110
Views
1
CrossRef citations to date
0
Altmetric
Articles

Composite coatings based on linear and branched block copolymers for hydroxyapatite deposition in simulated body-fluid

ORCID Icon, , , , &
Pages 985-997 | Received 19 Sep 2019, Accepted 17 Jan 2020, Published online: 27 Jan 2020

References

  • Yeong, W. Y.; Sudarmadji, N.; Yu, H. Y.; Chua, C. K.; Leong, K. F.; Venkatraman, S. S.; Boey, Y. C. F.; Tan, L. P. Porous Polycaprolactone Scaffold for Cardiac Tissue Engineering Fabricated by Selective Laser Sintering. Acta Biomater. 2010, 6, 2028–2034. DOI: 10.1016/j.actbio.2009.12.033.
  • Ninago, M. D.; Ciolino, A. E.; Villar, M. A. Improvement in Poly(ε-caprolactone) Bio-activity. Structural Characterization and in Vitro Assessment. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 201–210.
  • Yang, Y.; Michalczyk, C.; Singer, F.; Virtanen, S.; Boccaccini, A. R. In Vitro Study of Polycaprolactone/Bioactive Glass Composite Coatings on Corrosion and Bioactivity of Pure Mg. Appl. Surf. Sci. 2015, 355, 832–841. DOI: 10.1016/j.apsusc.2015.07.053.
  • Clavijo, S.; Membrives, F.; Quiroga, G.; Boccaccini, A. R.; Santillán, M. J. Electrophoretic Deposition of Chitosan/Bioglass® and Chitosan/Bioglass®/TiO2 Composite Coatings for Bioimplants. Ceram. Int. 2016, 42, 14206–14213. DOI: 10.1016/j.ceramint.2016.05.178.
  • Quiroga, G. A. R.; Redondo, F. L.; Ninago, M. D.; Ciolino, A. E.; Villar, M. A.; Santillán, M. J. Fabricación de Recubrimientos Compuestos de Bioglass®/Poli(ɛ-capro-lactona) Obtenidos por co-Deposición Electroforética Sobre Acero Inoxidable. Matéria. 2018, 23, 1–12.
  • Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J. Preparation of Bioactive Porous HA/PCL Composite Scaffolds. Appl. Surf. Sci. 2008, 255, 2942–2946. DOI: 10.1016/j.apsusc.2008.08.056.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Ramakrishna, S. Bio-functionalized PCL Nanofibrous Scaffolds for Nerve Tissue Engineering. Mater. Sci. Eng. C. 2010, 30, 1129–1136. DOI: 10.1016/j.msec.2010.06.004.
  • Pishbin, F.; Cordero-Arias, L.; Cabanas-Polo, S.; Boccaccini, A. R. Bioactive Polymer–calcium Phosphate Composite Coatings by Electrophoretic Deposition. In Surface Coating and Modification of Metallic Biomaterials; Woodhead Publishing, Copyright © 2015 Elsevier Ltd. 2015, 359–377.
  • Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I. Experimental Trends in Polymer Nanocomposites - A Review. Mater. Sci. Eng. A. 2005, 393, 1–11. DOI: 10.1016/j.msea.2004.09.044.
  • El-Ghannam, A.;. Bone Reconstruction: From Bioceramics to Tissue Engineering. Expert Rev. Med. Devices 2005, 2, 87–101. DOI: 10.1586/17434440.2.1.87.
  • Cabanas-Polo, S.; Boccaccini, A. R. Understanding Bioactive Glass Powder Suspensions for Electrophoretic Deposition of Bioactive Glass-Polymer Coatings. J. Electrochem. Soc. 2015, 162, D3077–D3083. DOI: 10.1149/2.0211511jes.
  • Jones, J. R.;. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457–4486. DOI: 10.1016/j.actbio.2012.08.023.
  • Chen, Q.; Cabanas-Polo, S.; Goudouri, O. M.; Boccaccini, A. R. Electrophoretic co-Deposition of Polyvinyl Alcohol (PVA) Reinforced Alginate-Bioglass® Composite Coating on Stainless Steel: Mechanical Properties and In-Vitro Bioactivity Assessment. Mater. Sci. Eng. C. 2014, 40, 55–64. DOI: 10.1016/j.msec.2014.03.019.
  • Qian, J.; Kang, Y.; Wei, Z.; Zhang, W. Fabrication and Characterization of Biomorphic 45S5 Bioglass Scaffold from Sugarcane. Mater. Sci. Eng. C. 2009, 29, 1361–1364. DOI: 10.1016/j.msec.2008.11.004.
  • Zhang, Z.; Jiang, T.; Ma, K.; Cai, X.; Zhou, Y.; Wang, Y. Low Temperature Electrophoretic Deposition of Porous Chitosan/Silk Fibroin Composite Coating for Titanium Biofunctionalization. J. Mater. Chem. 2011, 21, 7705–7713. DOI: 10.1039/c0jm04164e.
  • Sun, Y.; Zhitomirsky, I. Electrophoretic Deposition of Titanium Dioxide Using Organic Acids as Charging Additives. Mater. Lett. 2012, 73, 190–193. DOI: 10.1016/j.matlet.2012.01.037.
  • Pishbin, F.; Mouriño, V.; Gilchrist, J. V.; McComb, D. W.; Kreppel, S.; Salih, V.; Ryan, M. P.; Boccaccini, A. R. Single-step Electrochemical Deposition of Antimicrobial Orthopaedic Coatings Based on A Bioactive Glass/Chitosan/Nano-silver Composite System. Acta Biomater. 2013, 9, 7469–7479. DOI: 10.1016/j.actbio.2013.03.006.
  • Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic Deposition of Biomaterials. J. R. Soc. Interface 2010, 7, S581–S613. DOI: 10.1098/rsif.2010.0156.focus.
  • Seuss, S.; Heinloth, M.; Boccaccini, A. R. Development of Bioactive Composite Coatings Based on Combination of PEEK, Bioactive Glass and Ag Nanoparticles with Antibacterial Properties. Surf. Coatings Technol. 2016, 301, 100–105. DOI: 10.1016/j.surfcoat.2016.03.057.
  • Miola, M.; Verné, E.; Ciraldo, F. E.; Cordero-Arias, L.; Boccaccini, A. R. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr. Front. Bioeng. Biotechnol. 2015, 3, 1–13. DOI: 10.3389/fbioe.2015.00159.
  • Wietor, J. L.; Van Beek, D. J. M.; Peters, G. W.; Mendes, E.; Sijbesma, R. P. Effects of Branching and Crystallization on Rheology of Polycaprolactone Supramolecular Polymers with Ureidopyrimidinone End Groups. Macromolecules. 2011, 44, 1211–1219. DOI: 10.1021/ma1026065.
  • Liang, J. Z.; Zhou, L.; Tang, C. Y.; Tsui, C. P. Crystallization Properties of Polycaprolactone Composites Filled with Nanometer Calcium Carbonate. J. Appl. Polym. Sci. 2013, 128, 2940–2944. DOI: 10.1002/app.38359.
  • Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Pothineni, V. R.; Rajadas, J.; Tayebi, L. Significant Degradability Enhancement in Multilayer Coating of Polycaprolactone-Bioactive Glass/Gelatin-bioactive Glass on Magnesium Scaffold for Tissue Engineering Applications. Appl. Surf. Sci. 2015, 338, 137–145. DOI: 10.1016/j.apsusc.2015.02.120.
  • Danesin, R.; Brun, P.; Roso, M.; Delaunay, F.; Samouillan, V.; Brunelli, K.; Iucci, G.; Ghezzo, F.; Modesti, M.; Castagliuolo, I.;; et al. Self-assembling Peptide-enriched Electrospun Polycaprolactone Scaffolds Promote the H-Osteoblast Adhesion and Modulate Differentiation-associated Gene Expression. Bone. 2012, 51, 851–859. DOI: 10.1016/j.bone.2012.08.119.
  • Figueiredo, A. G. P. R.; Figueiredo, A. R. P.; Alonso-varona, A.; Fernandes, S. C. M.; Palomares, T.; Rubio-azpeitia, E.; Barros-timmons, A.; Silvestre, A. J. D.; Neto, C. P.; Freire, C. S. R. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl Methacrylate) Nanocomposite Films. Biomed. Res. Int. 2013, 2013, 1–15.
  • Chirila, T. V.; Constable, I. J.; Crawford, G. J.; Vijayasekaran, S.; Thompson, D. E.; Chen, Y.; Fletcher, W. A.; Griffin, B. J. Poly(2-hydroxyethyl Methacrylate) Sponges as Implant Materials: In Vivo and in Vitro Evaluation of Cellular Invasion. Biomaterials 1993, 14, 26–38. DOI: 10.1016/0142-9612(93)90072-A.
  • Peppas, N. A.; Moynihan, H. J.; Lucht, L. M. The Structure of Highly Crosslinked Poly(2‐hydroxyethyl Methacrylate) Hydrogels. J. Biomed. Mater. Res. 1985, 19, 397–411. DOI: 10.1002/(ISSN)1097-4636.
  • Azemar, F.; Faÿ, F.; Réhel, K.; Linossier, I. Control of Hydration and Degradation Properties of Triblock Copolymers Polycaprolactone-b-polydimethylsiloxane-b-polycaprolactone. J. Appl. Polym. Sci. 2014, 13, 11–18.
  • Uhrig, D.; Mays, J. W. Experimental Techniques in High-vacuum Anionic Polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 6179–6222. DOI: 10.1002/(ISSN)1099-0518.
  • Agudelo, N. A.; Pérez, L. D. Synthesis and Characterization of Polydimethylsiloxane end-Modified Polystyrene from Poly(Styrene – Co –vinyltriethoxysilane) Copolymers. Mater. Res. 2016, 19, 459–465. DOI: 10.1590/1980-5373-MR-2015-0599.
  • Satti, A. J.; de Freitas, A. G. O.; Sena Marani, M. L.; Villar, M. A.; Vallés, E. M.; Giacomelli, C.; Ciolino, A. E. Anionic Ring Opening Polymerization of ϵ-caprolactone Initiated by Lithium Silanolates. Aust. J. Chem. 2017, 70, 106–112. DOI: 10.1071/CH16270.
  • de Freitas, A. G. O.; Trindade, S. G.; Muraro, P. I. R.; Schmidt, V.; Satti, A. J.; Villar, M. A.; Ciolino, A. E.; Giacomelli, C. Controlled One-pot Synthesis of Polystyrene-block-polycaprolactone Copolymers by Simultaneous RAFT and ROP. Macromol. Chem. Phys. 2013, 214, 2336–2344. DOI: 10.1002/macp.201300416.
  • Boccaccini, A. R.; Chen, Q.; Lefebvre, L.; Gremillard, L.; Chevalier, J. Sintering, Crystallisation and Biodegradation Behaviour of Bioglass®-derived Glass-ceramics. Faraday Discuss. 2007, 136, 27–44. DOI: 10.1039/b616539g.
  • Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials. 2006, 27, 2907–2915. DOI: 10.1016/j.biomaterials.2006.01.017.
  • Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Valles, E. M.; Villar, M. A.; Vega, D. A.; Sanz, A.; Nogales, A.; Rueda, D. R. Synthesis and Morphology of Model PS-b-PDMS Copolymers. J. Polym. Sci. Part Polym. Chem. 2010, 46, 3119–3127. DOI: 10.1002/pola.24093.
  • Ninago, M. D.; Satti, A. J.; Ressia, J. A.; Ciolino, A. E.; Villar, M. A.; Vallés, E. M. Controlled Synthesis of Poly(dimethylsiloxane) Homopolymers Using High-Vacuum Anionic Polymerization Techniques. J. Appl. Polym. Sci. Part A Polym. Chem. 2009, 47, 4774–4783. DOI: 10.1002/pola.23530.
  • Ninago, M. D.; Satti, A. J.; Ciolino, A. E.; Villar, M. A. Influence of Amorphous Block on the Thermal Behavior of Well-defined Block Copolymers Based on ε-caprolactone. J. Therm. Anal. Calorim. 2013, 112, 1277–1287. DOI: 10.1007/s10973-012-2673-z.
  • Redondo, F. L.; Ninago, M. D.; de Freitas, A. G. O.; Giacomelli, C.; Ciolino, A. E.; Villar, M. A. Tailor-Made, Linear, and “Comb-like” Polyester-Based Copolymers: Synthesis, Characterization, and Thermal Behavior of Potential 3D-Printing/Electrospinning Candidates. Int. J. Polym. Sci. 2018, 2018, 1–15. doi:10.1155/2018/8252481.
  • Ninago, M. D.; Hanazumi, V.; Passaretti, M. G.; Vega, D. A.; Ciolino, A. E.; Villar, M. A. Enhancement of Mechanical and Optical Performance of Commercial Polystyrenes by Blending with Siloxane-based Copolymers. J. Appl. Polym. Sci. 2017, 134, 1–9. DOI: 10.1002/app.45122.
  • Ninago, M. D.; Ciolino, A. E.; Villar, M. A.; de Freitas, A. G. O.; Muraro, P. I. R.; Giacomelli, C. Thermal Characterization of “Comb-like” Block Copolymers Based on PCL Obtained by Combining ROP and RAFT Polymerizations. Macromol. Symp. 2016, 368, 84–92. DOI: 10.1002/masy.201500144.
  • Öztürk, T.; Göktaş, M.; Hazer, B. One‐Step Synthesis of Triarm Block Copolymers via Simultaneous Reversible‐Addition Fragmentation Chain Transfer and Ring Opening Polymerization. J. Appl. Polym. Sci. 2010, 117, 1638–1645.
  • Öztürk, T.; Atalar, M. N.; Göktaş, M.; Hazer, B. One‐step Synthesis of Block‐Graft Copolymers via Simultaneous Reversible‐Addition Fragmentation Chain Transfer and Ring‐Opening Polymerization Using a Novel Macroinitiator. J. Polym. Sci. Pol. Chem. 2013, 51, 2651–2659. DOI: 10.1002/pola.26654.
  • Öztürk, T.; Cavicchi, K. A. Synthesis and Characterization of Poly(epichlorohydrin-g-ε-caprolactone) Graft Copolymers by “Click” Chemistry. J. Polym. Mater. 2018, 35, 209–220. DOI: 10.32381/JPM.2018.35.02.6.
  • James, E. M. Polymer Data Handbook, O. University Press (Ed.), University of Cincinati; Cincinnati, 1999.
  • Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in Vivo Degradation, Absorption and Excretion of PCL-based Implant. Biomaterials. 2006, 27, 1735–1740. DOI: 10.1016/j.biomaterials.2005.09.019.
  • Yam, W. Y.; Ismail, J.; Kammer, H. W.; Schmidt, H.; Kummerlöwe, C. Polymer Blends of Poly(ε-caprolactone) and Poly(vinyl Methyl Ether) - Thermal Properties and Morphology. Polymer. 1999, 40, 5545–5552. DOI: 10.1016/S0032-3861(98)00807-6.
  • Chawla, J. S.; Amiji, M. M. Biodegradable Poly(ε-caprolactone) Nanoparticles for Tumor-targeted Delivery of Tamoxifen. Int. J. Pharm. 2002, 249, 127–138. DOI: 10.1016/S0378-5173(02)00483-0.
  • Vergnol, G.; Ginsac, N.; Rivory, P.; Meille, S.; Chenal, J. M.; Balvay, S.; Chevalier, J.; Hartmann, D. J. In Vitro and in Vivo Evaluation of A Polylactic Acid-bioactive Glass Composite for Bone Fixation Devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 180–191. DOI: 10.1002/jbm.b.33364.
  • Misra, S. K.; Watts, P. C. P.; Valappil, S. P.; Silva, S. R. P.; Roy, I.; Boccaccini, A. R. Poly(3-hydroxybutyrate)/Bioglass® Composite Films Containing Carbon Nanotubes. Nanotechnology. 2007, 18, 1–7. DOI: 10.1088/0957-4484/18/7/075701.
  • Filho, O. P.; La Torre, G. P.; Hench, L. L. Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 1996, 30, 509–514. DOI: 10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T.
  • Lanfranconi, M.; Alvarez, V. A.; Ludueña, L. N. Isothermal Crystallization of Polycaprolactone/modified Clay Biodegradable Nanocomposites. J. Therm. Anal. Calorim. 2016, 126, 1273–1280. DOI: 10.1007/s10973-016-5734-x.
  • Ninago, M. D.; de Freitas, A. G. O.; Hanazumi, V.; Muraro, P. I. R.; Schmidt, V.; Giacomelli, C.; Ciolino, A. E.; Villar, M. A. Synthesis of Grafted Block Copolymers Based on ε-Caprolactone: Influence of Branches on Their Thermal Behavior. Macromol. Chem. Phys. 2015, 216, 2331–2343. DOI: 10.1002/macp.201500248.
  • Fauré, J.; Drevet, R.; Potiron, S.; Gordin, D. M.; Oudadesse, H.; Gloriant, T.; Benhayoune, H. Electrophoretic Deposition of Bioactive Glass Coatings on Ti12Mo5Ta Alloy. Key Eng. Mater. 2012, 507, 135–140. DOI: 10.4028/www.scientific.net/KEM.507.
  • Pashaeiyan, M.; Bahari, A. Nano Structural Properties of Stainless Steel for Ultra High Vacuum Chambers. Int. J. ChemTech. Res. 2011, 3, 403–407.
  • Blaker, J. J.; Maquet, V.; Jérôme, R.; Boccaccini, A. R.; Nazhat, S. N. Mechanical Properties of Highly Porous PDLLA/Bioglass® Composite Foams as Scaffolds for Bone Tissue Engineering. Acta Biomater. 2005, 1, 643–652. DOI: 10.1016/j.actbio.2005.07.003.
  • Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules 2001, 2, 288–294. DOI: 10.1021/bm0056310.
  • Bahniuk, M. S.; Pirayesh, H.; Singh, H. D.; Nychka, J. A.; Unsworth, L. D. Bioactive Glass 45S5 Powders: Effect of Synthesis Route and Resultant Surface Chemistry and Crystallinity on Protein Adsorption from Human Plasma. Biointerphases 2012, 7, 1–15. DOI: 10.1007/s13758-012-0041-y.
  • Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O. M.; Misra, S. K.; Gilabert, J.; Valsami-Jones, E.; Sanchez, E.; Virtanen, S.; Boccaccini, A. R. Electrophoretic Deposition of ZnO/Alginate and ZnO-bioactive Glass/Alginate Composite Coatings for Antimicrobial Applications. Mater. Sci. Eng. C. 2015, 55, 137–144. DOI: 10.1016/j.msec.2015.05.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.