339
Views
5
CrossRef citations to date
0
Altmetric
Review

Biodegradable lignin as a reactive raw material in UV curable systems

, , ORCID Icon, &
Pages 1387-1406 | Received 19 Sep 2019, Accepted 30 Mar 2020, Published online: 22 Apr 2020

References

  • Oldring, P.;. Chemistry & Technology of Uv & Eb Formulation for Coatings Inks & Paints; Sita Technology: London, 1991; Vols. 1–4.
  • Pappas, S. P.;. Radiation Curing: Science and Technology; Springer Science & Business Media, New York, USA, 2013.
  • Decker, C.;. Kinetic Study and New Applications of Uv Radiation Curing. Macromol. Rapid Commun. 2002, 23, 1067–1093. DOI: 10.1002/marc.200290014.
  • Endruweit, A.; Johnson, M. S.; Long, A. C. Curing of Composite Components by Ultraviolet Radiation: A Review. Polym. Compos. 2006, 27, 119–128. DOI: 10.1002/pc.20166.
  • Khan, M. A.; Shehrzade, S.; Hassan, M. M. Effect of Alkali and Ultraviolet (Uv) Radiation Pretreatment on Physical and Mechanical Properties of 1, 6‐Hexanediol Diacrylate–Grafted Jute Yarn by Uv Radiation. J. Appl. Polym. Sci. 2004, 92, 18–24. DOI: 10.1002/app.13593.
  • Crivello, J. V.; Narayan, R.; Sternstein, S. S. Fabrication and Mechanical Characterization of Glass Fiber Reinforced Uv-Cured Composites from Epoxidized Vegetable Oils. J. Appl. Polym. Sci. 1997, 64, 2073–2087. DOI: 10.1002/(SICI)1097-4628(19970613)64:11<2073::AID-APP3>3.0.CO;2-G.
  • Decker, C.; Zahouily, K. Photodegradation and Photooxidation of Thermoset and Uv-Cured Acrylate Polymers. Polym. Degrad. Stab. 1999, 64, 293–304. DOI: 10.1016/S0141-3910(98)00205-5.
  • Maag, K.; Lenhard, W.; Löffles, H. New Uv Curing Systems for Automotive Applications. Prog. Org. Coat. 2000, 40, 93–97. DOI: 10.1016/S0300-9440(00)00144-2.
  • Kajtna, J.; Krajnc, M. Solventless Uv Crosslinkable Acrylic Pressure Sensitive Adhesives. Int. J. Adhes. Adhes. 2011, 31, 822–831. DOI: 10.1016/j.ijadhadh.2011.08.002.
  • Park, J.-W.; Lee, J.-G.; Shim, G.-S.; Kim, H.-J.; Kim, Y.-K.; Moon, S.-E.; No, D.-H. Evaluation of the Ultraviolet-Curing Kinetics of Ultraviolet-Polymerized Oligomers Cured Using Poly (Ethylene Glycol) Dimethacrylate. Coatings. 2018, 8, 99. DOI: 10.3390/coatings8030099.
  • Dufour, P.; Oldring, P. K. T.; Allen, N. S. Chemistry and Technology of Uv and Eb Formulation for Coatings and Inks; SITA Technology, 1991.
  • Burak, L.;. The Success of Uv/Eb Curing. J. Coat. Technol. 1997, 69, 29–32. DOI: 10.1007/BF02757730.
  • de Meijer, M.;. Review on the Durability of Exterior Wood Coatings with Reduced Voc-Content. Prog. Org. Coat. 2001, 43, 217–225. DOI: 10.1016/S0300-9440(01)00170-9.
  • Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M. H.; Leonards, P. E. G. A Review of Semi-Volatile Organic Compounds (Svocs) in the Indoor Environment: Occurrence in Consumer Products, Indoor Air and Dust. Chemosphere. 2018, 201, 466–482. DOI: 10.1016/j.chemosphere.2018.02.161.
  • Ghosh, M.; Lohrasbi, M.; Chuang, S. S.; Jana, S. C. Mesoporous Titanium Dioxide Nanofibers with a Significantly Enhanced Photocatalytic Activity. ChemCatChem. 2016, 8, 2525–2535. DOI: 10.1002/cctc.201600387.
  • Allen, N. S. Photoinitiators for Uv and Visible Curing of Coatings: Mechanisms and Properties. J. Photochem. Photobiol. A Chem. 1996, 100, 101–107. DOI: 10.1016/S1010-6030(96)04426-7.
  • Fouassier, J. P.; Allonas, X.; Burget, D. Photopolymerization Reactions under Visible Lights: Principle, Mechanisms and Examples of Applications. Prog. Org. Coat. 2003, 47, 16–36. DOI: 10.1016/S0300-9440(03)00011-0.
  • Mauguière-Guyonnet, F.; Burget, D.; Fouassier, J. P. Photopolymerization of Wood Coatings under Visible Lights. Prog. Org. Coat. 2006, 57, 23–32. DOI: 10.1016/j.porgcoat.2006.05.017.
  • Mehnert, R.; Pincus, A.; Janorsky, I.; Berejka, A.; Stowe, R. Uv & Eb Curing Technology & Equipment; John Wiley & Sons:  New York, USA, 1998.
  • Schuch, A. P.; Menck, C. F. M. The Genotoxic Effects of DNA Lesions Induced by Artificial Uv-Radiation and Sunlight. J. Photochem. Photobiol. B: Biol. 2010, 99, 111–116. DOI: 10.1016/j.jphotobiol.2010.03.004.
  • Tripathi, D.; Ramaprakash, A.; Khan, A. R.; Ghosh, A.; Chatterjee, S.; Banerjee, D.; Chordia, P.; Gandorfer, A. M.; Krivova, N.; Nandy, D. The Solar Ultraviolet Imaging Telescope on-Board Aditya-L1, SPIE-The International Society for Optical Engineering: Bellingham, USA, 2017.
  • Crivello, J. V.;. Photoinitiators for Free Radical Cationic & Anionic Photopolymerisation, 2nd ed; Dietliker, K., Bradley, G., Eds.; J. Wiley in association with SITA Technology: Chichester, West Sussex, England, 1998, 1–586.
  • Dietliker, K.;. In Chemistry & Technology of Uv & Eb Formulation for Coatings, Inks & Paints. 3. Photoinitiators for Free Radical and Cationic Polymerisation; SITA, Atlanta, USA, 1991.
  • Yagci, Y.;. Photoinitiated Cationic Polymerization of Unconventional Monomers. Macromol. Symp. 2006, 240, 93–101. DOI: 10.1002/masy.200650812.
  • Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules. 2010, 43, 6245–6260. DOI: 10.1021/ma1007545.
  • Christian, D.;. Uv-Radiation Curing Chemistry. Pigm. Resin Technol. 2001, 30, 278–286. DOI: 10.1108/03699420110404593.
  • Lü, N.; Lü, X.; Jin, X.; Lü, C. Preparation and Characterization of Uv-Curable Zno/Polymer Nanocomposite Films. Polym. Int. 2007, 56, 138–143. DOI: 10.1002/pi.2126.
  • Liu, W.-J.; Jiang, H.; Yu, H.-Q. Thermochemical Conversion of Lignin to Functional Materials: A Review and Future Directions. Green Chem. 2015, 17, 4888–4907. DOI: 10.1039/C5GC01054C.
  • Kai, D.; Tan, M. J.; Chee, P. L.; Chua, Y. K.; Yap, Y. L.; Loh, X. J. Towards Lignin-Based Functional Materials in a Sustainable World. Green Chem. 2016, 18, 1175–1200. DOI: 10.1039/C5GC02616D.
  • Zhu, X.; Jun Loh, X. Layer-by-Layer Assemblies for Antibacterial Applications. Biomater. Sci. 2015, 3, 1505–1518. DOI: 10.1039/C5BM00307E.
  • Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H. E.; Al-Shannag, M. Wastes and Biomass Materials as Sustainable-Renewable Energy Resources for Jordan. Renewable Sustainable Energy Rev. 2017, 67, 295–314. DOI: 10.1016/j.rser.2016.09.035.
  • Wróblewska-Krepsztul, J.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V. K. Recent Progress in Biodegradable Polymers and Nanocomposite-Based Packaging Materials for Sustainable Environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. DOI: 10.1080/1023666X.2018.1455382.
  • Fouad, D.; Farag, M. Design for Sustainability with Biodegradable Composites. In Design Engineering and Manufacturing; Evren Yasa., Mohsen Mhadhbi., Eleonora Santecchia., Eds.; IntechOpen,  London, UK, 2019.
  • Mohammed, L.; Ansari, M. N.; Pua, G.; Jawaid, M.; Islam, M. S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015. DOI: 10.1155/2015/243947.
  • Dhaliwal, J. S.;. Natural Fibers: Applications. In Generation, Development and Modifications of Natural Fibers; Mudassar Abbas and Han-Yong Jeon., Eds.; IntechOpen, London, UK, 2019.
  • Hall, C. W.;. Biomass as an Alternative Fuel; Goverment Institutes, Inc: Washington, 1981.
  • Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. DOI: 10.1021/cr900354u.
  • Hatakeyama, H.; Hatakeyama, T.; Structure, L. Properties, and Applications. In Biopolymers; Akihiro Abe., Karel Dusek., Shiro Kobayashi., Eds.; Springer: Berlin, Heidelberg Germany, 2009; pp 1–63.
  • Lora, J. H.; Glasser, W. G. Recent Industrial Applications of Lignins; a Sustainable Alternative to Non-Renewable Materials. J. Polym Environ. 2002, 10, 39–48. DOI: 10.1023/A:1021070006895.
  • Tejado, A.; Kortaberria, G.; Peña, C.; Labidi, J.; Echeverria, J. M.; Mondragon, I. Isocyanate Curing of Novolac-Type Ligno-Phenol-Formaldehyde Resins. Ind. Crops Prod. 2008, 27, 208–213. DOI: 10.1016/j.indcrop.2007.07.009.
  • Johnson, J. M. F.; Reicosky, D.; Sharratt, B.; Lindstrom, M.; Voorhees, W.; Carpenter-Boggs, L. Characterization of Soil Amended with the by-Product of Corn Stover Fermentation. Soil Sci. Soc. Am. J. 2004, 68, 139–147. DOI: 10.2136/sssaj2004.1390.
  • Bujanovic, B.; Reiner, R. S.; Ralph, S. A.; Agarwal, U.; Atalla, R. Structural Changes of Residual Lignin of Softwood and Hardwood Kraft Pulp upon Oxidative Treatment with Polyoxometalates, Miscellaneous Publication: Philadelphia, USA, 2005; Vol. 2006.
  • Sun, G.; Sun, H.; Liu, Y.; Zhao, B.; Zhu, N.; Hu, K. Comparative Study on the Curing Kinetics and Mechanism of a Lignin-Based-Epoxy/Anhydride Resin System. Polymer. 2007, 48, 330–337. DOI: 10.1016/j.polymer.2006.10.047.
  • Bonini, C.; D’Auria, M. New Materials from Lignin. Biomass and Bioenergy: New Research. 2006, 48, 141–168.
  • Rozman, H. D.; Koay, E. L.; Tay, G. S. Preliminary Study on the Utilization of Lignin as Filler in Ultra-Violet (Uv) Curable System. J. Appl. Polym. Sci. 2011, 120, 2527–2533. DOI: 10.1002/app.33205.
  • Thielemans, W.; Wool, R. P. Kraft Lignin as Fiber Treatment for Natural Fiber‐Reinforced Composites. Polym. Compos. 2005, 26, 695–705. DOI: 10.1002/pc.20141.
  • Park, Y.; Doherty, W. O.; Halley, P. J. Developing Lignin-Based Resin Coatings and Composites. Ind. Crops Prod. 2008, 27, 163–167. DOI: 10.1016/j.indcrop.2007.07.021.
  • Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U. Characterization of the Radical Scavenging Activity of Lignins––Natural Antioxidants. Bioresour. Technol. 2004, 95, 309–317. DOI: 10.1016/j.biortech.2004.02.024.
  • Sarkanen, K. V.; Ludwig, C. H. Lignins, Occurrence, Formation, Structure and Reactions; John Wiley & Sons, Inc: New York, London, Sydney, Toronto, 1971.
  • Higuchi, T.;. Look Back over the Studies of Lignin Biochemistry. J. Wood Sci. 2006, 52, 2–8. DOI: 10.1007/s10086-005-0790-z.
  • Gibbs, R. D.;. Chemical Evolution in Plants. J. Linn. Soc. London, Zool. 1958, 44, 49–57. DOI: 10.1111/j.1096-3642.1958.tb01708.x.
  • Gibbs, R. D.;. In the Physiology of Forest Trees; Thimann, E., Ed, John Wiley and Sons:  New York, USA, 1958; pp 269–312.
  • Browning, B. L.;. Methods of Wood Chemistry; INTERSCIENCE PUBLISHERS, A Division of John Wiley & Sons: New York, London, Sydney, 1967; Vol. II.
  • Browning, B. L.;. Methods of Wood Chemistry, Wiley: New York, USA, 1967; Vol. I & II.
  • Abe, K.; Yano, H. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose. 2009, 16, 1017. DOI: 10.1007/s10570-009-9334-9.
  • Thielemans, W.; Can, E.; Morye, S. S.; Wool, R. P. Novel Applications of Lignin in Composite Materials. J. Appl. Polym. Sci. 2002, 83, 323–331. DOI: 10.1002/app.2247.
  • Kharade, A. Y.; Kale, D. D. Lignin‐Filled Polyolefins. J. Appl. Polym. Sci. 1999, 72, 1321–1326.
  • Gregorová, A.; Košíková, B.; Moravčík, R. Stabilization Effect of Lignin in Natural Rubber. Polym. Degrad. Stab. 2006, 91, 229–233. DOI: 10.1016/j.polymdegradstab.2005.05.009.
  • Khan, M.; Ashraf, S. Development and Characterization of a Lignin–Phenol–Formaldehyde Wood Adhesive Using Coffee Bean Shell. J. Adhes. Sci. Technol. 2005, 19, 493–509. DOI: 10.1163/1568561054352577.
  • Vazquez, G.; Antorrena, G.; González, J.; Mayor, J. Lignin-Phenol-Formaldehyde Adhesives for Exterior Grade Plywoods. Bioresour. Technol. 1995, 51, 187–192. DOI: 10.1016/0960-8524(94)00120-P.
  • Stewart, D.;. Lignin as a Base Material for Materials Applications: Chemistry, Application and Economics. Ind. Crops Prod. 2008, 27, 202–207. DOI: 10.1016/j.indcrop.2007.07.008.
  • Popp, J. L.; Kirk, T. K.; Dordick, J. S. Incorporation of P-Cresol into Lignins via Peroxidase-Catalysed Copolymerization in Nonaqueous Media. Enzyme Microb. Technol. 1991, 13, 964–968. DOI: 10.1016/0141-0229(91)90118-T.
  • El Mansouri, N.-E.; Salvadó, J. Structural Characterization of Technical Lignins for the Production of Adhesives: Application to Lignosulfonate, Kraft, Soda-Anthraquinone, Organosolv and Ethanol Process Lignins. Ind. Crops Prod. 2006, 24, 8–16. DOI: 10.1016/j.indcrop.2005.10.002.
  • Klašnja, B.; Kopitović, S. Lignin-Phenol-Formaldehyde Resins as Adhesives in the Production of Plywood. Holz als roh-und Werkstoff. 1992, 50, 282–285. DOI: 10.1007/BF02615352.
  • Faiza, M.; Kumar, R.; Rozman, H. Ultraviolet Radiation Cured Bio-Fibre Composites from Oil Palm Empty Fruit Bunch, Wiley-VCH: New York, USA, 2003.
  • Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2014, 114, 1082–1115. DOI: 10.1021/cr3001274.
  • Doherty, W. O. S.; Mousavioun, P.; Fellows, C. M. Value-Adding to Cellulosic Ethanol: Lignin Polymers. Ind. Crops Prod. 2011, 33, 259–276. DOI: 10.1016/j.indcrop.2010.10.022.
  • Thring, R.; Vanderlaan, M.; Griffin, S. Polyurethanes from Alcell® Lignin. Biomass Bioenergy. 1997, 13, 125–132. DOI: 10.1016/S0961-9534(97)00030-5.
  • Bonini, C.; D’Auria, M.; Emanuele, L.; Ferri, R.; Pucciariello, R.; Sabia, A. R. Polyurethanes and Polyesters from Lignin. J. Appl. Polym. Sci. 2005, 98, 1451–1456. DOI: 10.1002/app.22277.
  • Hatakeyama, H.; Hatakeyama, T. Environmentally Compatible Hybrid‐Type Polyurethane Foams Containing Saccharide and Lignin Components; Macromolecular Symposia, Wiley Online Library: New York, USA, 2005; pp 219–226.
  • Cateto, C. A.; Barreiro, M. F.; Rodrigues, A. E.; Brochier‐Salon, M. C.; Thielemans, W.; Belgacem, M. N. Lignins as Macromonomers for Polyurethane Synthesis: A Comparative Study on Hydroxyl Group Determination. J. Appl. Polym. Sci. 2008, 109, 3008–3017. DOI: 10.1002/app.28393.
  • Boeriu, C. G.; Bravo, D.; Gosselink, R. J. A.; van Dam, J. E. G. Characterisation of Structure-Dependent Functional Properties of Lignin with Infrared Spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. DOI: 10.1016/j.indcrop.2004.04.022.
  • Vinardell, M.; Ugartondo, V.; Mitjans, M. Potential Applications of Antioxidant Lignins from Different Sources. Ind. Crops Prod. 2008, 27, 220–223. DOI: 10.1016/j.indcrop.2007.07.011.
  • Toriz, G.; Ramos, J.; Young, R. Lignin–Polypropylene Composites. Ii. Plasma Modification of Kraft Lignin and Particulate Polypropylene. J. Appl. Polym. Sci. 2004, 91, 1920–1926. DOI: 10.1002/app.13412.
  • Kharade, A.; Kale, D. Lignin‐Filled Polyolefins. J. Appl. Polym. Sci. 1999, 72, 1321–1326. DOI: 10.1002/(SICI)1097-4628(19990606)72:10<1321::AID-APP12>3.0.CO;2-9.
  • Alexy, P. Modification of Lignin-Polyethylene Blends with High Lignin Content Using Ethylene-Vinylacetate Copolymer as Modifier. J. Appl. Polym. Sci. 2004, 94, 1855–1860. DOI: 10.1002/app.20716.
  • Rozman, H. D.; Tan, K. W.; Kumar, R. N.; Abubakar, A.; Ishak, Z. A.; Ismail, H. The Effect of Lignin as a Compatibilizer on the Physical Properties of Coconut Fiber-Polypropylene Composites. Eur. Polym. J. 2000, 36, 1483–1494. DOI: 10.1016/S0014-3057(99)00200-1.
  • Nisha, S. S.; Nikzad, M.; Al Kobaisi, M.; Truong, V. K.; Sbarski, I. The Role of Ionic-Liquid Extracted Lignin Micro/Nanoparticles for Functionalisation of an Epoxy-Based Composite Matrix. Compos. Sci. Technol. 2019, 174, 11–19. DOI: 10.1016/j.compscitech.2019.02.009.
  • Liu, C.; Xiao, C.; Liang, H. Properties and Structure of Pvp–Lignin “Blend Films”. J. Appl. Polym. Sci. 2005, 95, 1405–1411. DOI: 10.1002/app.21367.
  • Shen, Q.; Zhong, L. Lignin-Based Carbon Films and Controllable Pore Size and Properties. Mater. Sci. Eng. A. 2007, 445, 731–735. DOI: 10.1016/j.msea.2006.09.066.
  • Kubo, S.; Kadla, J. F. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study. Biomacromolecules. 2005, 6, 2815–2821. DOI: 10.1021/bm050288q.
  • Li, X.; Hegyesi, N.; Zhang, Y.; Mao, Z.; Feng, X.; Wang, B.; Pukánszky, B.; Sui, X. Poly(Lactic Acid)/Lignin Blends Prepared with the Pickering Emulsion Template Method. Eur. Polym. J. 2019, 110, 378–384. DOI: 10.1016/j.eurpolymj.2018.12.001.
  • Davé, V.; Glasser, W. G. Cellulose-Based Fibres from Liquid Crystalline Solutions: 5. Processing and Morphology of Cab Blends with Lignin. Polymer. 1997, 38, 2121–2126. DOI: 10.1016/S0032-3861(96)00784-7.
  • Thielemans, W.; Can, E.; Morye, S.; Wool, R. Novel Applications of Lignin in Composite Materials. J. Appl. Polym. Sci. 2002, 83, 323–331.
  • Rozman, H.; Tan, K.; Kumar, R.; Abubakar, A. Preliminary Studies on the Use of Modified Alcell Lignin as a Coupling Agent in the Biofiber Composites. J. Appl. Polym. Sci. 2001, 81, 1333–1340. DOI: 10.1002/app.1558.
  • Setua, D.; Shukla, M.; Nigam, V.; Singh, H.; Mathur, G. Lignin Reinforced Rubber Composites. Polym. Compos. 2000, 21, 988–995. DOI: 10.1002/pc.10252.
  • Rozman, H. D.; Rozyanty, A. R.; Tay, G. S.; Kumar, R. N. The Effect of Glycidyl Methacrylate Treatment of Empty Fruit Bunch (Efb) on the Properties of Ultra-Violet Radiation Cured Efb-Unsaturated Polyester Composite. J. Appl. Polym. Sci. 2009, 115, 2677–2682. DOI: 10.1002/app.29791.
  • Li, Z.; Ge, Y.; Zhang, J.; Xiao, D.; Wu, Z. Chemical Modification of Lignin and Its Environmental Application. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, Sabu Thomas., Raghvendra Kumar Mishra., Abdullah M. Asiri., Eds.; Springer: Switzerland, 2019; pp 1345–1364.
  • Han, T. L.; Kumar, R.; Rozman, H.; Noor, M. A. M. Gma Grafted Sago Starch as a Reactive Component in Ultra Violet Radiation Curable Coatings. Carbohydr. Polym. 2003, 54, 509–516. DOI: 10.1016/j.carbpol.2003.08.001.
  • Lin, O. H.; Kumar, R.; Rozman, H.; Noor, M. A. M. Grafting of Sodium Carboxymethylcellulose (Cmc) with Glycidyl Methacrylate and Development of Uv Curable Coatings from Cmc-G-Gma Induced by Cationic Photoinitiators. Carbohydr. Polym. 2005, 59, 57–69. DOI: 10.1016/j.carbpol.2004.08.027.
  • Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Two‐Step 3 D‐Printing Approach toward Sustainable, Repairable, Fluorescent Shape‐Memory Thermosets Derived from Cellulose and Rosin; ChemSusChem, New York, USA, 2019.
  • Wang, C.; Venditti, R. A. Uv Cross-Linkable Lignin Thermoplastic Graft Copolymers. ACS Sustainable Chem. Eng. 2015, 3, 1839–1845. DOI: 10.1021/acssuschemeng.5b00416.
  • Hajirahimkhan, S.; Xu, C. C.; Ragogna, P. J. Ultraviolet Curable Coatings of Modified Lignin. ACS Sustainable Chem. Eng. 2018, 6, 14685–14694. DOI: 10.1021/acssuschemeng.8b03252.
  • Yan, R.; Yang, D.; Zhang, N.; Zhao, Q.; Liu, B.; Xiang, W.; Sun, Z.; Xu, R.; Zhang, M.; Hu, W. Performance of Uv Curable Lignin Based Epoxy Acrylate Coatings. Prog. Org. Coat. 2018, 116, 83–89. DOI: 10.1016/j.porgcoat.2017.11.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.