684
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Role of polymeric composite in civil engineering applications: a review

, &
Pages 1023-1040 | Received 16 Oct 2019, Accepted 17 Jan 2020, Published online: 28 Jan 2020

References

  • Afzal, A.; Kausar, A.; Siddiq, M. A Review Highlighting Physical Prospects of Styrenic Polymer and Styrenic Block Copolymer Reinforced with Carbon Nanotube. Polym. Plast. Technol. Eng. 2017, 56, 573–593. DOI: 10.1080/03602559.2016.1233276.
  • Gudivada, G.; Kandasubramanian, B. Polymer-phyllosilicate Nanocomposites for High-temperature Structural Application. Polym. -Plast. Technol. Eng. 2019, 1–19.
  • Divya, V. C.; Khan, M. A.; Rao, B. N.; Sailaja, R. R. N.; Vynatheya, S.; Seetharamu, S. Fire Retardancy Characteristics and Mechanical Properties of High Density Polyethylene/Ultrafine Fly Ash/MWCNT Nanocomposites. Polym. -Plast. Technol. Eng. 2017, 56, 762–776. DOI: 10.1080/03602559.2016.1233253.
  • Afzal, A.; Kausar, A.; Siddiq, M. Review on Polymer/cement Composite with Carbon Nanofiller and Inorganic Filler. Polym. -Plast. Technol. Eng. 2016, 55, 1299–1323. DOI: 10.1080/03602559.2016.1163594.
  • Afzal, A.; Kausar, A.; Siddiq, M. Technical Relevance of Polymer/cement/carbon Nanotube Composite: Opportunities and Challenges. Polym. -Plast. Technol. Eng. 2016, 55, 1743–1764. DOI: 10.1080/03602559.2016.1163608.
  • Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014, 39, 627–655. DOI: 10.1016/j.progpolymsci.2013.07.007.
  • Liu, Y.; Kumar, S. Polymer/carbon Nanotube Nanocomposite Fibers–a Review. ACS Appl. Mater. Interfaces. 2014, 6, 6069–6087. DOI: 10.1021/am405136s.
  • Bedeković, G.; Grčić, I.; Anić Vučinić, A.; Premur, V. Recovery of Waste Expanded Polystyrene in Lightweight Concrete Production. Rudarsko-geološko-naftni Zbornik. 2019, 34, 73–80. DOI: 10.17794/rgn.
  • Sayadi, A. A.; Tapia, J. V.; Neitzert, T. R.; Clifton, G. C. Effects of Expanded Polystyrene (EPS) Particles on Fire Resistance, Thermal Conductivity and Compressive Strength of Foamed Concrete. Constr. Build. Mater. 2016, 112, 716–724. DOI: 10.1016/j.conbuildmat.2016.02.218.
  • Gu, L.; Ozbakkaloglu, T. Use of Recycled Plastics in Concrete: A Critical Review. Waste Management. 2016, 51, 19–42. DOI: 10.1016/j.wasman.2016.03.005.
  • Jovanović, S.; Samaržija-Jovanović, S.; Marković, G.; Jovanović, V.; Adamović, T.; Marinović-Cincović, M. Ternary NR/BR/SBR Rubber Blend Nanocomposites. J. Thermoplast. Compos. Mater. 2018, 31, 265–287. DOI: 10.1177/0892705717697778.
  • Ferrari, A. C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H.; Palermo, V.; Pugno, N.; et al. Science and Technology Roadmap for Graphene, Related Two-dimensional Crystals, and Hybrid Systems. Nanoscale. 2015, 7, 4598–4810.
  • Lakatos, A.; Kalmár, F. Investigation of Thickness and Density Dependence of Thermal Conductivity of Expanded Polystyrene Insulation Materials. Mater. Struc. 2013, 46, 1101–1105. DOI: 10.1617/s11527-012-9956-5.
  • Zhan, Y.; Wu, J.; Xia, H.; Yan, N.; Fei, G.; Yuan, G. Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically‐Assisted Latex Mixing and in Situ Reduction Process. Macromol. Mater. Eng. 2011, 296, 590–602. DOI: 10.1002/mame.201000358.
  • Kumar, K.; Sharma, K.; Verma, S.; Upadhyay, N. Experimental Investigation of Graphene-Paraffin Wax Nanocomposites for Thermal Energy Storage. Mater. Today: Proceed. 2019, 18, 5158–5163.
  • Bermúdez, M. D.; Carrión, F. J.; Espejo, C.; Martínez-López, E.; Sanes, J. Abrasive Wear under Multiscratching of Polystyrene+ Single-walled Carbon Nanotube Nanocomposites. Effect of Sliding Direction and Modification by Ionic Liquid. Appl. Surf. Sci. 2011, 257, 9073–9081. DOI: 10.1016/j.apsusc.2011.05.103.
  • Zhang, S. Q.; Gao, Y. S.; Zhao, G. Z.; Yu, Y. J.; Chen, M.; Wang, X. F. Geometrically Nonlinear Analysis of CNT-reinforced Functionally Graded Composite Plates Integrated with Piezoelectric Layers. Compos. Struct. 2020, 234, 111694.
  • Piotrowski, T.; Mazgaj, M.; Żak, A.; Skubalski, J. Importance of Atomic Composition and Moisture Content of Cement Based Composites in Neutron Radiation Shielding. Procedia Eng. 2015, 108, 616–623. DOI: 10.1016/j.proeng.2015.06.188.
  • Chen, I. A.; Juenger, M. C. Incorporation of Coal Combustion Residuals into Calcium Sulfoaluminate-belite Cement Clinkers. Cem. Concr. Compos. 2012, 34, 893–902. DOI: 10.1016/j.cemconcomp.2012.04.006.
  • Wu, K.; Shi, H.; Guo, X. Utilization of Municipal Solid Waste Incineration Fly Ash for Sulfoaluminate Cement Clinker Production. Waste Manag. 2011, 31, 2001–2008. DOI: 10.1016/j.wasman.2011.04.022.
  • Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A Review of the Characterization and Revegetation of Bauxite Residues (Red Mud). Environ. Sci. Pollut. Res. 2016, 23, 1120–1132. DOI: 10.1007/s11356-015-4558-8.
  • Ludwig, H. M.; Zhang, W. Research Review of Cement Clinker Chemistry. Cemen. Concr. Res. 2015, 78, 24–37. DOI: 10.1016/j.cemconres.2015.05.018.
  • Hu, C.; Xue, J.; Dong, L.; Jiang, Y.; Wang, X.; Qu, L.; Dai, L. Scalable Preparation of Multifunctional Fire-retardant Ultralight Graphene Foams. ACS Nano. 2016, 10, 1325–1332. DOI: 10.1021/acsnano.5b06710.
  • Song, Y.; Zheng, Q. Concepts and Conflicts in Nanoparticles Reinforcement to Polymers beyond Hydrodynamics. Prog. Mater. Sci. 2016, 84, 1–58. DOI: 10.1016/j.pmatsci.2016.09.002.
  • Ban, S.; Malek, K.; Huang, C.; Liu, Z. A Molecular Model for Carbon Black Primary Particles with Internal Nanoporosity. Carbon. 2011, 49, 3362–3370. DOI: 10.1016/j.carbon.2011.04.044.
  • Camenzind, A.; Schweizer, T.; Sztucki, M.; Pratsinis, S. E. Structure & Strength of silica-PDMS Nanocomposites. Polymer. 2010, 51, 1796–1804. DOI: 10.1016/j.polymer.2010.02.030.
  • Wu, Y.; Wen, S.; Shen, J.; Jiang, J.; Hu, S.; Zhang, L.; Liu, L. Improved Dynamic Properties of Natural Rubber Filled with Irradiation-modified Carbon Black. Rad. Physics. Chem. 2015, 111, 91–97. DOI: 10.1016/j.radphyschem.2015.02.020.
  • Evora, M. C.; Klosterman, D.; Lafdi, K.; Li, L.; Silva, L. G. A. Study of an Alternative Process for Oxidizing Vapor Grown Carbon Nanofibers Using Electron Beam Accelerators. Rad. Physics. Chem. 2013, 84, 105–110. DOI: 10.1016/j.radphyschem.2012.06.036.
  • Bockholt, H.; Haselrieder, W.; Kwade, A. Intensive Powder Mixing for Dry Dispersing of Carbon Black and Its Relevance for Lithium-ion Battery Cathodes. Powder Technol. 2016, 297, 266–274. DOI: 10.1016/j.powtec.2016.04.011.
  • Imtiaz, M.; Hayat, T.; Alsaedi, A.; Ahmad, B. Convective Flow of Carbon Nanotubes between Rotating Stretchable Disks with Thermal Radiation Effects. Int. J. Heat. Mass Trans. 2016, 101, 948–957. DOI: 10.1016/j.ijheatmasstransfer.2016.05.114.
  • Santiago, E. V.; López, S. H.; López, M. A. C.; Contreras, D. R.; Farías-Mancilla, R.; Flores-Gallardo, S. G.; Zaragoza-Contreras, E. A. Optical Properties of Carbon Nanostructures Produced by Laser Irradiation on Chemically Modified Multi-walled Carbon Nanotubes. Optics Laser Technol. 2016, 84, 53–58. DOI: 10.1016/j.optlastec.2016.05.002.
  • Sun, Y.; Li, C.; Zhang, A. Preparation of Ni/CNTs Catalyst with High Reducibility and Their Superior Catalytic Performance in Benzene Hydrogenation. Appl. Catal. A. 2016, 522, 180–187. DOI: 10.1016/j.apcata.2016.05.011.
  • Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-ion Batteries. Energy Environmen. Sci. 2011, 4, 2682–2699. DOI: 10.1039/c0ee00699h.
  • Abbas, S. M.; Hussain, S. T.; Ali, S.; Abbas, F.; Ahmad, N.; Ali, N.; Khan, Y. One-pot Synthesis of a Composite of Monodispersed CuO Nanospheres on Carbon Nanotubes as Anode Material for Lithium-ion Batteries. J. Alloy. Comp. 2013, 574, 221–226. DOI: 10.1016/j.jallcom.2013.04.197.
  • De Las Casas, C.; Li, W. A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material. J. Pow. Sour. 2012, 208, 74–85. DOI: 10.1016/j.jpowsour.2012.02.013.
  • Asadi, I.; Shafigh, P.; Hassan, Z. F. B. A.; Mahyuddin, N. B. Thermal Conductivity of concrete–A Review. Journal of Building Engineering. 2018, 20, 81–93. DOI: 10.1016/j.jobe.2018.07.002.
  • Demirboga, R.; Kan, A. Thermal Conductivity and Shrinkage Properties of Modified Waste Polystyrene Aggregate Concretes. Constr. Build. Mater. 2012, 35, 730–734. DOI: 10.1016/j.conbuildmat.2012.04.105.
  • Nguyen, L. H.; Beaucour, A. L.; Ortola, S.; Noumowé, A. Influence of the Volume Fraction and the Nature of Fine Lightweight Aggregates on the Thermal and Mechanical Properties of Structural Concrete. Constr. Build. Mater. 2014, 51, 121–132. DOI: 10.1016/j.conbuildmat.2013.11.019.
  • Tittarelli, F.; Carsana, M.; Ruello, M. L. Effect of Hydrophobic Admixture and Recycled Aggregate on Physical–mechanical Properties and Durability Aspects of No-fines Concrete. Constr. Build. Mater. 2014, 66, 30–37. DOI: 10.1016/j.conbuildmat.2014.05.043.
  • Madandoust, R.; Ranjbar, M. M.; Mousavi, S. Y. An Investigation on the Fresh Properties of Self-compacted Lightweight Concrete Containing Expanded Polystyrene. Constructt. Build. Mater. 2011, 25, 3721–3731. DOI: 10.1016/j.conbuildmat.2011.04.018.
  • Ferrándiz-Mas, V.; Bond, T.; García-Alcocel, E.; Cheeseman, C. R. Lightweight Mortars Containing Expanded Polystyrene and Paper Sludge Ash. Constructt. Build. Mater. 2014, 61, 285–292. DOI: 10.1016/j.conbuildmat.2014.03.028.
  • Amran, Y. M.; Farzadnia, N.; Ali, A. A. Properties and Applications of Foamed Concrete; a Review. Constr. Build. Mater. 2015, 101, 990–1005. DOI: 10.1016/j.conbuildmat.2015.10.112.
  • Zhang, Z.; Provis, J. L.; Reid, A.; Wang, H. Geopolymer Foam Concrete: An Emerging Material for Sustainable Construction. Constr. Build. Mater. 2014, 56, 113–127. DOI: 10.1016/j.conbuildmat.2014.01.081.
  • Zhang, Z.; Provis, J. L.; Reid, A.; Wang, H. Mechanical, Thermal Insulation, Thermal Resistance and Acoustic Absorption Properties of Geopolymer Foam Concrete. Cemen. Concr. Compos. 2015, 62, 97–105. DOI: 10.1016/j.cemconcomp.2015.03.013.
  • Hilal, A. A.; Thom, N. H.; Dawson, A. R. On Void Structure and Strength of Foamed Concrete Made Without/with Additives. Construct. Build. Mater. 2015, 85, 157–164. DOI: 10.1016/j.conbuildmat.2015.03.093.
  • Sayadi, A. A.; Rahman, A. B. A.; Sayadi, A.; Bahmani, M.; Shahryari, L. Effective of Elastic and Inelastic Zone on Behavior of Glass Fiber Reinforced Polymer Splice Sleeve. Construct. Build. Mater. 2015, 80, 38–47. DOI: 10.1016/j.conbuildmat.2015.01.064.
  • Abdollahnejad, Z.; Pacheco-Torgal, F.; Félix, T.; Tahri, W.; Aguiar, J. B. Mix Design, Properties and Cost Analysis of Fly Ash-based Geopolymer Foam. Construct. Build. Mater. 2015, 80, 18–30. DOI: 10.1016/j.conbuildmat.2015.01.063.
  • Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green Decoration Materials Selection under Interior Environment Characteristics: A Grey-correlation Based Hybrid MCDM Method. Renew. Sustain. Ener. Rev. 2018, 81, 682–692. DOI: 10.1016/j.rser.2017.08.050.
  • Fakharifar, M.; Dalvand, A.; Arezoumandi, M.; Sharbatdar, M. K.; Chen, G.; Kheyroddin, A. Mechanical Properties of High Performance Fiber Reinforced Cementitious Composites. Construct. Build. Mater. 2014, 71, 510–520. DOI: 10.1016/j.conbuildmat.2014.08.068.
  • Foti, D.;. Preliminary Analysis of Concrete Reinforced with Waste Bottles PET Fibers. Construct. Build. Mater. 2011, 25, 1906–1915. DOI: 10.1016/j.conbuildmat.2010.11.066.
  • Mastali, M.; Dalvand, A.; Sattarifard, A. R. The Impact Resistance and Mechanical Properties of Reinforced Self-compacting Concrete with Recycled Glass Fibre Reinforced Polymers. J. Clean. Product. 2016, 124, 312–324. DOI: 10.1016/j.jclepro.2016.02.148.
  • Shu, X.; Huang, B. Recycling of Waste Tire Rubber in Asphalt and Portland Cement Concrete: An Overview. Construct. Build. Mater. 2014, 67, 217–224. DOI: 10.1016/j.conbuildmat.2013.11.027.
  • Gupta, T.; Sharma, R. K.; Chaudhary, S. Impact Resistance of Concrete Containing Waste Rubber Fiber and Silica Fume. Int. J. Impact Eng. 2015, 83, 76–87. DOI: 10.1016/j.ijimpeng.2015.05.002.
  • Onuaguluchi, O.;. Effects of Surface Pre-coating and Silica Fume on Crumb Rubber-cement Matrix Interface and Cement Mortar Properties. J. Clean. Product. 2015, 104, 339–345. DOI: 10.1016/j.jclepro.2015.04.116.
  • Gou, M.; Liu, X. Effect of Rubber Particle Modification on Properties of Rubberized Concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 763–768. DOI: 10.1007/s11595-014-0993-5.
  • Gupta, T.; Chaudhary, S.; Sharma, R. K. Mechanical and Durability Properties of Waste Rubber Fiber Concrete with and without Silica Fume. J. Clean. Product. 2016, 112, 702–711. DOI: 10.1016/j.jclepro.2015.07.081.
  • Ossola, G.; Wojcik, A. UV Modification of Tire Rubber for Use in Cementitious Composites. Cem. Concr. Compos. 2014, 52, 34–41. DOI: 10.1016/j.cemconcomp.2014.04.004.
  • Yang, C.; Liu, B.; Zheng, Y. Effects of Modification of Recycled Tire Rubber Particles on Strength of Crumb Rubber Concrete. Material of Review. 2013, 24, 032.
  • He, L.; Ma, Y.; Liu, Q.; Mu, Y. Surface Modification of Crumb Rubber and Its Influence on the Mechanical Properties of Rubber-cement Concrete. Constr. Build. Mater. 2016, 120, 403–407. DOI: 10.1016/j.conbuildmat.2016.05.025.
  • Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Organic Vapor Sensing Behaviors of Conductive Thermoplastic Polyurethane–graphene Nanocomposites. J. Mater. Chem. C. 2016, 4, 4459–4469. DOI: 10.1039/C6TC00987E.
  • Gosz, K.; Haponiuk, J.; Mielewczyk‐Gryń, A.; Piszczyk, Ł. Physico‐Mechanical Properties and Flammability of PUR/PIR Foams Containing Expandable Graphite Core‐Shell Composite Particles. Polym. Compos. 2019, 40, 3805–3813. DOI: 10.1002/pc.v40.10.
  • Casado, R. M.; Lovell, P. A.; Navabpour, P.; Stanford, J. L. Polymer Encapsulation of Surface-modified Carbon Blacks Using Surfactant-free Emulsion Polymerisation. Polymer. 2007, 48, 2554–2563. DOI: 10.1016/j.polymer.2007.02.063.
  • Li, Y.; Pionteck, J.; Pötschke, P.; Voit, B. Thermal Annealing to Influence the Vapor Sensing Behavior of Co-continuous Poly(lactic Acid)/polystyrene/multiwalled Carbon Nanotube Composites. Mater. Des. 2020, 187, 108383.
  • Zaragoza-Contreras, E. A.; Hernández-Escobar, C. A.; Navarrete-Fontes, A.; Flores-Gallardo, S. G. Synthesis of Carbon Black/polystyrene Conductive Nanocomposite. Pickering Emulsion Effect Characterized by TEM. Micron. 2011, 42, 263–270. DOI: 10.1016/j.micron.2010.10.005.
  • Taipalus, R.; Harmia, T.; Zhang, M. Q.; Friedrich, K. The Electrical Conductivity of Carbon-fibre-reinforced Polypropylene/polyaniline Complex-blends: Experimental Characterisation and Modelling. Compos. Sci. Technol. 2001, 61, 801–814. DOI: 10.1016/S0266-3538(00)00183-4.
  • Surowska, B.; Ostapiuk, M. Electrical Properties of Aluminium-fibre Reinforced Composite Laminates. Compos. Theory Pract. 2016, 16, 223–229.
  • Kim, G. M.; Naeem, F.; Kim, H. K.; Lee, H. K. Heating and Heat-dependent Mechanical Characteristics of CNT-embedded Cementitious Composites. Compos. Struct. 2016, 136, 162–170. DOI: 10.1016/j.compstruct.2015.10.010.
  • Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. 2018. Composites from renewable and sustainable resources: Challenges and innovations. Science, 362, 536–542.
  • Markov, A.; Fiedler, B.; Schulte, K. Electrical Conductivity of Carbon Black/fibres Filled Glass-fibre-reinforced Thermoplastic Composites. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1390–1395. DOI: 10.1016/j.compositesa.2005.07.009.
  • Öztürk, O.; Yıldırım, G.; Keskin, Ü. S.; Siad, H.; Şahmaran, M. Nano-tailored Multi-functional Cementitious Composites. Compos. B Eng. 2020, 182, 107670.
  • Mushtaq, A.; Mukhtar, H. B.; Shariff, A. M. Blending Behavior of Polymeric Materials and Amines in Different Solvents. Int. J. Chem. Eng. Appl. 2014, 5, 127. DOI: 10.7763/IJCEA.2014.V5.365.
  • Nawawi, M. A.; Har, S. L.; Han, C. C. Miscibility of Polymer Blends Comprising Poly (Ethylene Oxide)-Epoxidized Natural Rubber. Int. J. Chem. Eng. Appl. 2012, 3, 410. DOI: 10.7763/IJCEA.2012.V3.230.
  • Sirisinha, C.; Baulek-Limcharoen, S.; Thunyarittikorn, J. Changes in Morphology and Properties of NR-NBR Blends: Effect of Viscosity Ratio Modified by Liquid Natural Rubber and Epoxidised Liquid Natural Rubber. Plast. Rubber Compos. 2001, 30, 314–317. DOI: 10.1179/146580101322913400.
  • Kandare, E.; Khatibi, A. A.; Yoo, S.; Wang, R.; Ma, J.; Olivier, P.; Gleizes, N.; Wang, C. H. Improving the Through-thickness Thermal and Electrical Conductivity of Carbon Fibre/epoxy Laminates by Exploiting Synergy between Graphene and Silver Nano-inclusions. Compos. A Appl. Sci. Manufact. 2015, 69, 72–82. DOI: 10.1016/j.compositesa.2014.10.024.
  • Musil, B.; Johlitz, M.; Lion, A. On the Ageing Behaviour of NBR: Chemomechanical Experiments, Modelling and Simulation of Tension Set. Continuum Mech. Thermodyn. 2018, 1–17.
  • Jovanović, S.; Samaržija-Jovanović, S.; Marković, G.; Jovanović, V.; Adamović, T.; Marinović-Cincović, M. Mechanical Properties and Thermal Aging Behaviour of Polyisoprene/polybutadiene/styrene-butadiene Rubber Ternary Blend Reinforced with Carbon Black. Compos. Part B: Eng. 2016, 98, 126–133. DOI: 10.1016/j.compositesb.2016.04.060.
  • He, F. A.; Zhang, L. M.; Yang, F.; Chen, L. S.; Wu, Q. New Nanocomposites Based on Syndiotactic Polystyrene and Organo-modified ZnAl Layered Double Hydroxide. J. Polym. Res. 2006, 13, 483–493. DOI: 10.1007/s10965-006-9071-9.
  • He, F. A.; Lam, K. H.; Fan, J. T.; Chan, L. W. Novel Syndiotactic polystyrene/BaTiO 3-graphite Nanosheets Three-phase Composites with High Dielectric Permittivity. Polym. Test. 2013, 32, 927–931. DOI: 10.1016/j.polymertesting.2013.05.002.
  • Wang, C.; Huang, C. L.; Chen, Y. C.; Hwang, G. L.; Tsai, S. J. Carbon Nanocapsules-reinforced Syndiotactic Polystyrene Nanocomposites: Crystallization and Morphological Features. Polymer. 2008, 49, 5564–5574. DOI: 10.1016/j.polymer.2008.09.057.
  • Yang, J.; Deng, S.; Lei, J.; Ju, H.; Gunasekaran, S. Electrochemical Synthesis of Reduced Graphene sheet–AuPd Alloy Nanoparticle Composites for Enzymatic Biosensing. Biosens. Bioelectron. 2011, 29, 159–166. DOI: 10.1016/j.bios.2011.08.011.
  • Sorrentino, A.; Vertuccio, L.; Vittoria, V. Influence of Multi-walled Carbon Nanotubes on the β Form Crystallization of Syndiotactic Polystyrene at Low Temperature. carbon. 2010, 98, 6.
  • He, F. A.; Wu, H. J.; Yang, X. L.; Lam, K. H.; Fan, J. T.; Chan, L. W. H. Novel Exfoliated Graphite Nanoplates/syndiotactic Polystyrene Composites Prepared by Solution-blending. Polym. Test. 2015, 42, 45–53. DOI: 10.1016/j.polymertesting.2015.01.002.
  • He, F. A.; Zhang, L. M. Using Inorganic POSS-modified Laponite Clay to Support a Nickel α-diimine Catalyst for in Situ Formation of High Performance Polyethylene Nanocomposites. Nanotechnology. 2006, 17, 5941. DOI: 10.1088/0957-4484/17/24/007.
  • Ryu, J.; Sato, H.; Kurakata, K.; Hiramitsu, A.; Tanaka, M.; Hirota, T. Relation between Annoyance and Single-number Quantities for Rating Heavy-weight Floor Impact Sound Insulation in Wooden Houses. J. Acoust. Soc. Am. 2011, 129, 3047–3055. DOI: 10.1121/1.3561660.
  • Samet, A.; Souf, M. B.; Bareille, O.; Ichchou, M. N.; Fakhfakh, T.; Haddar, M. Vibration Sources Identification in Coupled Thin Plates through an Inverse Energy Method. Appl. Acoust. 2017, 128, 83–93. DOI: 10.1016/j.apacoust.2016.12.001.
  • Yoo, S. Y.; Jeon, J. Y. Investigation of the Effects of Different Types of Interlayers on Floor Impact Sound Insulation in Box-frame Reinforced Concrete Structures. Build. Environ. 2014, 76, 105–112. DOI: 10.1016/j.buildenv.2014.03.008.
  • Park, H. S.; Kim, Y.; Oh, B. K.; Cho, T. Compressive Properties of Graphite-embedded Expanded Polystyrene for Vibroacoustic Engineering Applications. Compos. Part B: Eng. 2016, 93, 252–264. DOI: 10.1016/j.compositesb.2016.03.004.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Botas, C.; Álvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaría, R.; Menéndez, R. Graphene Materials with Different Structures Prepared from the Same Graphite by the Hummers and Brodie Methods. Carbon. 2013, 65, 156–164. DOI: 10.1016/j.carbon.2013.08.009.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Ruoff, R. S. Graphene-based Composite Materials. Nature. 2006, 442, 282–286. DOI: 10.1038/nature04969.
  • Du, J.; Cheng, H. M. The Fabrication, Properties, and Uses of Graphene/polymer Composites. Macromol. Chem. Phys. 2012, 213, 1060–1077. DOI: 10.1002/macp.201200029.
  • Hernández, M.; Del Mar Bernal, M.; Verdejo, R.; Ezquerra, T. A.; López-Manchado, M. A. Overall Performance of Natural Rubber/graphene Nanocomposites. Compos. Sci. Technol. 2012, 73, 40–46. DOI: 10.1016/j.compscitech.2012.08.012.
  • Aguilar-Bolados, H.; Brasero, J.; López-Manchado, M. A.; Yazdani-Pedram, M. High Performance Natural Rubber/thermally Reduced Graphite Oxide Nanocomposites by Latex Technology. Compos. Part B: Eng. 2014, 67, 449–454. DOI: 10.1016/j.compositesb.2014.08.010.
  • Eigler, S.; Hirsch, A. Chemistry with Graphene and Graphene Oxide—challenges for Synthetic Chemists. Angewan. Chem. Int. Ed. 2014, 53, 7720–7738. DOI: 10.1002/anie.201402780.
  • Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, F.; Mescola, A.; Torre, B. Nanoscale Reduction of Graphene Oxide Thin Films and Its Characterization. Nanotechnology. 2015, 26, 285301. DOI: 10.1088/0957-4484/26/28/285301.
  • Potts, J. R.; Shankar, O.; Murali, S.; Du, L.; Ruoff, R. S. Latex and Two-roll Mill Processing of Thermally-exfoliated Graphite Oxide/natural Rubber Nanocomposites. Compos. Sci. Technol. 2013, 74, 166–172. DOI: 10.1016/j.compscitech.2012.11.008.
  • Aguilar-Bolados, H.; Lopez-Manchado, M. A.; Brasero, J.; Avilés, F.; Yazdani-Pedram, M. Effect of the Morphology of Thermally Reduced Graphite Oxide on the Mechanical and Electrical Properties of Natural Rubber Nanocomposites. Compos. Part B: Eng. 2016, 87, 350–356. DOI: 10.1016/j.compositesb.2015.08.079.
  • Zhou, Y.; Fan, M.; Chen, L. Interface and Bonding Mechanisms of Plant Fibre Composites: An Overview. Compos. B Eng. 2016, 101, 31–45. DOI: 10.1016/j.compositesb.2016.06.055.
  • Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling Effects of Glass Fiber Treatment and Matrix Modification on the Interfacial Microstructures and the Enhanced Mechanical Properties of Glass Fiber/polypropylene Composites. Compos. B Eng. 2017, 111, 190–199. DOI: 10.1016/j.compositesb.2016.12.016.
  • Yang, L.; Thomason, J. L. Interface Strength in Glass Fibre–polypropylene Measured Using the Fibre Pull-out and Microbond Methods. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 1077–1083. DOI: 10.1016/j.compositesa.2009.10.005.
  • Greco, A.; Maffezzoli, A.; Casciaro, G.; Caretto, F. Mechanical Properties of Basalt Fibers and Their Adhesion to Polypropylene Matrices. Composites Part B: Engineering. 2014, 67, 233–238. DOI: 10.1016/j.compositesb.2014.07.020.
  • Simeoli, G.; Acierno, D.; Meola, C.; Sorrentino, L.; Iannace, S.; Russo, P. The Role of Interface Strength on the Low Velocity Impact Behaviour of PP/glass Fibre Laminates. Compos. B Eng. 2014, 62, 88–96. DOI: 10.1016/j.compositesb.2014.02.018.
  • Pedrazzoli, D.; Pegoretti, A. Silica Nanoparticles as Coupling Agents for Polypropylene/glass Composites. Compos. Sci. Technol. 2013, 76, 77–83. DOI: 10.1016/j.compscitech.2012.12.016.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Mirzazadeh, H.; Katbab, A. A.; Hrymak, A. N. The Role of Interfacial Compatibilization upon the Microstructure and Electrical Conductivity Threshold in Polypropylene/expanded Graphite Nanocomposites. Polym. Adv. Technol. 2011, 22, 863–869. DOI: 10.1002/pat.v22.6.
  • King, J. A.; Via, M. D.; Morrison, F. A.; Wiese, K. R.; Beach, E. A.; Cieslinski, M. J.; Bogucki, G. R. Characterization of Exfoliated Graphite Nanoplatelets/polycarbonate Composites: Electrical and Thermal Conductivity, and Tensile, Flexural, and Rheological Properties. J. Compos. Mater. 2011, 46, 1029–1039. DOI: 10.1177/0021998311414073.
  • Pedrazzoli, D.; Pegoretti, A. Expanded Graphite Nanoplatelets as Coupling Agents in Glass Fiber Reinforced Polypropylene Composites. Compos. Part A: Appl. Sci. Manuf. 2014, 66, 25–34. DOI: 10.1016/j.compositesa.2014.06.016.
  • Espejo, C.; Carrión, F. J.; Bermúdez, M. D. Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-modified Multi-walled Carbon Nanotubes. Tribol. Lett. 2013, 52, 271–285. DOI: 10.1007/s11249-013-0212-0.
  • Amarasekara, A. S.;. Acidic Ionic Liquids. Chem. Rev. 2016, 116, 6133–6183. DOI: 10.1021/acs.chemrev.5b00763.
  • Liu, A.; Wang, K. W.; Bakis, C. E. Effect of Functionalization of Single-wall Carbon Nanotubes (Swnts) on the Damping Characteristics of SWNT-based Epoxy Composites via Multiscale Analysis. Compos. Part A. 2011, 42, 1748–1755. DOI: 10.1016/j.compositesa.2011.07.030.
  • White, R. P.; Lipson, J. E. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules. 2016, 49, 3987–4007. DOI: 10.1021/acs.macromol.6b00215.
  • Espejo, C.; Carrión-Vilches, F. J.; Bermúdez, M. D. Viscoelastic Properties and Long-term Stability of Polystyrene-carbon Nanotube Nanocomposites. Effect of the Nature of the Carbon Nanotubes and Modification by Ionic Liquid. Polym. Degrad. Stab. 2014, 103, 42–48. DOI: 10.1016/j.polymdegradstab.2014.03.005.
  • Gandhi, R. A.; Palanikumar, K.; Ragunath, B. K.; Davim, J. P. Role of Carbon Nanotubes (Cnts) in Improving Wear Properties of Polypropylene (PP) in Dry Sliding Condition. Mater. Des. 2013, 48, 52–57. DOI: 10.1016/j.matdes.2012.08.081.
  • Dang, Z. M.; Zheng, M. S.; Zha, J. W. 1D/2D Carbon Nanomaterial‐polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Small. 2016, 12, 1688–1701. DOI: 10.1002/smll.201503193.
  • Ivanoska-Dacikj, A.; Bogoeva-Gaceva, G.; Valić, S.; Wießner, S.; Heinrich, G. Benefits of Hybrid Nano-filler Networking between Organically Modified Montmorillonite and Carbon Nanotubes in Natural Rubber: Experiments and Theoretical Interpretations. Appl. Clay Sci. 2017, 136, 192–198. DOI: 10.1016/j.clay.2016.11.035.
  • Ivanoska-Dacikj, A.; Bogoeva-Gaceva, G.; Buzarovska, A.; Gjorgjiev, I.; Raka, L. Preparation and Properties of Natural Rubber/organo-montmorillonite: From Lab Samples to Bulk Material. Maced. J. Chem. Chem. Eng. 2014, 33, 249–265. DOI: 10.20450/mjcce.2014.502.
  • Ivanoska-Dacikj, A.; Bogoeva-Gaceva, G.; Rooj, S.; Wießner, S.; Heinrich, G. Fine Tuning of the Dynamic Mechanical Properties of Natural Rubber/carbon Nanotube Nanocomposites by Organically Modified Montmorillonite: A First Step in Obtaining High-performance Damping Material Suitable for Seismic Application. Appl. Clay Sci. 2015, 118, 99–106. DOI: 10.1016/j.clay.2015.09.009.
  • Díez-Pascual, A. M.; Naffakh, M.; Marco, C.; Gómez-Fatou, M. A.; Ellis, G. J. Multiscale Fiber-reinforced Thermoplastic Composites Incorporating Carbon Nanotubes: A Review. Curr. Opin. Sol. Stat. Mater. Sci. 2014, 18, 62–80. DOI: 10.1016/j.cossms.2013.06.003.
  • Peponi, L.; Puglia, D.; Torre, L.; Valentini, L.; Kenny, J. M. Processing of Nanostructured Polymers and Advanced Polymeric Based Nanocomposites. Mater. Sci. Eng. R: Rep. 2014, 85, 1–46. DOI: 10.1016/j.mser.2014.08.002.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials–a Review of the Current Status. Nanoscale. 2015, 7, 10294–10329. DOI: 10.1039/C5NR01354B.
  • Shen, Z.; Bateman, S.; Wu, D. Y.; McMahon, P.; Dell’Olio, M.; Gotama, J. The Effects of Carbon Nanotubes on Mechanical and Thermal Properties of Woven Glass Fibre Reinforced Polyamide-6 Nanocomposites. Compos. Sci. Technol. 2009, 69, 239–244. DOI: 10.1016/j.compscitech.2008.10.017.
  • Natori, I.; Natori, S.; Hirose, Y. Synthesis of Functionalized fullerene-C60 by the Living Anionic Polymerization Technique. J. Appl. Polym. Sci. 2011, 120, 1372–1378. DOI: 10.1002/app.33223.
  • Rao, N. V.; Rajasekhar, M.; Vijayalakshmi, K.; Vamshykrishna, M. The Future of Civil Engineering with the Influence and Impact of Nanotechnology on Properties of Materials. Proc. Mater. Sci. 2015, 10, 111–115. DOI: 10.1016/j.mspro.2015.06.032.
  • Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and Drawbacks in the Field of Construction and Building Materials. Constr. Build. Mater. 2011, 25, 582–590. DOI: 10.1016/j.conbuildmat.2010.07.009.
  • Sanchez, F.; Sobolev, K. Nanotechnology in Concrete–a Review. Constr. Build. Mater. 2010, 24, 2060–2071. DOI: 10.1016/j.conbuildmat.2010.03.014.
  • Yang, B.; Zhang, J. Effect of Nano-fillers on the Thermal Performance of pCBT Resin. Procedia Eng. 2015, 102, 773–778. DOI: 10.1016/j.proeng.2015.01.184.
  • Kyser, D.; Ravichandran, N. Properties of Chipped Rubber Roofing Membrane and Sand Mixtures for Civil Engineering Applications. J. Build. Eng. 2016, 7, 103–113. DOI: 10.1016/j.jobe.2016.05.008.
  • Kim, Y. T.; Kang, H. S. Engineering Characteristics of Rubber-added Lightweight Soil as a Flowable Backfill Material. J. Mater. Civil Eng. 2011, 23, 1289–1294. DOI: 10.1061/(ASCE)MT.1943-5533.0000307.
  • Hu, Y.; Ding, J. L. Effects of Morphologies of Carbon Nanofillers on the Interfacial and Deformation Behavior of Polymer nanocomposites–A Molecular Dynamics Study. Carbon. 2016, 107, 510–524. DOI: 10.1016/j.carbon.2016.06.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.