258
Views
2
CrossRef citations to date
0
Altmetric
Articles

Simultaneous reduction in situ and thiol- functionalization of Graphene Oxide during the Photopolymerization of Epoxy/Thiol-ene photocurable systems to prepare polyether-polythioether/reduced graphene oxide nanocomposites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 282-293 | Received 06 Dec 2018, Accepted 18 Jun 2019, Published online: 04 Jul 2019

References

  • Lee, J. K.; Song, S.; Kim, B. Functionalized Graphene Sheets-Epoxy Based Nanocomposite for Cryotank Composite Application. Polym. Comp. 2012, 33, 1263–1273. DOI: 10.1002/pc.22251.
  • Monetta, T.; Acquesta, A.; Bellucci, F. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures. Aerospace. 2015, 2, 423–434. DOI: 10.3390/aerospace2030423.
  • Kausar, A.; Rafique, I.; Anwar, Z.; Muhamad, B. Perspectives of Epoxy/Graphene Oxide Composite: Significant Features and Technical Applications. J. Polym. Plast. Technol. Eng. 2016, 55, 704–722. DOI: 10.1080/03602559.2015.1098700.
  • Tang, L. C.; Zhao, L.; Guan, L. Z. Graphene/Polymer Composite Materials: Processing, Properties and Applications. In Advanced Composite Materials: Properties and Applications; Bakerpour, E., Ed.; De Gruyter Open LTD: Warsaw/Berlin, 2017; pp 349–419.
  • Ghaleb, Z. A.; Mariatti, M.; Ariff, Z. M. Graphene Nanoparticle Dispersion in Epoxy Thin Film Composites for Electronic Applications: Effect on Tensile, Electrical and Thermal Properties. J. Mater. Sci. 2017, 28(1), 808–817.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI: 10.1021/nl802558y.
  • King, J. A.; Klimek, D. R.; Misklioglu, I.; Odegard, G. M. Mechanical Properties of Graphene Nanoplatelets/epoxy Composites. J. Compos. Mater. 2015, 49(6), 659–668. DOI: 10.1177/0021998314522674.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Schniepp, H. C.; Kudin, K. N.; Li, J.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Bending Properties of Single Functionalyzed Graphene Sheets Probed by Atomic Force Microscopy. ACS Nano. 2008, 2, 2577–2584. DOI: 10.1021/nn800457s.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Bases Composite Materials. Nature. 2006, 442, 282. DOI: 10.1038/nature04969.
  • Sang, B.; Li, Z.; Li, X. H.; Yu, L. G.; Zhang, Z. J. Graphene-based Flame Retardants: A Review. J. Mater. Sci. 2016, 51, 8271–8295. DOI: 10.1007/s10853-016-0124-0.
  • Ellys, B. Chemistry and Technology of Eppoxy Resins; Springer Science and Business Media, B.V.: Dordrecht, 1993.
  • Jin, F. L.; Li, X.; Park, S. J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.
  • Pei, S.; Cheng, H. M. The Reduction of Graphene Oxide. Carbon. 2012, 50(9), 3210–3228. DOI: 10.1016/j.carbon.2011.11.010.
  • Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera, A. M.; Adamson, D. H. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B. 2006, 110(17), 8535–8539. DOI: 10.1021/jp060936f.
  • Ren, Y.; Zhou, T.; Su, G.; Ma, Y. Online Tracking of the Thermal Reduction of Graphene Oxide by Two- Dimensional Correlation Spectroscopy. Vib. Spectrosc. 2018, 96, 32–45. DOI: 10.1016/j.vibspec.2018.02.010.
  • Huh, S. H. Thermal Reduction of Graphene Oxide, Physics and Applications of Graphene – Experiments. Tech: Rijeka, Croatia, 2011; Ed. S. Mikhailov.
  • Hou, D.; Liu, Q.; Cheng, H.; Li, K. Graphene Synthesis via Chemical Reduction of Graphene Oxide Using Lemmon Extract. Nanosci. Nanotech. 2017, 17(9), 6518–6523. DOI: 10.1166/jnn.2017.14426.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon. 2007, 45(7), 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19(12), 1987–1992. DOI: 10.1002/adfm.200900167.
  • Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chem. Mater. 2012, 24(12), 2292–2298. DOI: 10.1021/cm300382b.
  • Marrani, A. G.; Coico, A. C.; Giacco, D.; Zanoni, R.; Scaramuzzo, F. A.; Schrebler, R.; Dini, D.; Bonomo, M.; Dalchiele, E. A. Integration of Graphene onto Silicon through Electrochemical Reduction of Graphene Oxide Layers in Non-aqueous Medium. Appl. Surf. Sci. 2018, 445, 404–414. DOI: 10.1016/j.apsusc.2018.03.147.
  • Li, M.; Li, Z.; Liu, C.; Chang, Y.; Wen, J.; Zhao, H.; Cao, H.; Zhang, Y.; Liu, D. Amino Modification and Succesive Electrochemical Reduction of Graphene Oxide for Highly Sensitive Electrochemical Detection of Trace Pb+2. Carbon. 2016, 109, 479–486. DOI: 10.1016/j.carbon.2016.08.054.
  • Sun, H.; Wu, L.; Gao, N.; Ren, J.; Qu, X. Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application. ACS Appl. Mater. Interfaces. 2013, 5, 1174–1179. DOI: 10.1021/am3030849.
  • Li, X.-H.; Chen, J.-S.; Wang, X.; Schuster, M. E.; Schlögl, R.; Antonietti, M. A Green Chemistry of Graphene: Photochemical Reduction Towards Monolayer Graphene Sheets and the Role of Water Adlayers. Chem. Sus. Chem. 2012, 5, 642–646. DOI: 10.1002/cssc.201100467.
  • Shi, Y.; Xiong, D.; Li, J.; Wang, N. In Situ Reduction of Graphene Oxide Nanosheets in Poly(vinylalcohol) Hydrogel by γ‑Ray Irradiation and Its Influence on Mechanical and Tribological Properties. J. Phys. Chem C. 2016, 120, 19442–19553. DOI: 10.1021/acs.jpcc.6b05948.
  • Glover, A. J.; Cai, M.; Overdeep, K. M.; Krandbuehl, D. E.; Schniepp, H. C. In Situ Reduction of Graphene Oxide in Polymers. Macromolecules. 2011, 44, 9821–9829. DOI: 10.1021/ma2008783.
  • Mural, P. K. S.; Sharma, M.; Madras, G.; Bose, S. A Critical Review on in Situ Reduction of Grapheneoxide during Preparation of Conducting Polymeric Nanocomposites. RSC Adv. 2015, 5, 32078–32087. DOI: 10.1039/C5RA02877A.
  • Traina, M.; Pegoretti, A. In Situ Reduction of Graphene Oxide Dispersed in a Polymer Matrix. J. Nanopart. Res. 2012, 14, 801. DOI: 10.1007/s11051-012-0801-0.
  • Zhang, J.; He, Y.; Zhu, P.; Lin, S.; Ju, S.; Jiang, D. In Situ Reduction of Graphene Oxide in the Poly (vinyl Alcohol) Matrix via Microwave Irradiation. Polym. Compos. 2017. DOI: 10.1002/pc.
  • Tsagkalias, I. S.; Manios, T. K.; Achilias, D. S. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate in Situ Radical Polymerization via the Bulk or Solution Technique. Polymers. 2017, 9(12), 432. DOI: 10.3390/polym9120669.
  • Sangermano, M.; Tagliaferro, A.; Foix, D.; Castellino, M.; Celasco, E. In Situ Reduction of Graphene Oxide in an Epoxy Resin Thermally Cured with an Amine. Macromol. Mater. Eng. 2014, 299(6), 757–763. DOI: 10.1002/mame.201300286.
  • Toselli, M.; Fabiani, D.; Mancinelli, P.; Frechette, M. F.; Heid, T. F.; David, E.; Saccani, A. In Situ Thermal Reduction of Graphene Oxide Forming Epoxy Nanocomposites and Their Dielectric Properties. Polym. Compos. 2014, 36, 2.
  • Bao, C.; Guo, Y.; Song, L.; Kan, Y.; Qian, X.; Hu, Y. In Situ Preparation of Functionalized Graphene Oxide/epoxy Nanocomposites with Effective Reinforcements. J. Mat. Chem. 2011, 21, 13290–13298. DOI: 10.1039/c1jm11434d.
  • Olowojoba, G. B.; Kopsidas, S.; Eslava, S.; Gutierrez, E. S.; Kinloch, A. J.; Mattevi, C.; Rocha, V. G.; Taylor, A. C. J. A Facile Way to Produce Epoxy Nanocomposites Having Excellent Termal Conductivity with Low Contents of Graphene Oxide. Mater. Sci. 2017, 52(12), 7323–7344. DOI: 10.1007/s10853-017-0969-x.
  • Mehdi, S.; Behzad, P.; Ali, F. Photoreduction of Graphene Oxide during Photopolymerization of Graphene Oxide/epoxy- Novolac Nanocompiste Coatings. J. Photopolym. Sci. Technol. 2016, 29(5), 769–773. DOI: 10.2494/photopolymer.29.769.
  • Paredes, J. I.; Vilar Rodin, S.; Martinez Alonzo, A.; Tascon, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir. 2008, 24(19), 10560–10564. DOI: 10.1021/la801744a.
  • Ahmad, R. T. M.; AhmadHong, S. H.; Shen, T. Z.; Song, J. K. Water-assisted Stable Dispersal of Graphene Oxide in Non-dispersible Solvents and Skin Formation on the GO Dispersión. Carbon. 2016, 98, 188–194. DOI: 10.1016/j.carbon.2015.11.007.
  • Liu, Q.; Yao, X.; Liu, Z. Single Layer Graphene Oxide Sheets-epoxy Nanocomposites with Greatly Improved Mechanical and Thermical Properties. Adv. Mater. Res. 2012, 391–392, 175–179. DOI: 10.4028/www.scientific.net/AMR.391-392.175.
  • Tang, X.; Zhou, Y.; Peng, M. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide. ACS Appl. Mater. Interfaces. 2016, 8(3), 1854–1866. DOI: 10.1021/acsami.5b09830.
  • Acosta Ortiz, R.; Garcia Valdez, A. E.; Navarro Tovar, A. G.; Hilario de la Cruz, A. A.; Gonzalez Sanchez, L. F.; Trejo Garcia, J. H.; Espinoza Muñoz, J. F.; Sangermano, M. Development of an Hybrid Epoxy-amine/thiol-ene Photocurable System. J. Polym. Res. 2014, 21, 504. DOI: 10.1007/s10965-014-0504-6.
  • Williams, T.; Meador, M.; Miller, S.; Scheiman, D. Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins, 2018. https://ntrs.nasa.gov/search.jsp?R=201200008542018-09-06T22:35:18+00:00Z (accessed Sep 6, 2018).
  • Sangermano, M.; Giannelli, S.; Acosta Ortiz, R.; Berlanga Duarte, M. L.; Rueda Gonzalez, A. K.; Garcia Valdez, A. E. Synthesis of an Oxetane Functionalized Hemi Spiro Ortho Carbonate Used as Low Shrinkage Additive in Cationic UV Curing of Oxetane Monomers. J. Appl. Polym. Sci. 2009, 112, 1780. DOI: 10.1002/app.29587.
  • Acosta Ortiz, R.; García Valdez, A. E.; Rodriguez Ramos, Z. X.; Acosta Berlanga, O.; Aguirre Flores, R.; Méndez Padilla, M. G.; Espinoza Muñoz, J. F. Development of Rigid Toughened Photocurable Epoxy Foams. J. Polym. Res. 2017, 24, 110. DOI: 10.1007/s10965-017-1273-9.
  • Acosta Ortiz, R.; Garcıa Valdez, A. E.; Sangermano, M.; Hilario de la Cruz, A. A.; Aguirre Flores, R.; Espinoza Munoz, J. F. Comparison of the Performance of Two Bifunctional Curing Agents for the Photopolymerization of Epoxy Resins and the Study of the Mechanical Properties of the Obtained Polymers. Macromol. Symp. 2015, 358, 35–40. DOI: 10.1002/masy.201500017.
  • Li, H.; Bubeck, C. Photoreduction Processes of Graphene Oxide and Related Applications. Macromol. Res. 2013, 21(3), 290–297. DOI: 10.1007/s13233-013-1139-x.
  • Xue, B.; Zou, Y.; Yang, Y. A UV Light Induced Photochemical Method for Graphene Oxide Reduction. J. Mater. Sci. 2017, 52, 12742–12750. DOI: 10.1007/s10853-017-1266-4.
  • Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-based Systems by Raman Spectroscopy. Phys. Chem. Phys. 2007, 9, 1276–1291. DOI: 10.1039/B613962K.
  • Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater. 2009, 19, 2577. DOI: 10.1002/adfm.200900166.
  • Chandrasekaran, S.; Seidel, C.; Schulte, K. Preparation and Characterization of Graphite Nano-platelet (gnp)/epoxy Nano-composite: Mechanical, Electrical and Thermal Properties. Eur. Polym. J. 2013, 49(12), 3878–3888. DOI: 10.1016/j.eurpolymj.2013.10.008.
  • Flory, P. J. Molecular Theory of Rubber Elasticity. Polym. J. 1985, 17, 1–12. DOI: 10.1295/polymj.17.1.
  • Reinitz, S. D.; Carlson, E. M.; Levine, R. A. C.; Franklin, K. J.; Van Citters, D. W. Dynamical Mechanical Analysis as an Assay of Cross-link Density of Orthopaedic Ultra High Molecular Weight Polyethylene. Polym. Test. 2015, 45, 174–178. DOI: 10.1016/j.polymertesting.2015.06.008.
  • Zhao, S.; Abu-Omar, M. M. Renewable Epoxy Networks Derived from Lignin-Based Monomers: Effect of Cross-Linking Density. ACS Sustainable Chem. Eng. 2016, 4, 6082−6089. DOI: 10.1021/acssuschemeng.6b01446.
  • Mitra, S.; Ahire, A.; Mallik, B. P. Investigation of Accelerated Aging Behaviour of High Performance Industrial Coatings by Dynamic Mechanical Analysis. Prog. Org. Coat. 2014, 77, 1816–1825. DOI: 10.1016/j.porgcoat.2014.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.