415
Views
5
CrossRef citations to date
0
Altmetric
Articles

Remarkable improvement of the electro-mechanical properties of polydimethylsiloxane elastomers through the combined usage of glycerol and pyridinium-based ionic liquids

ORCID Icon, ORCID Icon & ORCID Icon
Pages 271-281 | Received 27 Mar 2019, Accepted 27 May 2019, Published online: 07 Jun 2019

References

  • Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-Speed Electrically Actuated Elastomers with Strain Greater than 100%. Sci. 2000, 287, 836–839. DOI: 10.1126/science.287.5454.836.
  • Shian, S.; Bertoldi, K.; Clarke, D. Dielectric Elastomer Based “Grippers” for Soft Robotics. Adv. Mater. 2015, 27, 6814–6819. DOI: 10.1002/adma.201503078.
  • Keplinger, C.; Li, T.; Baumgartner, R.; Suo, Z.; Bauer, S. Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation. Soft Matter. 2012, 8, 285–288. DOI: 10.1039/c1sm06736b.
  • Keplinger, C.; Sun, J.; Foo, C.; Rothemund, P. Stretchable, Transparent, Ionic Conductors. Sci. 2013, 341, 984–987. DOI: 10.1126/science.1240228.
  • Tan, C.; Gao, J.; Li, Y.; Qing, L.; Zhang, X.; Yang, Y. Development of a Processing Method for Carbon Nanotubes Modified Fluorosilicone Rubber with Enhanced Electrical, Dielectric, and Mechanical Properties. Polym. Plast. Technol. Mater. 2019, 7, 1–12. DOI: 10.1080/25740881.2018.1563126.
  • Sommer-Larsen, P.; Larsen, A. L. Materials for Dielectric Elastomer Actuators. Smart Struct. Mater. 2004, 5385, 68–78. DOI: 10.1088/0964-1726/16/2/S15.
  • McKay, T. G.; Calius, E.; Anderson, I. A. The Dielectric Constant of 3M VHB: A Parameter in Dispute. Smart. Struct. Mater. 2009, 7287, 72870–72879. DOI: 10.1117/12.815821.
  • Madsen, F. B.; Yu, L.; Mazurek, P.; Skov, A. L. A Simple Method for Reducing Inevitable Dielectric Loss in High-Permittivity Dielectric Elastomers. Smart. Mater. Struct. 2016, 25, 075018–075025. DOI: 10.1088/0964-1726/25/7/075018.
  • Skov, A. L.; Yu, L. Optimization Techniques for Improving the Performance of Silicone-Based Dielectric Elastomers. Adv. Eng. Mater. 2018, 20, 1700762–1700783. DOI: 10.1002/adem.201700762.
  • Yu, L. Y.; Skov, A. L. ZnO as a Cheap and Effective Filler for High Breakdown Strength Elastomers. RSC Adv. 2017, 7, 45784–45791. DOI: 10.1039/c7ra09479e.
  • Su, J.; Zhang, J. Remarkable Enhancement of Mechanical and Dielectric Properties of Flexible Ethylene Propylene Diene Monomer (Epdm)/Barium Titanate (Batio3) Dielectric Elastomer by Chemical Modification of Particles. RSC Adv. 2015, 5, 78448–78456. DOI: 10.1039/C5RA14047A.
  • Wu, S. Q.; Wang, J. W.; Shao, J.; Wei, L.; Ge, R. K.; Ren, H. An Approach to Developing Enhanced Dielectric Property Nanocomposites Based on Acrylate Elastomer. Mater. Design. 2018, 146, 208–218. DOI: 10.1016/j.matdes.2018.03.023.
  • Pilar, O. S.; Marta, C.; Belén, R. F.; Jesús, S. M.; Mario, C.; María, G. C.; Andrés, C. Thermal and Dielectric Properties of Polycarbonatediol Polyurethane. J. Appl. Polym. Sci. 2015, 132, 42007–42014. DOI: 10.1002/app.42007.
  • Maffli, L.; Rosset, S.; Ghilardi, M.; Carpi, F.; Shea, H. Ultrafast All‐Polymer Electrically Tunable Silicone Lenses. Adv. Funct. Mater. 2015, 25, 1656–1665. DOI: 10.1002/adfm.201403942.
  • Su, J.; Zhang, J. Improvement of Electrical Properties and Thermal Conductivity of Ethylene Propylene Diene Monomer (Epdm)/Barium Titanate (Batio3) by Carbon Blacks and Carbon Fibers. J. Mater. Sci.: Mater. Electron. 2017, 28, 5250–5261. DOI: 10.1007/s10854-016-6182-x.
  • Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Al-Solamy, F. R.; Dishovsky, N.; Mihaylov, M.; Malinova, P.; Atanasov, N. Dielectric and Microwave Properties of Elastomer Composites Loaded with Carbon–Silica Hybrid Fillers. J. Appl. Polym. Sci. 2016, 133, 42977–42978. DOI: 10.1002/app.42978.
  • Li, H.; Liu, H.; Li, J.; Wei, D.; Wang, Y.; Song, B. Dielectric Behaviors of Carbon Nanotube/Silicone Elastomer Composites. Sci. Eng. Compos. Mater. 2015, 22, 399–408. DOI: 10.1515/secm-2013-0280.
  • Poikelispää, M.; Shakun, A.; Das, A.; Vuorinen, J. Improvement of Actuation Performance of Dielectric Elastomers by Barium Titanate and Carbon Black Fillers. J. Appl. Polym. Sci. 2016, 133, 44114–44116. DOI: 10.1002/app.44116.
  • Saji, J.; Khare, A.; Mahapatra, S. Impedance and Dielectric Spectroscopy of Nano-Graphite Reinforced Silicon Elastomer Nanocomposites. Fiber. Polym. 2015, 16, 883–893. DOI: 10.1007/s12221-015-0883-2.
  • Küçük, İ.; Vural, S.; Köytepe, S.; Seçkin, T. Synthesis, Characterization and Dielectric Properties of Nickel-Based Polyoxometalate/Polyurethane Composites. Polym. Plast. Technol. Mater. 2019, 8, 1–16. DOI: 10.1080/25740881.2018.1563123.
  • Skov, A. L.; Yu, L. Y. Optimization Techniques for Improving the Performance of Silicone‐Based Dielectric Elastomers. Adv. Eng. Mater. 2018, 20, 1700762–1700789. DOI: 10.1002/adem.201700762.
  • Mazurek, P.; Hvilsted, S.; Skov, A. L. Green Silicone Elastomer Obtained from a Counterintuitively Stable Mixture of Glycerol and PDMS. Polym. 2016, 87, 1–7. DOI: 10.1016/j.polymer.2016.01.070.
  • Mazurek, P.; Yu, L. Y.; Gerhard, R.; Wirges, W.; Skov, A. L. Glycerol as High-Permittivity Liquid Filler in Dielectric Silicone Elastomers. J. Appl. Polym. Sci. 2016, 133, 44153–44161. DOI: 10.1002/app.44153.
  • Bittner, B.; Wrobel, R. J.; Milchert, E. Physical Properties of Pyridinium Ionic Liquids. J. Chem. Thermodyn. 2012, 55, 159–165. DOI: 10.1016/j.jct.2012.06.018.
  • Safarov, J.; Ismail, I. K.; ElAwady, W. A.; Nocke, J.; Shahverdiyev, A.; Hassel, E. Thermophysical Properties of 1-Butyl-4-Methylpyridinium Tetrafluoroborate. J. Chem. Thermodyn. 2012, 51, 82–87. DOI: 10.1016/j.jct.2012.02.018.
  • Li, Y.; Zhang, M.; Liu, Q.; Su, H. Phase Behaviour for Aqueous Two-Phase Systems Containing the Ionic Liquid 1-Butylpyridinium Tetrafluoroborate/1-Butyl-4-Methylpyridinium Tetrafluoroborate and Organic Salts (Sodium Tartrate/Ammonium Citrate/Trisodium Citrate) at Different Temperatures. J. Chem. Thermodyn. 2013, 66, 80–87. DOI: 10.1016/j.jct.2013.06.011.
  • Li, Y.; Gu, Y.; Liu, X. Liquid–Liquid Equilibria for 1-Butyl-4-Methylpyridinium Tetrafluoroborate and Inorganic Salts Aqueous Two-Phase Systems. J. Therm. Anal. Calorim. 2015, 122, 1455–1468. DOI: 10.1007/s10973-015-4867-7.
  • Scendo, M.; Uznanska, J. Inhibition Effect of 1-Butyl-4-Methylpyridinium Tetrafluoroborate on the Corrosion of Copper in Phosphate Solutions. Int. J. Corros. 2011, 12, 1–12. DOI: 10.1155/2011/761418.
  • Grande, J.; Fawcett, A.; McLaughlin, A.; Gonzaga, F.; Bender, T.; Brook, M. Anhydrous Formation of Foamed Silicone Elastomers Using the PierseRubinsztajn Reaction. Polym. 2012, 53, 3135–3142. DOI: 10.1016/j.polymer.2012.05.033.
  • Brook, M. A.;. New Control over Silicone Synthesis Using SiH Chemistry: The Piers–Rubinsztajn Reaction. Polym. 2018, 24, 8458–8469. DOI: 10.1002/chem.201800123.
  • Morita, H.; Konishi, M. Electrogenerated Chemiluminescence Derivatization Reagent, 3-Isobutyl-9,10-Dimethoxy-1,3,4,6,7,11b-Hexahydro-2h-Pyrido[2,1-A]Isoquinolin-2-Ylamine, for Carboxylic Acid in High-Performance Liquid Chromatography Using tris(2,2ʹ-bipyridine)ruthenium(II). Anal. Chem. 2003, 75, 940–946. DOI: 10.1021/ac020377i.
  • Li, Y.; Zhang, M.; Liu, Q.; Su, H. Corrigendum to “Phase Behaviour for Aqueous Two-Phase Systems Containing the Ionic Liquid N-Butylpyridinium Tetrafluoroborate/1-Butyl-4-Methylpyridinium Tetrafluoroborate and Organic Salts (Sodium Tartrate/Ammonium Citrate/Trisodium Citrate) at Different Temperatures. J. Chem. Thermodyn. 2015, 87, 80–87. DOI: 10.1016/j.jct.2015.04.022.
  • Goswami, K.; Daugaard, A. E.; Skov, A. L. Dielectric Properties of Ultraviolet Cured Poly(Dimethyl Siloxane) Sub-Percolative Composites Containing Percolative Amounts of Multi-Walled Carbon Nanotubes. RSC Adv. 2015, 5, 12792–12799. DOI: 10.1039/c4ra14637a.
  • Katsuhiko, K.; Taizo, I.; Masayoshi, O.; Ikuyoshi, T.; Takeshi, E. Development and Application of Latent Hydrosilylation Catalyst: Control of Activity of Platinum Catalyst by Isocyanide Derivatives on the Crosslinking of Silicone Resin via Hydrosilylation. Int. J. Adhes. Adhes. 1999, 20, 253–256. DOI: 10.1016/S0143-7496(99)00050-0.
  • Xiao, Y.; Malhotra, S. V. Asymmetric Reduction of Aromatic Ketones in Pyridinium-Based Ionic Liquids. Tetrahed.: Asym. 2006, 17, 1062–1065. DOI: 10.1016/j.tetasy.2006.03.032.
  • Madsen, P. J.; Yu, L. Y.; Boucher, S.; Skov, A. L. Enhancing the Electro-Mechanical Properties of Polydimethylsiloxane Elastomers through Blending with Poly(Dimethylsiloxane-Co-Methylphenylsiloxane) Copolymers. RSC Adv. 2018, 8, 23077–23088. DOI: 10.1039/C8RA02314J.
  • Pingot, M.; Szadkowski, B.; Zaborski, M. Experimental Investigation on Activity of Cumene Hydroperoxide and Selected Ionic Liquids in Butadiene Rubber Vulcanization. Adv. Polym. Technol. 2019, 37, 3432–3437. DOI: 10.1002/adv.22127.
  • Silau, H.; Stabell, N. B.; Petersen, F. R.; Pham, M.; Yu, L. Y.; Skov, A. L. Weibull Analysis of Electrical Breakdown Strength as an Effective Means of Evaluating Elastomer Thin Film Quality. Adv. Eng. Mater. 2018, 20, 1800241–1800248. DOI: 10.1002/adem.201800241.
  • Hassouneh, S. S.; Daugaard, A. E.; Skov, A. L. Design of Elastomer Structure to Facilitate Incorporation of Expanded Graphite in Silicones without Compromising Electromechanical Integrity. Macromol. Mater. Eng. 2015, 300, 542–550. DOI: 10.1002/mame.201400383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.