194
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effect of initiator, polyfunctional monomer and polybutene-1 resin on the long chain branching of random polypropylene copolymer via reactive extruder

, ORCID Icon & ORCID Icon
Pages 327-343 | Received 22 May 2020, Accepted 13 Aug 2020, Published online: 08 Sep 2020

References

  • Gotsis, A. D.; Zeevenhoven, B. L. F.; Hogt, A. H. The effect of long chain branching on the processability of polypropylene in thermoforming.Polym. Eng. Sci. 2004, 44, 973.
  • He, G.-J.; Yuan, B.-Y.; Zheng, -T.-T.; Zhu, W.; Yin, X.-C. In situ ozonolysis of polypropylene during extrusion to produce long-chain branches with the aid of TMPTA. RSC Adv. 2017, 7, 22531.
  • Cao, J.; Wen, N.; Zheng, Y. Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer. Chin. J. Polym. Sci. 2016, 34, 1158.
  • Cao, J.; Zheng, Y.; Lin, T. Synergistic toughening effect of β-nucleating agent and long chain branching on polypropylene random copolymer. Polym. Test. 2016, 55, 318.
  • Ren, Q.; Fan, J.; Zhang, Q.; Yi, J.; Feng, J. Toughened polypropylene random copolymer with olefin block copolymer. Mater. Des. 2016, 107, 295.
  • Borsig, E.; Van Duin, M.; Gotsis, A. D.; Picchioni, F. Long chain branching on linear polypropylene by solid state reactions. Eur. Polym. J. 2008, 44, 200.
  • Weng, W.; Hu, W.; Dekmezian, A. H.; Ruff, C. J. Long chain branched isotactic polypropylene. Macromolecules. 2002, 35, 3838.
  • Weng, W.; Markel, E. J.; Dekmezian, A. H. Synthesis of Long‐Chain Branched Propylene Polymers via Macromonomer Incorporation. Macromol. Rapid Commun. 2001, 22, 1488.
  • Langston, J. A.; Colby, R. H.; Chung, T. M.; Shimizu, F.; Suzuki, T.; Aoki, M. Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules. 2007, 40, 2712.
  • Morrison, F. A. Understanding Rheology, Topics in Chemical Engineering; Oxford University Press: New York, 2001.
  • Alger, M. Polymer Science Dictionary; Springer Science & Business Media, Springer Netherlands, 2018.
  • Kontopoulou, M. Applied Polymer Rheology: Polymeric Fluids with Industrial Applications; John Wiley & Sons, New York, 2011.
  • Auhl, D.; Stange, J.; Münstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules. 2004, 37, 9465.
  • Su, F.-H.; Huang, H.-X. Rheology and melt strength of long chain branching polypropylene prepared by reactive extrusion with various peroxides. Polym. Eng. Sci. 2010, 50, 342.
  • Auhl, D.; Stadler, F. J.; Münstedt, H. Comparison of molecular structure and rheological properties of electron-beam-and gamma-irradiated polypropylene. Macromolecules. 2012, 45, 2057.
  • Li, S.; Xiao, M.; Wei, D.; Xiao, H.; Hu, F.; Zheng, A. The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer. 2009, 50, 6121.
  • Zarch, F. S.; Jahani, Y.; Haghighi, M. N.; Morshedian, J. Rheological evaluation of electron beam irradiated polypropylene in the presence of a multifunctional monomer and polybutene resin. J. Appl. Polym. Sci. 2012, 123, 2036.
  • Lu, B.; Chung, T. C. Synthesis of long chain branched polypropylene with relatively well-defined molecular structure. Macromolecules. 1999, 32, 8678.
  • Su, F.-H.; Huang, H.-X. Rheology and thermal behavior of long branching polypropylene prepared by reactive extrusion. J. Appl. Polym. Sci. 2009, 113, 2126.
  • Manley, T. R.; Qayyum, M. M. The effects of varying peroxide concentration in crosslinked linear polyethylene. Polymer. 1971, 12, 176.
  • Luciani, L.; Seppälä, J.; Löfgren, B. Poly-1-butene: its preparation, properties and challenges. Prog. Polym. Sci. 1988, 13, 37.
  • Leel, M.-S.; Chen, S.-A. The polymer-polymer interaction parameter in polybutene-1/polypropylene blends. J. Polym. Res. 1996, 3, 235.
  • Shieh, Y.-T.; Lee, M.-S.; Chen, S.-A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer. 2001, 42, 4439.
  • Ardakani, F.; Jahani, Y.; Morshedian, J. Dynamic viscoelastic behavior of polypropylene/polybutene‐1 blends and its correlation with morphology. J. Appl. Polym. Sci. 2012, 125, 640.
  • Ardakani, F.; Jahani, Y.; Morshedian, J. The role of PB-1 on the long chain branching of PP by electron beam irradiation in solid state and melt viscoelastic behavior. Radiat. Phys. Chem. 2013, 87, 64.
  • Ardakani, F.; Jahani, Y.; Morshedian, J. The impact of viscoelastic behavior and viscosity ratio on the phase behavior and morphology of polypropylene/polybutene‐1 blends. J. Vinyl Addit. Technol. 2015, 21, 94.
  • Foroozan, A.; Behboodi, T.; Jahani, Y. The influence of branching efficiency on the rheology and morphology of melt state long chain branched polypropylene/polybutene-1 blends. Polyolefins J. 2018, 1.
  • Davachi, S. M.; Shekarabi, A. S. Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int. J. Biol. Macromol. 2018, 113, 66.
  • Shenoy, A. V.; Saini, D. R. Melt flow index: more than just a quality control rheological parameter. Part I. Adv. Polym. Technol. 1986, 6, 1.
  • Yamaguchi, M.; Suzuki, K.-I.; Maeda, S. Enhanced strain hardening in elongational viscosity for HDPE/crosslinked HDPE blend. I. Characteristics of crosslinked HDPE. J. Appl. Polym. Sci. 2002, 86, 73.
  • Sims, G. L. A.; Sipaut, C. S. Crosslinking of Polyolefin Foams. Cell. Polym. 2001, 20.
  • Liang, X.; Luo, Z.; Yang, L.; Wei, J.; Yuan, X.; Zheng, Q. Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction. J. Polym. Eng. 2018, 38, 7.
  • Stadler, F. J.; Gabriel, C.; Münstedt, H. Influence of Short‐Chain Branching of Polyethylenes on the Temperature Dependence of Rheological Properties in Shear. Macromol. Chem. Phys. 2007, 208, 2449.
  • Krause, B.; Voigt, D.; Lederer, A.; Auhl, D.; Münstedt, H. Determination of low amounts of long-chain branches in polypropylene using a combination of chromatographic and rheological methods. J. Chromatogr. A. 2004, 1056, 217.
  • Koosha, M.; Jahani, Y.; Mirzadeh, H. The effect of electron beam irradiation on dynamic shear rheological behavior of a poly (propylene‐co‐ethylene) heterophasic copolymer. Polym. Adv. Technol. 2011, 22, 2039.
  • Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, 4th ed.; Wiley, New York, 2004.
  • Dealy, J. M.; Read, D. J.; Larson, R. G. Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again; Carl Hanser Verlag GmbH Co KG, Ohio, 2018.
  • Graebling, D. Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules. 2002, 35, 4602.
  • Schreiber, H. P.; Bagley, E. B. The Newtonian melt viscosity of polyethylene: An index of long‐chain branching. J. Polym. Sci. 1962, 58, 29.
  • Stadler, F. J.; Piel, C.; Kaminsky, W.; Münstedt, H. Rheological Characterization of Long‐chain Branched Polyethylenes and Comparison with Classical Analytical Methods. In Macromolecular Symposia, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006; Vol. 236, pp. 209.
  • Kazatchkov, I. B.; Hatzikiriakos, S. G.; Bohnet, N.; Goyal, S. K. Influence of molecular structure on the rheological and processing behavior of polyethylene resins. Polym. Eng. Sci. 1999, 39, 804.
  • Tabatabaei, S. H.; Carreau, P. J.; Ajji, A. Rheological and thermal properties of blends of a long-chain branched polypropylene and different linear polypropylenes. Chem. Eng. Sci. 2009, 64, 4719.
  • Davachi, S. M.; Kaffashi, B.; Torabinejad, B.; Zamanian, A.; Seyfi, J.; Hejazi, I. Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer. 2016, 90, 232.
  • Tian, J.; Yu, W.; Zhou, C. The preparation and rheology characterization of long chain branching polypropylene. Polymer. 2006, 47, 7962.
  • Davachi, S. M.; Bakhtiari, S.; Pouresmaeel‐Selakjani, P.; Mohammadi‐Rovshandeh, J.; Kaffashi, B.; Davoodi, S.; Yousefi, A. Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, Thermal, Rheological, and Morphological Study. Adv. Polym. Technol. 2018, 37, 5.
  • Balali, S.; Davachi, S. M.; Sahraeian, R.; Shiroud Heidari, B.; Seyfi, J.; Hejazi, I. Preparation and characterization of composite blends based on polylactic acid/polycaprolactone and silk. Biomacromolecules. 2018.
  • Zhao, W.; Wu, G.; Yang, Q. Controlling the transition of long-and short-chain branching polypropylene. Polym.-Plast. Technol. Eng. 2012, 51, 716.
  • Van Hemelrijck, E.; Van Puyvelde, P.; Velankar, S.; Macosko, C. W.; Moldenaers, P. Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J. Rheol. 2003, 48, 143.
  • Xu, L.-Q.; Huang, H.-X.; Chen, Z.-K.; Wu, X.-J.Effects of emulsion parameters on relaxation behaviors for immiscible polymer blends. J. Appl. Polym. Sci. 2014, 131.
  • Picchioni, F.; Goossens, J. G. P.; Van Duin, M. Solid‐state modification of polypropylene (PP): grafting of styrene on atactic PP. In Macromolecular Symposia, WILEY-VCH Verlag GmbH, D-69469 Weinheim, 2001; Vol. 176, pp. 245.
  • Picchioni, F.; Goossens, J. G. P.; Van Duin, M.; Magusin, P. Solid‐state modification of isotactic polypropylene (iPP) via grafting of styrene. I. Polymerization experiments. J. Appl. Polym. Sci. 2003, 89, 3279.
  • Picchioni, F.; Goossens, J. G. P.; Van Duin, M. Solid‐state modification of isotactic polypropylene (iPP) via grafting of styrene. II. Morphology and melt processing. J. Appl. Polym. Sci. 2005, 97, 575.
  • Davachi, S. M.; Heidari, B. S.; Sahraeian, R.; Abbaspourrad, A. The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng. 2019, 175, 107088.
  • Torabi, H.; Ramazani SaadatAbadi, A. Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites. J. Polym. Environ. 2019, 27, 2886.
  • Heidari, B. S.; Davachi, S. M.; Sahraeian, R.; Esfandeh, M.; Rashedi, H.; Seyfi, J. Investigating thermal and surface properties of LDPE/nanoperlite nanocomposites for packaging applications. Polym. Compos. 2018.
  • Sahraeian, R.; Davachi, S. M.; Heidari, B. S. The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos. Part B Eng. 2019, 162, 103.
  • Ukita, M. The vibrational spectra and vibrational assignments of isotactic polybutene-1. Bull. Chem. Soc. Jpn. 1966, 39, 742.
  • Ardakani, F.; Jahani, Y.; Morshedian, J. Effect of electron beam irradiation dose on the rheology, morphology, and thermal properties of branched polypropylene/polybutene‐1 blend. Polym. Eng. Sci. 2014, 54, 1747.
  • Ebrahimi, H.; Ramazani S. A., A.; Davachi, S. M. Development of a rheological model for polymeric fluids based on FENE model. Polyolefins J. 2019, 6, 95.
  • Stange, J.; Münstedt, H. Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J. Cell. Plast. 2006, 42, 445.
  • Nam, G. J.; Yoo, J. H.; Lee, J. W. Effect of long‐chain branches of polypropylene on rheological properties and foam‐extrusion performances. J. Appl. Polym. Sci. 2005, 96, 1793.
  • Heidari, B. S.; Cheraghchi, V.-S.; Motahari, S.; Motlagh, G. H.; Davachi, S. M. Optimized mercapto-modified resorcinol formaldehyde xerogel for adsorption of lead and copper ions from aqueous solutions. J. Sol-Gel Sci. Technol. 2018, 88, 236.
  • Parsa, P.; Paydayesh, A.; Davachi, S. M. Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int. J. Biol. Macromol. 2019, 121, 1061.
  • Passaglia, E.; Coiai, S.; Augier, S. Control of macromolecular architecture during the reactive functionalization in the melt of olefin polymers. Prog. Polym. Sci. 2009, 34, 911.
  • Fang, H.; Zhang, Y.; Bai, J.; Wang, Z.; Wang, Z. Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Adv. 2013, 3, 8783.
  • Mousavi‐Saghandikolaei, S. A.; Frounchi, M.; Dadbin, S.; Augier, S.; Passaglia, E.; Ciardelli, F. Modification of isotactic polypropylene by the free‐radical grafting of 1, 1, 1‐trimethylolpropane trimethacrylate. J. Appl. Polym. Sci. 2007, 104, 950.
  • Stange, J.; Uhl, C.; Münstedt, H. Rheological behavior of blends from a linear and a long-chain branched polypropylene. J. Rheol. 2005, 49, 1059.
  • Gabriel, C.; Münstedt, H. Strain hardening of various polyolefins in uniaxial elongational flow. J. Rheol. 2003, 47, 619.
  • Lentzakis, H.; Vlassopoulos, D.; Read, D. J.; Lee, H.; Chang, T.; Driva, P.; Hadjichristidis, N. Uniaxial extensional rheology of well-characterized comb polymers. J. Rheol. 2013, 57, 605.
  • Gu, L.; Xu, Y.; Fahnhorst, G. W.; Macosko, C. W. Star vs long chain branching of poly (lactic acid) with multifunctional aziridine. J. Rheol. 2017, 61, 785.
  • Blackwell, R. J.; Harlen, O. G.; McLeish, T. C. Theoretical linear and nonlinear rheology of symmetric treelike polymer melts. Macromolecules. 2001, 34, 2579.
  • Salehiyan, R.; Yoo, Y.; Choi, W. J.; Hyun, K. Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology. Macromolecules. 2014, 47, 4066.
  • Chen, R.; Jiang, X.; You, F.; Yao, C. Optimizing the morphology, mechanical and crystal properties of in-situ polypropylene/polystyrene blends by reactive extrusion. Fibers Polym. 2016, 17, 1550.
  • Xu, Y.; Loi, J.; Delgado, P.; Topolkaraev, V.; McEneany, R. J.; Macosko, C. W.; Hillmyer, M. A. Reactive compatibilization of polylactide/polypropylene blends. Ind. Eng. Chem. Res. 2015, 54, 6108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.