183
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Zinc ion-imprinted polymer based on silica particles modified carbon paste electrodes for highly selective electrochemical determination of zinc ions

, , &
Pages 1698-1714 | Received 27 Jan 2020, Accepted 02 May 2020, Published online: 18 Jun 2020

References

  • Scherz, H.; Kirchhoff, E. Trace Elements in Foods: Zinc Contents of Raw Foods—a Comparison of Data Originating from Different Geographical Regions of the World. J. Food Compost. Anal. 2006, 19, 420–433. DOI: 10.1016/j.jfca.2005.10.004.
  • Salgueiro, M. J.; Zubillaga, M. B.; Lysionek, A. E.; Caro, R. A.; Weill, R.; Boccio, J. R. The Role of Zinc in the Growth and Development of Children. Nutrition. 2002, 18(6), 510–519. DOI: 10.1016/S0899-9007(01)00812-7.
  • Khairnar, N.; Tayade, K.; Sahoo, S. K.; Bondhopadhyay, B.; Basu, A.; Singh, J.; Singh, N.; Gite, V.; Kuwar, A. A Highly Selective Fluorescent ‘Turn-on’ Chemosensor for Zn2+++ Based on A Benzothiazole Conjugate: Their Applicability in Live Cell Imaging and Use of the Resultant Complex as A Secondary Sensor of CN. Dalton Trans. 2015, 44(5), 2097–2102. DOI: 10.1039/C4DT03247K.
  • Kazemi, E.; Dadfarnia, S.; Shabani, A. M.; Ranjbar, M. Synthesis, Characterization, and Application of a Zn (Ii)-imprinted Polymer Grafted on Graphene Oxide/magnetic Chitosan Nanocomposite for Selective Extraction of Zinc Ions from Different Food Samples. Food Chem. 2017, 237, 921–928. DOI: 10.1016/j.foodchem.2017.06.053.
  • David, D. J.;. Determination of Zinc and Other Elements in Plants by Atomic-absorption Spectroscopy. The Analyst. 2009, 164, 655–661. DOI: 10.1039/an9588300655.
  • Stevens, B. J.; Hare, D. J.; Volitakis, I.; Cherny, R. A.; Roberts, B. R. Direct Determination of Zinc in Plasma by Graphite Furnace Atomic Absorption Spectrometry Using Palladium/magnesium and EDTA Matrix Modification with High Temperature Pyrolysis. J. Anal. At. Spectrom. 2017, 32(4), 843–847. DOI: 10.1039/C7JA00033B.
  • Huang, S.-D.; Shih, K.-Y. Direct Determination of Zinc in Seawater by Graphite Furnace Atomic Absorption Spectrometry. Spectro. Acta Part B: Atomic Spec. 1995, 50(8), 837–846. DOI: 10.1016/0584-8547(94)00129-J.
  • Krushevska, A.; Barnes, R. M.; Amarasiriwaradena, C. J.; Foner, H.; Martines, L. Comparison of Sample Decomposition Procedures for the Determination of Zinc in Milk by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Anal. At. Spectrom. 1992, 7(6), 851–858. DOI: 10.1039/ja9920700851.
  • Atanassova, D.; Stefanova, V.; Russeva, E. Co-precipitative Pre-concentration with Sodium Diethyldithiocarbamate and ICP-AES Determination of Se, Cu, Pb, Zn, Fe, Co, Ni, Mn, Cr and Cd in Water. Talanta. 1998, 47(5), 1237–1243. DOI: 10.1016/S0039-9140(98)00211-2.
  • Ghaedi, M.; Mortazavi, K.; Montazerozohori, M.; Shokrollahi, A.; Soylak, M. Flame Atomic Absorption Spectrometric (FAAS) Determination of Copper, Iron and Zinc in Food Samples after Solid-phase Extraction on Schiff Base-modified Duolite XAD 761. Mater. Sci. Eng C. 2013, 33, 2338–2344. DOI: 10.1016/j.msec.2013.01.062.
  • Alothman, Z. A.; Yilmaz, E.; Habila, M.; Soylak, M. Separation and Preconcentration of Lead (II), Cobalt (II), and Nickel (II) on EDTA Immobilized Activated Carbon Cloth Prior to Flame Atomic Absorption Spectrometric Determination in Environmental Samples. Turk. J. Chem. 2015, 39, 1038–1049. DOI: 10.3906/kim-1502-65.
  • Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Sharghi, H.; Eshghi, H. Zinc-selective Membrane Potentiometric Sensor Based on a Recently Synthesized Benzo-substituted Macrocyclic Diamide. Sens. Actuators B Chem. 1999, 59, 30–34. DOI: 10.1016/S0925-4005(99)00160-4.
  • Chan, W. H.; Yang, R. H.; Mo, T.; Wang, K. M. Lead-selective Fluorescent Optode Membrane Based on 3, 3′, 5, 5′-tetramethyl-N-(9-anthrylmethyl) Benzidine. Anal. Chim. Acta. 2002, 460, 123–132. DOI: 10.1016/S0003-2670(02)00203-9.
  • Freeman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I. Self-assembly of Supramolecular Aptamer Structures for Optical or Electrochemical Sensing. Analyst. 2009, 134(4), 653–656. DOI: 10.1039/b822836c.
  • de Oliveira, P. R.; Lamy-Mendes, A. C.; Gogola, J. L.; Mangrich, A. S.; Junior, L. H. M.; Bergamini, M. F. Mercury Nanodroplets Supported at Biochar for Electrochemical Determination of Zinc Ions Using a Carbon Paste Electrode. Electrochim. Acta. 2015, 151, 525–530. DOI: 10.1016/j.electacta.2014.11.057.
  • Takeuchi, R. M.; Santos, A. L.; Medeiros, M. J.; Stradiotto, N. R. Copper Determination in Ethanol Fuel Samples by Anodic Stripping Voltammetry at a Gold Microelectrode. Microchim. Acta. 2009, 164, 101–106. DOI: 10.1007/s00604-008-0039-9.
  • Ensafi, A. A.; Taei, M.; Khayamian, T.; Arabzadeh, A. Highly Selective Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse Voltammetry Using Poly (Sulfonazo III) Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2010, 147(1), 213–221. DOI: 10.1016/j.snb.2010.02.048.
  • Kröger, S.; Turner, A. P.; Mosbach, K.; Haupt, K. Imprinted Polymer-based Sensor System for Herbicides Using Differential-pulse Voltammetry on Screen-printed Electrodes. Anal. Chem. 1999, 71(17), 3698–3702. DOI: 10.1021/ac9811827.
  • Ahmar, H.; Fakhari, A. R.; Tabani, H.; Shahsavani, A. Optimization of Electromembrane Extraction Combined with Differential Pulse Voltammetry Using Modified Screen-printed Electrode for the Determination of Sufentanil. Electrochim. Acta. 2013, 96, 117–123. DOI: 10.1016/j.electacta.2013.02.049.
  • Yang, J.; Kim, S. E.; Cho, M.; Yoo, I. K.; Choe, W. S.; Lee, Y. Highly Sensitive and Selective Determination of bisphenol-A Using Peptide-modified Gold Electrode. Biosens. Bioelectron. 2014, 61, 38–44. DOI: 10.1016/j.bios.2014.04.009.
  • Arshady, R.; Mosbach, K. Synthesis of Substrate‐selective Polymers by Host‐guest Polymerization. Die Makromol. Chem. Macromol. Chem. Phy 1981, 182, 687–692. DOI: 10.1002/macp.1981.021820240.
  • Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40(5), 2922–2942. DOI: 10.1039/c0cs00084a.
  • Haupt, K.; Peer reviewed: molecularly imprinted polymers: the next generation 2003.
  • Daoud Attieh, M.; Zhao, Y.; Elkak, A.; Falcimaigne‐Cordin, A.; Haupt, K. Enzyme‐Initiated Free‐Radical Polymerization of Molecularly Imprinted Polymer Nanogels on a Solid Phase with an Immobilized Radical Source. Angewandte Chemie. 2017, 129(12), 3387–3391. DOI: 10.1002/ange.201612667.
  • Singh, D. K.; Mishra, S. Synthesis, Characterization and Analytical Applications of Ni(II)-ion Imprinted Polymer. Appl. Surf. Sci. 2010, 256(24), 7632–7637. DOI: 10.1016/j.apsusc.2010.06.018.
  • Shen, X.; Xu, C.; Ye, L. Imprinted Polymer Beads Enabling Direct and Selective Molecular Separation in Water. Soft Matter. 2012, 8(27), 7169–7176. DOI: 10.1039/c2sm25574j.
  • Sohn, E. H.; Kang, H. S.; Bom, J. C.; Ha, J. W.; Lee, S. B.; Park, I. J. Silica-core per Fluorinated Polymer-shell Composite Nanoparticles for Highly Stable and Efficient Superhydrophobic Surfaces. J. Mater. Chem. A. 2018, 6(27), 12950–12955. DOI: 10.1039/C8TA02335B.
  • He, H.; Gan, Q.; Feng, C. Preparation and Application of Ni(ii) Ion-imprinted Silica Gel Polymer for Selective Separation of Ni(ii) from Aqueous Solution. RSC Adv. 2017, 7, 15102–15111. DOI: 10.1039/C7RA00101K.
  • Lin, Z.; Xia, Z.; Zheng, J.; Zheng, D.; Zhang, L.; Yang, H.; Chen, G. Synthesis of Uniformly Sized Molecularly Imprinted Polymer-coated Silica Nanoparticles for Selective Recognition and Enrichment of Lysozyme. J. Mater. Chem. 2012, 22(34), 17914–17922. DOI: 10.1039/c2jm32734a.
  • Morsy, F. A.; El-Sheikh, S. M.; Barhoum, A. Nano-silica and SiO2/CaCO3 Nanocomposite Prepared from Semi-burned Rice Straw Ash as Modified Papermaking Fillers. Arabian J. Chem. 2019, 12(7), 1186–1196. DOI: 10.1016/j.arabjc.2014.11.032.
  • Luo, X.; Huang, W.; Shi, Q.; Xu, W.; Luan, Y.; Yang, Y.; Wang, H.; Yang, W. Electrochemical Sensor Based on Lead Ion-imprinted Polymer Particles for Ultra-trace Determination of Lead Ions in Different Real Samples. RSC Adv. 2017, 7(26), 16033–16040. DOI: 10.1039/C6RA25791G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.