; Koumoto, K. Enhanced Thermoelectric Performance Of xMoS2eTiS2 Nanocomposites. J. Alloys Comp. 2016, 666, 346–351.
  • Xing, Z. B.; Li, J. F. Lead-Free AgSn4SbTe6 Nanocomposites With Enhanced Thermoelectric Properties By SiC Nanodispersion. J. Alloys Comp. 2016, 687, 246–251.
  • Zhang, J.; Ye, Y.; Li, C.; Yang, J.; Zhao, H.; Xu, X.; Huang, R.; Pan, L.; Lu, C.; Wang, Y. Thermoelectric Properties Of TiS2-xPbSnS3 Nanocomposites. J. Alloys Comp. 2017, 696, 1342–1348.
  • Kim, E. B.; Dharmaiah, P.; Shin, D.; Lee, K. H.; Hong, S. J. Enhanced Thermoelectric Performance Through Carrier Scattering At Spherical Nanoparticles In Bi0.5Sb1.5Te3/Ta2O5 Composites. J. Alloys Comp. 2017, 703, 614–623.
  • He, J.; Xu, J.; Tan, X.; Liu, G. Q.; Shao, H.; Liu, Z.; Jiang, H.; Jiang, J. Synthesis Of SnTe/AgSbSe2 Nanocomposite As A Promising Lead-Free Thermoelectric Material. J. Materiomics. 2016, 2, 165–171.
  • Anton, S. R.; Sodano, H. A. A Review of Power Harvesting Using Piezoelectric Materials. Smart Mater. Struct. 2007, 16, 1–21.
  • Capsal, J. F.; Dantras, E.; Laffont, L.; Dandurand, J.; Lacabanne, C. Nanotexture Influence Of BaTiO3 Particles On Piezoelectric Behaviour Of Pa 11/Batio3 Nanocomposites. J. Non-Crystal Sol. 2010, 356, 629–634.
  • Koumoto, K.; Mori, T., Eds.. Thermoelectric Nanomaterials: Materials Design and Application; Springer, Heidelberg, New York, 2013.
  • Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nature Mater. 2008, 7, 105–114.
  • Fleming, A. J.;. A Review of Nanometer Resolution Position Sensors: Operation and Performance. Sens. Actuators A. 2013, 190, 106–126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.