137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel pH-tunable nontoxic hydrogels of pyrrole-2-carboxylic acid and ethylenediamine derivatives: synthesis and characterization

, , , &
Pages 286-297 | Received 10 May 2020, Accepted 04 Jul 2020, Published online: 20 Jul 2020

References

  • Osada, Y.; Gong, J. P. Soft and Wet Materials. Adv. Mat. 1998, 10, 827–837. DOI: 10.1002/(SICI)15214095(199808)10:11<827::AIDADMA827>3.0.CO;2-L.
  • Peppas, N. A.; Khare, A. R. Preparation, Structure and Diffusional Behaviour of Hydrogels in Controlled Release. Adv. Drug Deliv. Rev. 1993, 11, 1–35. DOI: 10.1016/0169-409X(93)90025-Y.
  • Jalababu, R.; Satya Vani, S.; Reddy, K. V. N. S. Development Characterization Swelling and Network Parameters of Amino Acid Grafted Guar Gum Based pH Responsive Polymeric Hydrogels. Int. J. Polym. Anal. Cha. 2019, 24(4), 1–9. DOI: 10.1080/1023666X.2019.1594058.
  • Sudarsan, S.; Franklin, D. S.; Sakthivel, M.;, et al. Ecofriendly pH-Tunable Hydrogels for Removal of Perilous Thiazine Dye. J. Polym. Environ. 2018, 26, 3773–3784. DOI: 10.1007/s10924-018-1258-8.
  • Shibayama, M.; Tanaka, T. Phase Transition and Related Phenomena of Polymer Gels. Adv. Poly. Sci. 1993, 109, 1–62. DOI: 10.1007/3-540-56791-7_1.
  • Sudarsan, S.; Franklin, D. S.; Sakthivel, M.; Chitra, G.; Guhanathan, S. Ecofriendly pH-Tunable Hydrogels for Removal of Perilous Thiazine Dye. J. Polym. Environ. 2018, 26, 3773–3784. DOI: 10.1007/s10924-018-1258-8.
  • Franklin, D. S.; Guhanathan, S. Investigation of Citric Acid-glycerol Based pH-sensitive Biopolymeric Hydrogels for Dye Removal Applications. Ecotox. Environ. Safty 2015, 121, 80–86. A green approach. DOI: 10.1016/j.ecoenv.2015.05.003.
  • Liu., X.; Allen, Y. Polymer-drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. J. Phar. Sci. 2004, 93, 132–143. DOI: 10.1002/jps.10533.
  • Chunyu, C.; Bo, D.; Jie, C.; Zhang.:, L. Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery. Eur. Polym. J. 2010, 46(1), 92–100. DOI: 10.1016/j.eurpolymj.2009.04.033.
  • Grodzinski, J. J.;. Electrically Conducting Polymer. J. Polym. Adv. Tech. 2002, 13(9), 615–625. DOI: 10.1002/pat.285.
  • Calo, E.; Khutoryanskiy, I. V. Biomedical Applications of Hydrogels. A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Eugenia, K.; Kozlovskaya., V.; Oleksandra, Z.; Lilly, G. D.; Kotovb, N. A.; Tsukruk, V. V. pH-sensitive Photoluminescent LbL Hydrogels with Confined Quantum Dots. Soft Matter. 2010, 6, 800–807. DOI: 10.1039/B917845G.
  • Bruna, J.; Yazdani -Pedram, M.; Quijada, R.; Valentin, J. L.; Lopez-Manchado, M. L. Melt Grafting of Itaconic Acid and Its Derivatives onto an Ethylene–propylene Copolymer. React.Func.Polym. 2005, 64, 169–178. DOI: 10.1016/j.reactfunctpolym.2005.05.013.
  • Yang, J.; Dipendra, G.; Stark., J. M.; Pinar, A.; Nair, P.; Tran, R. T.; Yang, J. A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds. Soft Matter. 2012, 8(5), 1499–1507. DOI: 10.1039/C1SM05786C.
  • Tran, R. T.; Thevenot, P.; Gyawali, D.; Chiao, J. C.; Tanga, L.; Yang, J. Synthesis and Characterisation of a Biodegradable Elastomer Featuring a Dual Crosslinker Mechanism. Soft Matter. 2010, 6(11), 2449–2461. DOI: 10.1039/C001605E.
  • Richard, T.; Jian, Y.; Guilermo., A. A. Citrate Based Biomaterials and Their Applications in Regenerative Engineering. Annu. Rev. Mater. Res. 2015, 45, 277–310. DOI: 10.1146/annurev-matsci-070214-020815.
  • Ashour, A.; El-Sharkawy., S.; Mohamed, A.; Amani, M.; Ahmed, Z.; Asuka, K.; Momiji, O.; Ryuichiro, K.; Shimizu, K. Production of Citric Acid from Corncobs with Its Biological Evaluation. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 141–149. DOI: 10.4236/jcdsa.2014.43020.
  • Ayyaru, S.; YH, A. Application of Sulfonic Acid Group Functionalized Grapheme Oxide to Improve Hydrophilicity, Permeability and Antifouling of PVDF Nanocomposite Ultrafiltration Membrane. J. Mem. Sci. 2017, 525, 210–219. DOI: 10.1016/j.memsci.2016.10.048.
  • Jiao, Y.; Gyawali, D.; Stark, J. M.; Akcora, P.; Nair, P.; Tran, R. T.; Yang, J. A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds. Soft Matter. 2012, 8(5), 1499–1507. DOI: 10.1039/c1SM05786C.
  • Gyawali, D.; Nair, P.; Kim, H. K.; Yang, J. Citrate-based Biodegradable Injectable Hydrogel Composites for Orthopedic Applications. Biomater. Sci. 2013, 1;1(1), 52–64. DOI: 10.1039/C2BM00026A.
  • Jiao, Y.; Yang, Y.; Bo, L.; Xiyan, G.; Keliang, X.; Guolin, W.; Yu, Y. Protective Effects of Hydrogen Rich Saline against Experimental Diabetic Peripheral Neuropathy via Activation of the Mitochondrial ATP Sensitive Potassium Channels in Rat. Mol. Med. Rep. 2020, 21(1), 282–290. DOI: 10.3892/nmr.2019.10795.
  • Umer, R.; Waqas, A.; Syed, F.; Qureshi, N. A.; Basit, N.; Bakhtiar, M.; Sameera, I.; Sajid, M. Design, Synthesis, Antibacterial Activity and Docking Study of Some New Trimethoprim Derivatives. Bioorg. Med. Chem. Lett. 2016, 26(23), 5749–5753. DOI: 10.1016/j.bmcl.2016.10.051.
  • Cheah, W. Y.; Show, P. L.; Ng, I. S.; Lin, G. Y.; Chiu, C. Y.; Chang, Y. K. Antibacterial Activity of Quarwenized Chitosan Modified Nanofiber Membrane. Inter. J. Bio. Macromo. 2019, 126, 5669–5677. DOI: 10.1016/j.ijbiomac.2018.12.193.
  • Arora, P.; Arora, V.; Lamba, H. S.; Wadhwa, D. Importance of Heterocyclic Chemistry: A Review. Int. J. Pharm. Res. Sci. 2012, 3(9), 2947–2955. (Online): 0975-8232.
  • Kalaria, P. N.; Karad, S. C.; Raval, D. K. A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery. Europ. Jour. Med. Chem. 2018, 158, 917–936. DOI: 10.1016/j.ejmech.2018.08.040.
  • Franklin, D. S.; Guhanathan, S. Synthesis and Characterisation of Citric Acid Based pH Sensitive Biopolymeric Hydrogels. Polym. Bull. 2014, 71, 93–110. DOI: 10.1007/s00289-013-1047-4.
  • Yang., J.; Choe, G.; Sumi, Y.; Hyerim, J.; Lee, J. Y. Polypyrrole-inconductive Hyaluronic Acid Hydrogels. Biomater. Res. 2016, 20(13), 1–7. DOI: 10.1186/s40824-016-0078-y.
  • Pillai., J. J.; Kumar, A.; Theralikattu, T. Folic Acid Conjugated Cross-linked Acrylic Polymer (FA-CLAP) Hydrogel for Site Specific Delivery of Hydrophobic Drugs to Cancer Cells. J. Nanobiotechnology. 2014, 12, 12–25. DOI: 10.1186/1477-3155-12-25.
  • Chitra, G.; Franklin, D. S.; Sudarsan, S.; Sakthivel, M.; Guhanathan, S. Noncytotoxic Silver and Gold Nanocomposite Hydrogels with Enhanced Antibacterial and Wound Healing Applications. Polym. Eng. Sci. 2018, 58(12), 2133–2142. DOI: 10.1002/pen.24824.
  • Chitra, G.; Sakthivel, M.; Franklin, D. S.; Sudarsan, S.; Selvi, M. S.; Guhanathan, S. Biomaterial Mimicking Indole-3-acetic Acid Based Gold Nanocomposite Hydrogels. Int. J. Poly.Mat. And Poly. Biomat. 2019. DOI: 10.1080/00914037.2019.1605514.
  • Sakthivel, M.; Franklin, D. S.; Sudarson, S.; Chitra, G.; Guhanathan, S. Investigation on Au-nano Incorporated pH-sensitive (Itaconic Acid/acrylic Acid/triethylene Glycol) Based Polymeric Biocompatible Hydrogels. Mat. Sci. Eng. 2017, 75, 517–525. DOI: 10.1016/j.msec.2017.02.054.
  • Biradar., S. M.; Mote., G. D.; Asgaonkar., K. D.; Chitre, T. S. Synthesis, Docking and Biological Evaluation of Pyrrole-2-carbohydrazide Derivatives. Der. Pharma. Chemica. 2015, 7(2), 153–159. http://derpharmachemica.com/archive.html.
  • Chitra, G.; Franklin, D. S.; Guhanathan, S. Indole-3-acetic Acid/diol Based pH-sensitive Biological Macromolecule for Antibacterial, Antifungal and Antioxidant Applications. Int. J. Bio. Macromo. 2017, 95, 363–375. DOI: 10.1016/j.ijbiomac.2016.11.068.
  • Sung, J. H.; Hwang, M. R.; Kim, J. O.; Lee, J. H.; Kim, Y. I.; Kim, J. H.; Chang, J. W.; Jin, S. G.; Kim, J. A.; Lyoo, W. S.; et al. Gel Characterization and In Vivo Evaluation of Minocycline-loaded Wound Dressing with Enhanced Wound Healing Using Polyvinyl Alcohol and Chitosan. Int. J. Pharm. 2010, 392, 232. DOI: 10.1016/j.ijpharm.2010.03.024.
  • Dilli Varaprasad, E.; Mastan, M.; Sobha Rani, T. Synthesis and Evaluation of Analgesic Activity of Indole Derivatives Linked to Isoxazole Moiety. Der Pharmacia Lettre. 2012, 4(5), 1431–1437. http://scholarsresearchlibrary.com/archive.html.
  • Yanzi, J.; Yingjie, H.; Jianjun, F.; Liu, W.; Zhao, Y.; Huang, T. Preparation and Characterization of PVA/SA/HA Composite Hydrogels for Wound Dressing. Inter. J. Polym. Ana. Cha. 2018, 24, 132–141. DOI: 10.1080/1023666X.2018.1558567.
  • Mali, K. K.; Dhawale, S. C.; Dias, R. J. Synthesis and Characterization of Hydrogel Films of Carboxymethyl Tamarind Gum Using Citric Acid. Inter. J. Bio. Macromo. 2017, 105(1), 463–470. DOI: 10.1016/j.ijbiomac.2017.07.058.
  • Bruna, J.; Yazdani-Pedram, M.; Quijada, R.; Valent, J. L. Melt Grafting of Itaconic Acid and Its Derivatives onto an Ethylene-propylene Copolymer. React. Funct. Polym. 2005, 64, 167.178. DOI: 10.1016/j.reactfunctpolym.2005.05.013.
  • Saeed, M.; Kokabi, M. Transient Swelling Behaviour of Dual Stimuli Sensitive Nanocomposite Hydrogels. Polymers. 2020, 191(16), 122280. DOI: 10.1016/j.polymer.2020.122280.
  • Chitra, G.; Franklin, D. S.; Guhanathan, S. Indole-3-acetic Acid Based Tunable Hydrogels for Antibacterial, Antifungal and Antioxidant Applications. J. Macromol. Sci., Part A: Pure Appl. Chem. 2017, 54(3), 151–163. DOI: 10.1080/10601325.2017.1265401.
  • Sakthivel, M.; Franklin, D. S.; Guhanathan, S. pH-sensitive Itaconic Acid Based Polymeric Hydrogels for Dye Removal Applications. Ecotox. Enviro. safty. 2015, 134, 427–432. DOI: 10.1016/j.ecoenv.2015.11.004.
  • Chitra, G.; Franklin, D. S.; Sudarsan, S.; Sakthivel, M.; Guhanathan, S. Antioxidant Properties of Indole-3-acetic Acid Based Biopolymeric Hydrogels. Asian J. Chem. 2017, 29(12), 2647–2650. DOI: 10.14233/ajchem.2017.2075.
  • Franklin, D. S.; Guhanathan, S. Performance of Silane-coupling agent-treated Hydroxyapatite/diethylene Glycol-based pH-sensitive Biocomposite Hydrogels. Iran. Polym. J. 2014, 23, 809–817. DOI: 10.1007/s13726-014-0278-z.
  • George, T.; Eisenberg, A. Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behaviour of Filled Polymer. Similarities and Differences with Random Ionomers. Macromolecules. 1995, 28(18), 6067–6077. DOI: 10.1021/ma00122a011.
  • Chitra, G.; Franklin, D. S.; Sudarsan, S.; Sakthivel, M.; Guhanathan, S. Preparation, Antimicrobial and Antioxidant Evaluation of Indole-3-acetic Acid-based pH-responsive Bio-nanocomposites. Polym. Bull. 2017, 74, 3379–3398. DOI: 10.1007/s00289-016-1900-3.
  • Simonida Ljubisa, A. E.; Suzana, T. I.; Dimitrijevic, A. E.; Aleksandar, D.; Marinkovic, A. E.; Najman, A. E. S.; Filipovic, M. J. Polym. Bull. 2009, 63, 837–851. DOI: 10.1007/s00289-009-0123-2.
  • Yan, N.; Liu, Y.; Zhang, H.; Du, Y.; Liu, X.; Zhang, Z. Solanesol Biosynthesis in Plants. Molecules. 2017, 22(4), 51. 10.3390/molecules 22040510.
  • Sakthivel, M.; Franklin, D. S.; Sudarsan, S.; Chitra, G.; Guhanathan, S. Investigation on pH-switchable (Itaconic Acid/Ethylene Glycol/Acrylic Acid) Based Polymeric Biocompatible Hydrogel. RSC Adv. 2016, 6, 106821. DOI: 10.1039/c6ra21043k.
  • Rafiee Mehr, H.;. Evaluation of Cytotoxic Effect of Zinc on Raji Cell-Line by MTT Assay. IJT. 2011, 4(4), 390–396. http://ijt.arakmu.ac.ir/article-1-50-en.html.
  • Hamatake, M.; Iguchi, K.; Hirano, K.; Ishida, R. Zinc Induces Mixed Types of Cell Death Necrosis and Apoptosis in Molt-4 Cells. J. Biochem. 2000, 128, 933–939. DOI: 10.1093/oxfordjournals.jbchem.a022844.
  • Sudarsan, S.; Franklin, D. S.; Sakthivel, M.; Guhanathan, S. Nontoxic, Antibacterial, Biodegradable Hydrogels with pH-stimuli Sensitivity: Investigation of Swelling Parameters. Carbohydr. Polym. 2016, 148, 206–215. DOI: 10.1016/j.carbpol.2016.04.060.
  • Yang, X.; Yang, K.; Yu, F.; Chen, X.; Wu, S.; Zhu, Z. Preparation of Novel Bilayer Hydrogels by Combination of Irradiation and Freeze–Thawing and Their Physical and Biological Properties. Polym. Int. 2009, 58(11), 1291–1298. DOI: 10.1002/pi.2662.
  • Muya, F. N.;. Synthesis and Characterization of Polysulfone Hydrogels. J. Sur. Eng. Mat. Adv. Tech. 2014, 4, 227–236. DOI: 10.4236/jsemat.2014.4402.
  • Hoak, J.;. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and Environment. J. Nanoparticle Res. 2010, 12, 1531–1551. DOI: 10.1007/s11051-010-9900-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.