185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of nanoparticles orientation on morphology of polymeric nanocomposite foams: preparation of foamed nanocomposite fibers by supercritical carbon dioxide

&
Pages 1407-1416 | Received 21 Oct 2019, Accepted 01 Feb 2020, Published online: 16 Feb 2020

References

  • Frerich, S. C. Biopolymer Foaming with Supercritical CO2 -thermodynamics, Foaming Behaviour and Mechanical Characteristics. J. Supercrit. Fluid. 2015, 96, 349–358. DOI: 10.1016/j.supflu.2014.09.043.
  • Chen, L.; Goren, B. K.; Ozisik, R. Controlling Bubble Density in MWNT/polymer Nanocomposite Foams by MWNT Surface Modification. Compos. Sci. Technol. 2012, 72, 190–196. DOI: 10.1016/j.compscitech.2011.11.001.
  • Wang, J.; Cheng, X.; Yuan, M. An Investigation on the Microcellular Structure of polystyrene/LCP Blends Prepared by Supercritical Carbon Dioxide. Polymer. 2001, 42, 8265–8275. DOI: 10.1016/S0032-3861(01)00343-3.
  • Suh, K. W.; Park, C. P.; Maurer, M. J. Lightweight Cellular Plastics. Adv. Mater. 2000, 12, 1779–1789.
  • Sorrentino, L.; Aurilia, M.; Cafiero, L. Nanocomposite Foams from High-Performance Thermoplastics. Adv. Polym. Tech. 2011, 30, 234–243. DOI: 10.1002/adv.20219.
  • Singh, H.; Jain, A. K. Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review. J. Appl. Polym. Sci. 2010, 111, 1115–1143.
  • Bao, J.-B.; Junior, A. N.; Weng, G.-S.; Wang, J.; Fang, Y.-W.; Hu, G.-H. Tensile and Impact Properties of Microcellular Isotactic Polypropylene (PP) Foams Obtained by Supercritical Carbon Dioxide. J. Supercrit. Fluid. 2016, 111, 63–73. DOI: 10.1016/j.supflu.2016.01.016.
  • Zhang, C.; Zhu, B.; Li, D.; Lee, L. J. Extruded Polystyrene Foams with Bimodal Cell Morphology. Polymer. 2012, 53:2435–2442. DOI: 10.1016/j.polymer.2012.04.006.
  • Gao, C. Y.; Zhou, N. Q.; Shan, T. K. Key Parameters Influencing Microcellular Polystyrene Cell Morphology Blowing with Supercritical CO2. Key. Eng. Mat. 2012, 501, 237–242. DOI: 10.4028/www.scientific.net/KEM.501.237.
  • Li, M.; Cao, X.; Luo, Y. Cell Structure and Impact Properties of Foamed Polystyrene in Constrained Conditions Using Supercritical Carbon Dioxide. Iran. Polym. J. 2014, 23, 775–781. DOI: 10.1007/s13726-014-0273-4.
  • Liu, T.; Liu, H.; Li, L. L.; Wang, X.; Lu, A.; Luo, S. Microstructure and Properties of Microcellular Poly (Phenylene Sulfide) Foams by Mucell Injection Molding. Polym-Plast. Technol. 2013, 52, 440–445. DOI: 10.1080/03602559.2012.748803.
  • Borkotoky, S. S.; Dhar, P.; Katiyar, V. Biodegradable Poly (Lactic acid)/Cellulose Nanocrystals (Cncs) Composite Microcellular Foam: Effect of Nanofillers on Foam Cellular Morphology, Thermal and Wettability Behavior. Int. J. Biol. Macromol. 2017, 106, 433. DOI: 10.1016/j.ijbiomac.2017.08.036.
  • Yang, Q.; Zhang, G.; Ma, Z. Effects of Processing Parameters and Thermal History on Microcellular Foaming Behaviors of PEEK Using Supercritical CO2. J. Appl. Polym. Sci. 2015, 132. 42576 (1-11) doi.org/10.1002/app.42576
  • Jing, W.; Zhu, W.; Zhang, H. Continuous Processing of Low-density, Microcellular Poly(lactic Acid) Foams with Controlled Cell Morphology and Crystallinity. Chem. Eng. Sci. 2012, 75, 390–399. DOI: 10.1016/j.ces.2012.02.051.
  • Zhai, W.; Wang, J.; Chen, N. The Orientation of Carbon Nanotubes in Poly(ethylene-co-octene) Microcellular Foaming and Its Suppression Effect on Cell Coalescence. Polym. Eng. Sci. 2012, 52, 2078–2089. DOI: 10.1002/pen.23157.
  • Lee, J. L.; Zeng, C.; CAO, X.; HAN, X.; SHEN, J.; XU, G. Polymer Nanocomposite Foams. Compos. Sci. Technol. 2005, 65, 2344–2363. DOI: 10.1016/j.compscitech.2005.06.016.
  • Saha, M. C.; Kabir, M. E.; Jeelani, S. Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles. Mat. Sci. Eng. A-Struct. 2008, 479, 213–222. DOI: 10.1016/j.msea.2007.06.060.
  • Chiou, J. S.; Barlow, J. W.; Paul, D. R. Polymer Crystallization Induced by Sorption of CO2 Gas. J. Appl. Polym. Sci. 2010, 30, 3911–3924. DOI: 10.1002/app.1985.070300929.
  • Lips, P. A. M.; Velthoen, I. W.; Dijkstra, P. J.; Wessling, M.; Feijen, J. Gas Foaming of Segmented Poly(ester Amide) Films. Polymer. 2005, 46, 9396–9403. DOI: 10.1016/j.polymer.2005.07.052.
  • Zhai, W.; Jian, Y.; He, J. Ultrasonic Irradiation Enhanced Cell Nucleation: An Effective Approach to Microcellular Foams of Both High Cell Density and Expansion Ratio. Polymer. 2008, 49, 2430–2434. DOI: 10.1016/j.polymer.2008.04.002.
  • Wang, J.; Zhai, W.; Ling, J.; Shen, B.; Zheng, W.; Park, C. B. Ultrasonic Irradiation Enhanced Cell Nucleation in Microcellular Poly(lactic Acid): A Novel Approach to Reduce Cell Size Distribution and Increase Foam Expansion. Ind.Eng.Chem.Res. 2011, 50, 13840–13847. DOI: 10.1021/ie201643j.
  • Chen, K.; Tian, C.; Ai, L. Effect of SiO2 on Rheology, Morphology, Thermal, and Mechanical Properties of High Thermal Stable Epoxy Foam. J. Appl. Polym. Sci. 2014, 131, 2113–2124.
  • Li, Y.; Zhang, H. B.; Zhang, L. One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams. ACS Appl. Mater. Interfaces. 2017, 9, 13323–13330. DOI: 10.1021/acsami.7b02408.
  • Chen, L.; Ozisik, R.; Schadler, L. S. The Influence of Carbon Nanotube Aspect Ratio on the Foam Morphology of MWNT/PMMA Nanocomposite Foams. Polymer. 2010, 51, 2368–2375. DOI: 10.1016/j.polymer.2010.03.042.
  • Zhang, L.; Yilmaz, E. D.; Schjødt, J. MWNT Reinforced Polyurethane Foam: Processing, Characterization and Modelling of Mechanical Properties. Compos. Sci. Technol. 2011, 71, 877–884. DOI: 10.1016/j.compscitech.2011.02.002.
  • Zeng, C.; Hossieny, N.; Zhang, C.; Wang, B.; Walsh, S. M. Morphology and Tensile Properties of PMMA Carbon Nanotubes Nanocomposites and Nanocomposites Foams. Compos. Sci. Technol. 2013, 82, 29–37. DOI: 10.1016/j.compscitech.2013.03.024.
  • Yang, J.; Wu, M.; Chen, F.; Zhong, M. Preparation, Characterization, and Supercritical Carbon Dioxide Foaming of Polystyrene/graphene Oxide Composites. J. Supercrit. Fluid. 2011, 56, 201–207.
  • Yang, J.; Huang, L.; Zhang, Y.; Chen, F.; Zhong, M. Mesoporous Silica Particles Grafted with Polystyrene Brushes as a Nucleation Agent for Polystyrene Supercritical Carbon Dioxide Foaming. J. Appl. Polym. Sci. 2013, 130, 4308–4317.
  • Yu, J.; Song, L.; Chen, F.; Fan, P.; Sun, L.; Zhong, M.; Yang, J. Preparation of Polymer Foams with a Gradient of Cell Size: Further Exploring the Nucleation Effect of Porous Inorganic Materials in Polymer Foaming. Mater. Today Commun. 2016, 9, 1–6. DOI: 10.1016/j.mtcomm.2016.08.006.
  • Yang, J.; Zhang, Y.; Zheng, S.; Huang, L.; Chen, F.; Fan, P.; Zhong, M. Probing Structure–heterogeneous Nucleation Efficiency Relationship of Mesoporous Particles in Polylactic Acid Microcellular Foaming by Supercritical Carbon Dioxide. J. Supercrit. Fluid. 2014, 95, 228–235. DOI: 10.1016/j.supflu.2014.08.020.
  • Satish, K. G.; Beckman, E. Generation of Microsponge Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nuclea-tion. Polym.Eng.Sci. 1994, 34, 1137–1147. DOI: 10.1002/pen.760341407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.