1,436
Views
25
CrossRef citations to date
0
Altmetric
Review

Functionalization of conducting polymers and their applications in optoelectronics

, ORCID Icon, &
Pages 465-487 | Received 02 Jun 2020, Accepted 31 Aug 2020, Published online: 16 Sep 2020

References

  • Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers. 2017, 9(12), 150. DOI: 10.3390/polym9040150.
  • Park, Y. W.;. Magneto Resistance of Polyacetylene Nanofibers. Chem. Soc. Rev. 2010, 39(7), 2428–2438. DOI: 10.1039/b913768h.
  • Bahceci, S.; Esat, B. A Polyacetylene Derivative with Pendant TEMPO Group as Cathode Material for Rechargeable Batteries. J. Power Sources. 2013, 242, 33–40. DOI: 10.1016/j.jpowsour.2013.05.051.
  • Kar, P.;. Doping in Conjugated Polymers; John Wiley & Sons: Hoboken, NJ, 2013.
  • Chien, J. C. W.;. Polyacetylene: Chemistry, Physics, and Material Science; Elsevier: London, 2012.
  • Jangid, N. K.; Jadoun, S.; Yadav, A.; Srivastava, M.; Kaur, N. Polyaniline-TiO2-Based Photocatalysts for Dyes Degradation. Polym. Bull. 2020. DOI: 10.1007/s00289-020-03318-w.
  • Jangid, N. K.; Jadoun, S.; Kaur, N. A. Review on High-Throughput Synthesis, Deposition of Thin Films and Properties of Polyaniline. Eur. Polym. J. 2020, 125, 109485. DOI: 10.1016/j.eurpolymj.2020.109485.
  • Riaz, U.; Ashraf, S. M.; Jadoun, S.; Budhiraja, V.; Spectroscopic, K. P. And Biophysical Interaction Studies of Water-Soluble Dye Modified Poly (O-phenylenediamine) for Its Potential Application in BSA Detection and Bioimaging. Sci. Rep. 2019, 9(1), 8544. DOI: 10.1038/s41598-019-44910-z.
  • Riaz, U.; Jadoun, S.; Kumar, P.; Kumar, R.; Yadav, N. Microwave-Assisted Facile Synthesis of Poly (Luminol-co-phenylenediamine) Copolymers and Their Potential Application in Biomedical Imaging. RSC Adv. 2018, 8(65), 37165–37175. DOI: 10.1039/C8RA08373H.
  • Jadoun, S.; Ashraf, S. M.; Riaz, U. Microwave‐assisted Synthesis of Copolymers of Luminol with Anisidine: Effect on Spectral, Thermal and Fluorescence Characteristics. Polym. Adv. Technol. 2018, 29(2), 1007–1017. DOI: 10.1002/pat.4212.
  • Riaz, U.; Ashraf, S. M.; Aleem, S.; Budhiraja, V.; Jadoun, S. Microwave-Assisted Green Synthesis of Some Nanoconjugated Copolymers: Characterisation and Fluorescence Quenching Studies with Bovine Serum Albumin. New J. Chem. 2016, 40(5), 4643–4653. DOI: 10.1039/C5NJ02513C.
  • Riaz, U.; Jadoun, S.; Kumar, P.; Arish, M.; Rub, A.; Ashraf, S. M. Influence of Luminol Doping of Poly(o-Phenylenediamine) on the Spectral, Morphological and Fluorescent Properties: A Potential Biomarker for Leishmania Parasite. ACS Appl. Mater. Interfaces. 2017, acsami.7b10325. doi:10.1021/acsami.7b10325.
  • Senthilkumar, B.; Thenamirtham, P.; Selvan, R. K. Structural and Electrochemical Properties of Polythiophene. Appl. Surf. Sci. 2011, 257(21), 9063–9067. DOI: 10.1016/j.apsusc.2011.05.100.
  • Jadoun, S.; Biswal, L.; Riaz, U. Tuning the Optical Properties of Poly(o-Phenylenediamine-Co-Pyrrole) via Template Mediated Copolymerization. Des. Monomers Polym. 2018, 21(1), 75–81. DOI: 10.1080/15685551.2018.1459078.
  • Jadoun, S.; Verma, A.; Ashraf, S. M.; Riaz, U. A Short Review on the Synthesis, Characterization, and Application Studies of Poly(1-naphthylamine): A Seldom Explored Polyaniline Derivative. Colloid Polym. Sci. 2017, 295(9), 1443–1453. DOI: 10.1007/s00396-017-4129-2.
  • Jadoun, S.; Sharma, V.; Ashraf, S. M.; Riaz, U. Sonolytic Doping of Poly(1-Naphthylamine) with Luminol: Influence on Spectral, Morphological and Fluorescent Characteristics. Colloid Polym. Sci. 2017, 295(4), 715–724. DOI: 10.1007/s00396-017-4055-3.
  • Kim, J. S.; Park, Y.; Lee, D. Y.; Lee, J. H.; Park, J. H.; Kim, J. K.; Cho, K. Poly(3‐hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics. Adv. Funct. Mater. 2010, 20(4), 540–545. DOI: 10.1002/adfm.200901760.
  • Ouyang, L.; Kuo, C.; Farrell, B.; Pathak, S.; Wei, B.; Qu, J.; Martin, D. C. Poly [3, 4-Ethylene Dioxythiophene (Edot)-co-1, 3, 5-Tri [2-(3, 4-Ethylene Dioxythienyl)]-Benzene (Eph)] Copolymers (Pedot-co-eph): Optical, Electrochemical and Mechanical Properties. J. Mater Chem. B. 2015, 3(25), 5010–5020. DOI: 10.1039/C5TB00053J.
  • Erdur, S.; Yilmaz, G.; Goen Colak, D.; Cianga, I.; Yagci, Y. Poly (Phenylenevinylene) S as Sensitizers for Visible Light Induced Cationic Polymerization. Macromolecules. 2014, 47(21), 7296–7302. DOI: 10.1021/ma5019457.
  • Jadoun, S.; Verma, A.; Riaz, U. Luminol Modified Polycarbazole and Poly(o-anisidine): Theoretical Insights Compared with Experimental Data. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2018, 204, 64–72. DOI: 10.1016/j.saa.2018.06.025.
  • Riaz, U.; Ashraf, S. M.; Fatima, T.; Jadoun, S. Tuning the Spectral, Morphological and Photophysical Properties of Sonochemically Synthesized Poly(Carbazole) Using Acid Orange, Fluorescein and Rhodamine 6G. Spectro Acta Part A: Molecular Biomolecular Spectroscopy 2017, 173, 986–993. DOI: 10.1016/j.saa.2016.11.003.
  • Riaz, U.; Ashraf, S. M.; Kumar Saroj, S.; Zeeshan, M.; Jadoun, S. Microwave-Assisted Solid State Intercalation of Rhodamine B and Polycarbazole in Bentonite Clay Interlayer Space: Structural Characterization and Photophysics of Double Intercalation. RSC Adv. 2016, 6(41), 41. DOI: 10.1039/c5ra27387k.
  • Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int. J. Mol. Sci. 2010, 11(7), 2636–2657. DOI: 10.3390/ijms11072636.
  • Brédas, J. L.; Chance, R. R. Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics; Springer Science & Business Media: New York, 2012; Vol. 182.
  • Guo, B.; Glavas, L.; Albertsson, A.-C. Biodegradable and Electrically Conducting Polymers for Biomedical Applications. Prog. Polym. Sci. 2013, 38(9), 1263–1286. DOI: 10.1016/j.progpolymsci.2013.06.003.
  • Hoffman, A. S.;. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Delivery Rev. 2013, 65(1), 10–16. DOI: 10.1016/j.addr.2012.11.004.
  • Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng. 2012, 51(14), 1487–1500. DOI: 10.1080/03602559.2012.710697.
  • Kim, J.; Lee, J.; You, J.; Park, M.-S.; Al Hossain, M. S.; Yamauchi, Y.; Kim, J. H. Conductive Polymers for Next-Generation Energy Storage Systems: Recent Progress and New Functions. Mater. Horiz. 2016, 3(6), 517–535. DOI: 10.1039/C6MH00165C.
  • Mahani, M. R.; Mirsakiyeva, A.; Delin, A. Breakdown of Polarons in Conducting Polymers at Device Field Strengths. J. Phys. Chem. C. 2017, 121(19), 10317–10324. DOI: 10.1021/acs.jpcc.7b02368.
  • Vasseur, G.; Fagot-Revurat, Y.; Sicot, M.; Kierren, B.; Moreau, L.; Malterre, D.; Cardenas, L.; Galeotti, G.; Lipton-Duffin, J.; Rosei, F. Quasi One-Dimensional Band Dispersion and Surface Metallization in Long-Range Ordered Polymeric Wires. Nat. Commun. 2016, 7(1), 1–9. DOI: 10.1038/ncomms10235.
  • Bharti, M.; Singh, A.; Samanta, S.; Aswal, D. K. Conductive Polymers: Creating Their Niche in Thermoelectric Domain. Prog. Mater. Sci. 2018, 93, 270–310. DOI: 10.1016/j.pmatsci.2017.09.004.
  • Ahn, S.; Jeong, S.; Han, T.; Lee, T. Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics. Adv. Opt. Mater. 2017, 5(3), 1600512.
  • Yamamoto, J.; Furukawa, Y. Electronic and Vibrational Spectra of Positive Polarons and Bipolarons in Regioregular Poly (3-hexylthiophene) Doped with Ferric Chloride. J. Phys. Chem. B. 2015, 119(13), 4788–4794. DOI: 10.1021/jp512654b.
  • Chandrasekhar, P.;. Conducting Polymers, Fundamentals and Applications: A Practical Approach; Springer Science & Business Media: New York, 2013.
  • Moliton, A.; Hiorns, R. C. Review of Electronic and Optical Properties of Semiconducting Π‐conjugated Polymers: Applications in Optoelectronics. Polym. Int. 2004, 53(10), 1397–1412. DOI: 10.1002/pi.1587.
  • Iqbal, S.; Ahmad, S. Recent Development in Hybrid Conducting Polymers: Synthesis, Applications and Future Prospects. J. Ind. Eng. Chem. 2018, 60, 53–84. DOI: 10.1016/j.jiec.2017.09.038.
  • Ribeiro, L. A.; Monteiro, F. F.; da Cunha, W. F.; E Silva, G. M. Charge Carrier Scattering in Polymers: A New Neutral Coupled Soliton Channel. Sci. Rep. 2018, 8(1), 1–7. DOI: 10.1038/s41598-018-24948-1.
  • Li, Y.;. Conducting Polymers. In Organic Optoelectronic Materials; Springer: New York, 2015; pp 23–50.
  • Wang, Y.; Zhang, W.; Wu, X.; Luo, C.; Wang, Q.; Li, J.; Hu, L. Conducting Polymer Coated Metal-Organic Framework Nanoparticles: Facile Synthesis and Enhanced Electromagnetic Absorption Properties. Synth. Met. 2017, 228, 18–24. DOI: 10.1016/j.synthmet.2017.04.009.
  • Jabarullah, N. H.; Verrelli, E.; Gee, A.; Mauldin, C.; Navarro, L. A.; Golden, J. H.; Kemp, N. T. Large Dopant Dependence of the Current Limiting Properties of Intrinsic Conducting Polymer Surge Protection Devices. RSC Adv. 2016, 6(89), 85710–85717. DOI: 10.1039/C6RA18549E.
  • Jadoun, S.; Ashraf, S. M.; Riaz, U. Tuning the Spectral, Thermal and Fluorescent Properties of Conjugated Polymers: Via Random Copolymerization of Hole Transporting Monomers. RSC Adv. 2017, 7(52), 32757–32768. DOI: 10.1039/c7ra04662f.
  • Pecher, J.; Mecking, S. Nanoparticles of Conjugated Polymers. Chem. Rev. 2010, 110(10), 6260–6279. DOI: 10.1021/cr100132y.
  • Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting Polymer Based Electrochemical Biosensors. Phys. Chem. Chem. Phys. 2016, 18(12), 8264–8277. DOI: 10.1039/C5CP06830D.
  • Ziadan, K. M.;. Conducting Polymers Application. New Poly Special Appl. 2012, 1. DOI: 10.5772/48316.
  • Navale, S. T.; Mane, A. T.; Ghanwat, A. A.; Mulik, A. R.; Patil, V. B. Camphor Sulfonic Acid (CSA) Doped Polypyrrole (Ppy) Films: Measurement of Microstructural and Optoelectronic Properties. Measurement. 2014, 50, 363–369. DOI: 10.1016/j.measurement.2014.01.012.
  • Baeriswyl, D.; Campbell, D. K.; Clark, G. C.; Harbeke, G.; Kahol, P. K.; Kiess, H.; Mazumdar, S.; Mehring, M.; Rehwald, W. Conjugated Conducting Polymers, Vol. 102; Springer Science & Business Media: New York, 2012.
  • Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of Conducting Polymers. Persistent Models and New Concepts. Chem. Rev. 2010, 110(8), 4724–4771. DOI: 10.1021/cr900226k.
  • Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118(14), 6766–6843. DOI: 10.1021/acs.chemrev.6b00275.
  • Boeva, Z. A.; Sergeyev, V. G. Polyaniline: Synthesis, Properties, and Application. Polymer Sci Series C. 2014, 56(1), 144–153. DOI: 10.1134/S1811238214010032.
  • Tang, X.; Liu, T.; Li, H.; Yang, D.; Chen, L.; Tang, X. Notably Enhanced Thermoelectric Properties of Lamellar Polypyrrole by Doping with β-Naphthalene Sulfonic Acid. RSC Adv. 2017, 7(33), 20192–20200. DOI: 10.1039/C7RA02302B.
  • Cho, S.; Lee, J. S.; Jun, J.; Kim, S. G.; Jang, J. Fabrication of Water-Dispersible and Highly Conductive PSS-Doped PANI/Graphene Nanocomposites Using a High-Molecular Weight PSS Dopant and Their Application in H 2 S Detection. Nanoscale. 2014, 6(24), 15181–15195. DOI: 10.1039/C4NR04413D.
  • Khan, A. A.; Shaheen, S. Electrical Conductivity Isothermal Stability and Amine Sensing Studies of a Synthetic Poly-o-Toluidine/Multiwalled Carbon Nanotube/Sn (IV) Tungstate Composite Ion Exchanger Doped with p-Toluene Sulfonic Acid. Anal. Methods. 2015, 7(5), 2077–2086. DOI: 10.1039/C4AY02911A.
  • Wei, L.; Chen, Q.; Gu, Y. Effects of Content of Polyaniline Doped with Dodecylbenzene Sulfonic Acid on Transparent PANI-SiO2 Hybrid Conducting Films. Synth. Met. 2010, 160(5–6), 405–408. DOI: 10.1016/j.synthmet.2009.11.017.
  • Sen, U.; Acar, O.; Bozkurt, A.; Ata, A. Proton Conducting Polymer Blends from Poly (2, 5‐benzimidazole) and Poly (2‐acrylamido‐2‐methyl‐1‐propanesulfonic Acid). J. Appl. Polym. Sci. 2011, 120(2), 1193–1198. DOI: 10.1002/app.33026.
  • Liang, Z.; Zhang, Y.; Souri, M.; Luo, X.; Boehm, A. M.; Li, R.; Zhang, Y.; Wang, T.; Kim, D.-Y.; Mei, J. Influence of Dopant Size and Electron Affinity on the Electrical Conductivity and Thermoelectric Properties of a Series of Conjugated Polymers. J. Mater. Chem. A. 2018, 6(34), 16495–16505. DOI: 10.1039/C8TA05922E.
  • Jadoun, S.; Riaz, U. A. Review on the Chemical and Electrochemical Copolymerization of Conducting Monomers: Recent Advancements and Future Prospects. Polym. Plast. Technol. Eng. 2019, 59, 1–21.
  • Noshay, A.; McGrath, J. E. Block Copolymers: Overview and Critical Survey; Elsevier: London, 2013.
  • Durban, M. M.; Kazarinoff, P. D.; Luscombe, C. K. Synthesis and Characterization of Thiophene-Containing Naphthalene Diimide n-Type Copolymers for OFET Applications. Macromolecules. 2010, 43(15), 6348–6352. DOI: 10.1021/ma100997g.
  • Tang, Y.; Pan, K.; Wang, X.; Liu, C.; Luo, S. Electrochemical Synthesis of Polyaniline in Surface-Attached Poly (Acrylic Acid) Network, and Its Application to the Electrocatalytic Oxidation of Ascorbic Acid. Microchim. Acta. 2010, 168(3–4), 231–237. DOI: 10.1007/s00604-009-0286-4.
  • Mascaro, L. H.; Berton, A. N.; Micaroni, L. Electrochemical Synthesis of Polyaniline/Poly-o-Aminophenol Copolymers in Chloride Medium. Int. J. Electrochem. 2011, 2011. DOI: 10.4061/2011/292581.
  • Gizdavic‐Nikolaidis, M. R.; Zujovic, Z. D.; Ray, S.; Easteal, A. J.; Bowmaker, G. A. Chemical Synthesis and Characterization of Poly (Aniline‐co‐ethyl 3‐aminobenzoate) Copolymers. J. Polym. Sci. A Polym. Chem. 2010, 48(6), 1339–1347. DOI: 10.1002/pola.23895.
  • Liang, S.; Deng, J.; Yang, W. Monomer Reactivity Ratio and Thermal Performance of α-Methyl Styrene and Glycidyl Methacrylate Copolymers. Chin. J. Polym. Sci. 2010, 28(3), 323–330. DOI: 10.1007/s10118-010-9009-x.
  • Ten Brummelhuis, N.; Weck, M. Orthogonal Multifunctionalization of Random and Alternating Copolymers. ACS Macro Lett. 2012, 1(10), 1216–1218. DOI: 10.1021/mz300428n.
  • Sperling, L.;. Recent Advances in Polymer Blends, Grafts, and Blocks; Springer Science & Business Media: New York, 2013; Vol. 4.
  • Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, Function, Self-Assembly, and Applications of Bottlebrush Copolymers. Chem. Soc. Rev. 2015, 44(8), 2405–2420. DOI: 10.1039/C4CS00329B.
  • Sağlam, Ş.; Arman, A.; Arda, A.; Ustamehmetoğlu, B.; Sezer, E.; Apak, R. Selective Electrochemical Determination of Dopamine with Molecularly Imprinted Poly (Carbazole‐co‐aniline) Electrode Decorated with Gold Nanoparticles. Electroanalysis. 2019, 32, 964–970.
  • Zoromba, M. S.; Al-Hossainy, A. F. Doped Poly (O-phenylenediamine-co-p-toluidine) Fibers for Polymer Solar Cells Applications. Solar Energy. 2020, 195, 194–209. DOI: 10.1016/j.solener.2019.11.064.
  • Thi, Q. V.; Lim, S.; Jang, E.; Kim, J.; Van Khoi, N.; Tung, N. T.; Sohn, D. Silica Particles Wrapped with Poly(aniline-co-pyrrole) and Reduced Graphene Oxide for Advanced Microwave Absorption. Mater. Chem. Phys. 2020, 244, 122691. DOI: 10.1016/j.matchemphys.2020.122691.
  • Huang, Q.-S.; Wang, C.; Wei, W.; Ni, B.-J. Magnetic Poly (Aniline-co-5-sulfo-2-anisidine) as Multifunctional Adsorbent for Highly Effective Co-Removal of Aqueous Cr (VI) and 2, 4-Dichlophenol. Chem. Eng. J. 2020, 387, 124152. DOI: 10.1016/j.cej.2020.124152.
  • Li, X.-G.; Wang, H.-Y.; Huang, M.-R. Synthesis, Film-Forming, and Electronic Properties of o-Phenylenediamine Copolymers Displaying an Uncommon Tricolor. Macromolecules. 2007, 40(5), 1489–1496. DOI: 10.1021/ma062463g.
  • Li, X.-G.; Huang, M.-R.; Yang, Y. Synthesis and Characterization of O-Phenylenediamine and Xylidine Copolymers. Polymer. 2001, 42(9), 4099–4107. DOI: 10.1016/S0032-3861(00)00661-3.
  • Kong, Y.; Shan, X.; Tao, Y.; Chen, Z.; Xue, H. Synthesis of Poly (O-phenylenediamine-co-o-aminophenol) via Electrochemical Copolymerization and Its Electrical Properties. J. Electrochem. Soc. 2013, 160(8), G96–G101. DOI: 10.1149/2.039308jes.
  • Wang, Y.; Zhang, X.; Li, W.; Cheng, J.; Liu, C.; Zheng, J. Determination of Reactivity Ratios of Copolymerization of Acrylamide (AM) and Methacryloxyethyltrimethyl Ammonium Chloride (DMC) with Ultraviolet Initiation, and Their Sequence Length Distribution. Polym. Polym. Composites. 2016, 24(5), 307–314. DOI: 10.1177/096739111602400501.
  • Yue, R.; Xu, J.; Lu, B.; Liu, C.; Li, Y.; Zhu, Z.; Chen, S. Electrochemical Copolymerization of Benzanthrone and 3-Methylthiophene and Characterization of Their Fluorescent Copolymer. J. Mater. Sci. 2009, 44(21), 5909–5918. DOI: 10.1007/s10853-009-3836-6.
  • Eisazadeh, H.; Kavian, A. Copolymerization of Aniline and Styrene Using Various Surfactants in Aqueous Media. Polym. Compos. 2009, 30(1), 43–48. DOI: 10.1002/pc.20531.
  • Eisazadeh, H.; Ghorbani, M. Copolymerization of Pyrrole and Vinyl Acetate in Aqueous and Aqueous/Nonaqueous Media. J. Vinyl Addit. Technol. 2009, 15(3), 204–210. DOI: 10.1002/vnl.20190.
  • Li, C.; Liu, C.; Shi, L.; Nie, G. Electrochemical Copolymerization of 3, 4-Ethylenedioxythiophene and 6-Cyanoindole and Its Electrochromic Property. J. Mater. Sci. 2015, 50(4), 1836–1847. DOI: 10.1007/s10853-014-8746-6.
  • Kumar, P.; Ranjith, K.; Gupta, S.; Ramamurthy, P. C. Electrochemical Copolymerization of Thiophene Derivatives; a Precursor to Photovoltaic Devices. Electrochim. Acta. 2011, 56(24), 8184–8191. DOI: 10.1016/j.electacta.2011.06.114.
  • Wadatkar, N. S.; Waghuley, S. A. Exploring the Electrical and Complex Optical Properties of As-Synthesized Thiophene-Indole Conducting Copolymers. Heliyon. 2019, 5(4), e01534. DOI: 10.1016/j.heliyon.2019.e01534.
  • Facchetti, A.;. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23(3), 733–758. DOI: 10.1021/cm102419z.
  • Hu, F.; Zhang, W.; Xue, Y.; Lin, K.; Lu, B.; Xu, J.; Zhao, G. Tuning Optoelectronic Performances for 3-Methylselenophene-EDOT Hybrid Polymer. Mater. Chem. Phys. 2020, 244, 122699. DOI: 10.1016/j.matchemphys.2020.122699.
  • Abd-Elmageed, A. A. I.; Al-Hossainy, A. F.; Fawzy, E. M.; Almutlaq, N.; Eid, M. R.; Bourezgui, A.; Abdel-Hamid, S. M. S.; Elsharkawy, N. B.; Zwawi, M.; Abdel-Aziz, M. H. Synthesis, Characterization and DFT Molecular Modeling of Doped Poly (Para-nitroaniline-co-para-toluidine) Thin Film for Optoelectronic Devices Applications. Opt. Mater. 2020, 99, 109593.
  • Islam, S. M.; Singh, S.; Mahala, P. Organic Polymer Bilayer Structures for Applications in Flexible Solar Cell Devices. Microelectron. Eng. 2020, 222, 111200. DOI: 10.1016/j.mee.2019.111200.
  • Francis, M. K.; Bhargav, P. B.; Ahmed, N.; Chandra, B.; Gnanapraksh, D. M.; Thyagarajan, N.; Racchana, R. All‐solution Processed Highly Transparent Silver Nanowires/PEDOT: PSS Conducting Thin Films for Optoelectronic Applications. ChemistrySelect. 2020, 5(4), 1370–1374. DOI: 10.1002/slct.201903294.
  • Kumar, S.; Baruah, S.; Puzari, A. Poly (P-phenylenediamine)-based Nanocomposites with Metal Oxide Nanoparticle for Optoelectronic and Magneto-Optic Application. Polym. Bull. 2020, 77(1), 441–457. DOI: 10.1007/s00289-019-02760-9.
  • Regasa, M. B.; Soreta, T. R.; Femi, O. E.; Ramamurthy, P. C.; Subbiahraj, S. Novel Multifunctional Molecular Recognition Elements Based on Molecularly Imprinted Poly (Aniline-co-itaconic Acid) Composite Thin Film for Melamine Electrochemical Detection. Sen. Bio-Sen. Res.. 2020, 27, 100318. doi:10.1016/j.sbsr.2019.100318.
  • Yen, H.-J.; Liou, G.-S. Design and Preparation of Triphenylamine-Based Polymeric Materials Towards Emergent Optoelectronic Applications. Prog. Polym. Sci. 2019, 89, 250–287. DOI: 10.1016/j.progpolymsci.2018.12.001.
  • Dey, S.; Kar, A. K. Enhanced Photoluminescence through Forster Resonance Energy Transfer in Polypyrrole-PMMA Blends for Application in Optoelectronic Devices. Mater. Sci. Semicond. Process. 2019, 103, 104644. DOI: 10.1016/j.mssp.2019.104644.
  • Mezdour, D.; Bardeau, J.-F.; Errien, N.; Pilard, J.-F.; Tabellout, M. Polyaniline Based Composite Layers for Photovoltaïc Applications: Thermal and Optical Properties Investigation. In AIP Conference Proceedings; AIP Publishing LLC, Maryland, 2019; Vol. 2196, 20002.
  • Gicevicius, M.; Kucinski, J.; Ramanaviciene, A.; Ramanavicius, A. Tuning the Optical PH Sensing Properties of Polyaniline-Based Layer by Electrochemical Copolymerization of Aniline with o-Phenylenediamine. Dyes Pigm. 2019, 170, 107457. DOI: 10.1016/j.dyepig.2019.04.002.
  • Coleone, A. P.; Lascane, L. G.; Batagin-Neto, A. Polypyrrole Derivatives for Optoelectronic Applications: A DFT Study on the Influence of Side Groups. Phys. Chem. Chem. Phys. 2019, 21(32), 17729–17739.
  • Slimane, A. B.; Al-Hossainy, A. F.; Zoromba, M. S. Synthesis and Optoelectronic Properties of Conductive Nanostructured Poly (Aniline-co-o-aminophenol) Thin Film. J. Mater. Sci.: Mater. Electron. 2018, 29(10), 8431–8445.
  • Zoromba, M. S.; Abdel-Aziz, M. H.; Bassyouni, M.; Bahaitham, H.; Al-Hossainy, A. F. Poly (O-phenylenediamine) Thin Film for Organic Solar Cell Applications. J. Solid State Electrochem. 2018, 22(12), 3673–3687. DOI: 10.1007/s10008-018-4077-x.
  • Maity, N.; Ghosh, R.; Nandi, A. K. Optoelectronic Properties of Self-Assembled Nanostructures of Polymer Functionalized Polythiophene and Graphene. Langmuir. 2018, 34(26), 7585–7597. DOI: 10.1021/acs.langmuir.7b04387.
  • Gao, L.; Xiong, L.; Xu, D.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Appl. Mater. Interfaces. 2018, 10(34), 28918–28927. DOI: 10.1021/acsami.8b05891.
  • Cabuk, M.; Gündüz, B. Change of Optoelectronic Parameters of the Boric Acid-Doped Polyaniline Conducting Polymer with Concentration. Colloids Surf. A. 2017, 532, 263–269.
  • Hrichi, H.; Monser, L.; Adhoum, N. A Novel Electrochemical Sensor Based on Electropolymerized Molecularly Imprinted Poly (Aniline-co-anthranilic Acid) for Sensitive Detection of Amlodipine. J. Electroanal. Chem. 2017, 805, 133–145.
  • Bessaire, B.; Mathieu, M.; Salles, V.; Yeghoyan, T.; Celle, C.; Simonato, J.-P.; Brioude, A. Synthesis of Continuous Conductive PEDOT: PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics. ACS Appl. Mater. Interfaces. 2017, 9(1), 950–957. DOI: 10.1021/acsami.6b13453.
  • Hammed, W. A.; Rahman, M. S.; Mahmud, H.; Yahya, R.; Sulaiman, K. Processable Dodecylbenzene Sulfonic Acid (DBSA) Doped Poly (N-vinyl Carbazole)-Poly (Pyrrole) for Optoelectronic Applications. Des. Monomers Polym. 2017, 20(1), 368–377. DOI: 10.1080/15685551.2016.1271086.
  • Mao, X.; Yang, W.; He, X.; Chen, Y.; Zhao, Y.; Zhou, Y.; Yang, Y.; Xu, J. The Preparation and Characteristic of Poly (3, 4-Ethylenedioxythiophene)/Reduced Graphene Oxide Nanocomposite and Its Application for Supercapacitor Electrode. Mater. Sci. Eng. 2017, 216, 16–22. DOI: 10.1016/j.mseb.2016.10.002.
  • Yang, X.; Liu, Y.; Lei, H.; An Organic–Inorganic, L. B. Broadband Photodetector Based on a Single Polyaniline Nanowire Doped with Quantum Dots. Nanoscale. 2016, 8(34), 15529–15537. DOI: 10.1039/C6NR04030F.
  • Zhou, T.; Xie, X.; Cai, J.; Yin, L.; Ruan, W. Preparation of Poly (O-toluidine)/tio 2 Nanocomposite Films and Application for Humidity Sensing. Polym. Bull. 2016, 73(3), 621–630.
  • Zhang, Z.; Jiang, W.; Ban, X.; Yang, M.; Ye, S.; Huang, B.; Sun, Y. Solution-Processed EfficientDeep-Blue Fluorescent Organic Light-Emitting Diodes Based on Novel 9, 10-Diphenyl-Anthracene Derivatives. RSC Adv. 2015, 5(38), 29708–29717. DOI: 10.1039/C5RA00627A.
  • Zhao, X.; Ahn, H.-J.; Kim, K.-W.; Cho, -K.-K.; Ahn, J.-H. Polyaniline-Coated Mesoporous Carbon/Sulfur Composites for Advanced Lithium Sulfur Batteries. J. Phys. Chem. C. 2015, 119(15), 7996–8003. DOI: 10.1021/jp511846z.
  • Pattananuwat, P.; Tagaya, M.; Kobayashi, T. A Novel Highly Sensitive Humidity Sensor Based on Poly (Pyrrole-co-formyl Pyrrole) Copolymer Film: AC and DC Impedance Analysis. Sens. Actuators B Chem. 2015, 209, 186–193. DOI: 10.1016/j.snb.2014.11.111.
  • Deep, A.; Kumar, S. Advances in Nanosensors for Biological and Environmental Analysis; Elsevier: Netherlands, 2019.
  • Banica, F.-G.;. Chemical Sensors and Biosensors: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, 2012.
  • Abdulla, S.; Mathew, T. L.; Pullithadathil, B. Highly Sensitive, Room Temperature Gas Sensor Based on Polyaniline-Multiwalled Carbon Nanotubes (Pani/mwcnts) Nanocomposite for Trace-Level Ammonia Detection. Sens. Actuators B Chem. 2015, 221, 1523–1534. DOI: 10.1016/j.snb.2015.08.002.
  • Yoon, H.;. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials. 2013, 3(3), 524–549.
  • Ates, M.; Review, A. Study of (Bio) Sensor Systems Based on Conducting Polymers. Mater. Sci. Eng C. 2013, 33(4), 1853–1859. DOI: 10.1016/j.msec.2013.01.035.
  • Xia, L.; Wei, Z.; Wan, M. Conducting Polymer Nanostructures and Their Application in Biosensors. J. Colloid Interface Sci. 2010, 341(1), 1–11. DOI: 10.1016/j.jcis.2009.09.029.
  • Ibanez, J. G.; Rincón, M. E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O. A.; Frontana-Uribe, B. A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem. Rev. 2018, 118(9), 4731–4816. DOI: 10.1021/acs.chemrev.7b00482.
  • Bai, S.; Zhao, Y.; Sun, J.; Tong, Z.; Luo, R.; Li, D.; Chen, A. Preparation of Conducting Films Based on α-MoO3/PANI Hybrids and Their Sensing Properties to Triethylamine at Room Temperature. Sens. Actuators B Chem. 2017, 239, 131–138. DOI: 10.1016/j.snb.2016.07.174.
  • Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G. Polymeric Nanowire Chemical Sensor. Nano Lett. 2004, 4(4), 671–675. DOI: 10.1021/nl049826f.
  • Benvenho, A. R. V.; Li, R. W. C.; Gruber, J. Polymeric Electronic Gas Sensor for Determining Alcohol Content in Automotive Fuels. Sens. Actuators B Chem. 2009, 136(1), 173–176. DOI: 10.1016/j.snb.2008.11.012.
  • Maciak, E.; Procek, M.; Kepska, K.; Stolarczyk, A. Study of Optical and Electrical Properties of Thin Films of the Conducting Comb-like Graft Copolymer of Polymethylsiloxane with Poly (3-hexyltiophene) and Poly (Ethylene) Glycol Side Chains for Low Temperature NO2 Sensing. Thin Solid Films. 2016, 618, 277–285. DOI: 10.1016/j.tsf.2016.08.031.
  • Steffens, C.; Brezolin, A. N.; Steffens, J. Conducting Polymer-Based Cantilever Sensors for Detection Humidity. Scanning. 2018, 2018, 1–6. DOI: 10.1155/2018/4782685.
  • Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; Meyer, T.; Meyer, A. Flexible, Long-Lived, Large-Area, Organic Solar Cells. Solar Energy Mater. Solar Cells. 2007, 91(5), 379–384. DOI: 10.1016/j.solmat.2006.10.013.
  • Benanti, T. L.; Venkataraman, D. Organic Solar Cells: An Overview Focusing on Active Layer Morphology. Photosynth. Res. 2006, 87(1), 73–81. DOI: 10.1007/s11120-005-6397-9.
  • Singh, V.; Arora, S.; Kumar, P.; Bhatnagar, P. K.; Arora, M.; Tandon, R. P. An Anomalous Behavior in Degraded Bulk Heterojunction Organic Solar Cells. Phys. Scr. 2011, 84(6), 65803. DOI: 10.1088/0031-8949/84/06/065803.
  • Xia, Y.; Sun, K.; Ouyang, J. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Adv.Mate. 2012, 24(18), 2436–2440. DOI: 10.1002/adma.201104795.
  • Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient Organic Solar Cells Processed from Hydrocarbon Solvents. Nat. Energy. 2016, 1(2), 15027. DOI: 10.1038/nenergy.2015.27.
  • Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Highly Conductive PEDOT: PSS Electrode by Simple Film Treatment with Methanol for ITO-Free Polymer Solar Cells. Energy Environ. Sci. 2012, 5(11), 9662–9671. DOI: 10.1039/c2ee22595f.
  • Zou, Y.; Najari, A.; Berrouard, P.; Beaupré, S.; Reéda Aïch, B.; Tao, Y.; Leclerc, M.; Thieno, A. [3, 4-c] Pyrrole-4, 6-Dione-Based Copolymer for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132(15), 5330–5331. DOI: 10.1021/ja101888b.
  • Li, N.; Oida, S.; Tulevski, G. S.; Han, S.-J.; Hannon, J. B.; Sadana, D. K.; Chen, T.-C. Efficient and Bright Organic Light-Emitting Diodes on Single-Layer Graphene Electrodes. Nat. Commun. 2013, 4(1), 1–7. DOI: 10.1038/ncomms3294.
  • Vohra, V.; Giovanella, U.; Tubino, R.; Murata, H.; Botta, C. Electroluminescence from Conjugated Polymer Electrospun Nanofibers in Solution Processable Organic Light-Emitting Diodes. ACS Nano. 2011, 5(7), 5572–5578. DOI: 10.1021/nn201029c.
  • Kim, W.; Kwon, S.; Lee, S.-M.; Kim, J. Y.; Han, Y.; Kim, E.; Choi, K. C.; Park, S.; Park, B.-C. Soft Fabric-Based Flexible Organic Light-Emitting Diodes. Org. Electron. 2013, 14(11), 3007–3013. DOI: 10.1016/j.orgel.2013.09.001.
  • Liu, Y.; Feng, J.; Bi, Y.; Yin, D.; Sun, H. Recent Developments in Flexible Organic Light‐emitting Devices. Adv. Mater. Technol. 2019, 4(1), 1800371. DOI: 10.1002/admt.201800371.
  • Cheng, -C.-C.; Chu, Y.-L.; Huang, P.-H.; Yen, Y.-C.; Chu, C.-W.; Yang, A. C.-M.; Ko, F.-H.; Chen, J.-K.; Chang, F.-C. Bioinspired Hole-Conducting Polymers for Application in Organic Light-Emitting Diodes. J. Mater. Chem. 2012, 22(35), 18127–18131. DOI: 10.1039/c2jm32665e.
  • Tipnis, R.; Laird, D.; Mathai, M. Polymer-Based Materials for Printed Electronics: Enabling High Efficiency Solar Power and Lighting. Mat. Matters. 2008, 3(4), 92.
  • Choi, M.; Han, T.; Lim, K.; Woo, S.; Huh, D. H.; Lee, T. Soluble Self‐doped Conducting Polymer Compositions with Tunable Work Function as Hole Injection/Extraction Layers in Organic Optoelectronics. Angew. Chem. Int. Ed. 2011, 50(28), 6274–6277. DOI: 10.1002/anie.201005031.
  • Kandulna, R.; Choudhary, R. B. Robust Electron Transport Properties of PANI/PPY/ZnO Polymeric Nanocomposites for OLED Applications. Optik. 2017, 144, 40–48. DOI: 10.1016/j.ijleo.2017.06.094.
  • Osken, I.; Gundogan, A. S.; Tekin, E.; Eroglu, M. S.; Ozturk, T. Fluorene–Dithienothiophene-S, S-Dioxide Copolymers. Fine-Tuning for OLED Applications. Macromolecules. 2013, 46(23), 9202–9210. DOI: 10.1021/ma4016592.
  • Liu, W.; Song, M.; Kong, B.; Flexible, C. Y. Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv.Mate. 2017, 29(1), 1603436. DOI: 10.1002/adma.201603436.
  • Ghosh, S.; Maiyalagan, T.; Basu, R. N. Nanostructured Conducting Polymers for Energy Applications: Towards a Sustainable Platform. Nanoscale. 2016, 8(13), 6921–6947.
  • Kim, S.-K.; Kim, D.-G.; Lee, A.; Sohn, H.-S.; Wie, J. J.; Nguyen, N. A.; Mackay, M. E.; Lee, J.-C. Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries. Macromolecules. 2012, 45(23), 9347–9356. DOI: 10.1021/ma301404q.
  • Zhang, Y.; Lim, C. A.; Cai, W.; Rohan, R.; Xu, G.; Sun, Y.; Cheng, H. Design and Synthesis of a Single Ion Conducting Block Copolymer Electrolyte with Multifunctionality for Lithium Ion Batteries. RSC Adv. 2014, 4(83), 43857–43864. DOI: 10.1039/C4RA08709G.
  • Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of Materials and Fabrication Methods. J. Energy Eng.. 2013, 139(2), 72–79. DOI: 10.1061/(ASCE)EY.1943-7897.0000102.
  • Zhou, Y.; Qin, Z.-Y.; Li, L.; Zhang, Y.; Wei, Y.-L.; Wang, L.-F.; Zhu, M.-F. Polyaniline/Multi-Walled Carbon Nanotube Composites with Core–Shell Structures as Supercapacitor Electrode Materials. Electrochim. Acta. 2010, 55(12), 3904–3908. DOI: 10.1016/j.electacta.2010.02.022.
  • Dhawale, D. S.; Vinu, A.; Lokhande, C. D. Stable Nanostructured Polyaniline Electrode for Supercapacitor Application. Electrochim. Acta. 2011, 56(25), 9482–9487. DOI: 10.1016/j.electacta.2011.08.042.
  • Eftekhari, A.; Li, L.; Yang, Y. Polyaniline Supercapacitors. J. Power Sources. 2017, 347, 86–107.
  • Zhang, D.; Zhang, X.; Chen, Y.; Yu, P.; Wang, C.; Ma, Y. Enhanced Capacitance and Rate Capability of Graphene/Polypyrrole Composite as Electrode Material for Supercapacitors. J. Power Sources. 2011, 196(14), 5990–5996. DOI: 10.1016/j.jpowsour.2011.02.090.
  • Gnanakan, S. R. P.; Murugananthem, N.; Subramania, A. Organic Acid Doped Polythiophene Nanoparticles as Electrode Material for Redox Supercapacitors. Polym. Adv. Technol. 2011, 22(6), 788–793. DOI: 10.1002/pat.1578.
  • Wang, X.; Liu, P. Improving the Electrochemical Performance of Polyaniline Electrode for Supercapacitor by Chemical Oxidative Copolymerization with P-Phenylenediamine. J. Ind. Eng. Chem. 2014, 20(4), 1324–1331. DOI: 10.1016/j.jiec.2013.07.013.
  • Zhou, T.; Qin, Y.; Xu, J.; Tao, Y.; Lu, M.; Kong, Y. Zinc Ions Doped Poly (Aniline-co-m-aminophenol) for High-Performance Supercapacitor. Synth. Met. 2015, 199, 169–173. DOI: 10.1016/j.synthmet.2014.11.026.
  • Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Highly Stable Organic Polymer Field-Effect Transistor Sensor for Selective Detection in the Marine Environment. Nat. Commun. 2014, 5(1), 1–9. DOI: 10.1038/ncomms3954.
  • Weis, M.;. Organic Field‐effect Transistors. Encyclopedia Phys. Organic Chem.. 2016, 1–39.
  • Han, S.; Zhuang, X.; Shi, W.; Yang, X.; Li, L.; Yu, J. Poly (3-Hexylthiophene)/Polystyrene (P3HT/PS) Blends Based Organic Field-Effect Transistor Ammonia Gas Sensor. Sens. Actuators B Chem. 2016, 225, 10–15. DOI: 10.1016/j.snb.2015.11.005.
  • Kim, J.; Khim, D.; Kang, R.; Lee, S.-H.; Baeg, K.-J.; Kang, M.; Noh, -Y.-Y.; Kim, D.-Y. Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers. ACS Appl. Mater. Interfaces. 2014, 6(11), 8108–8114. DOI: 10.1021/am500466q.
  • Lei, T.; Xia, X.; Wang, J.-Y.; Liu, C.-J.; Pei, J. “Conformation Locked” Strong Electron-Deficient Poly (P-phenylene Vinylene) Derivatives for Ambient-Stable n-Type Field-Effect Transistors: Synthesis, Properties, and Effects of Fluorine Substitution Position. J. Am. Chem. Soc. 2014, 136(5), 2135–2141. DOI: 10.1021/ja412533d.
  • Arif, M.; Liu, J.; Zhai, L.; Khondaker, S. I. Temperature Dependent Charge Transport in Poly (3-hexylthiophene)-block Polystyrene Copolymer Field-Effect Transistor. Synth. Met. 2012, 162(17–18), 1531–1536. DOI: 10.1016/j.synthmet.2012.07.022.
  • Kang, I.; An, T. K.; Hong, J.; Yun, H.; Kim, R.; Chung, D. S.; Park, C. E.; Kim, Y.; Kwon, S. Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for High‐Performance Organic Field‐Effect Transistors. Adv.Mate. 2013, 25(4), 524–528. DOI: 10.1002/adma.201202867.
  • Lin, H.-W.; Lee, W.-Y.; Chen, W.-C. Selenophene-DPP Donor–Acceptor Conjugated Polymer for High Performance Ambipolar Field Effect Transistor and Nonvolatile Memory Applications. J. Mater. Chem. 2012, 22(5), 2120–2128. DOI: 10.1039/C1JM14640H.
  • Grivas, C.; Pollnau, M. Organic Solid‐state Integrated Amplifiers and Lasers. Laser Photonics Rev.. 2012, 6(4), 419–462.
  • Steen, W. M.; Mazumder, J. Laser Material Processing; springer science & business media: New York, 2010.
  • Ibnaouf, K. H.; Prasad, S.; Masilamani, V.; AlSalhi, M. S. Evidence for Amplified Spontaneous Emission from Double Excimer of Conjugated Polymer (PDHF) in a Liquid Solution. Polymer. 2013, 54(9), 2401–2405. DOI: 10.1016/j.polymer.2013.02.047.
  • Pramodini, S.; Poornesh, P. Nonlinear Optical Measurements of Conducting Copolymers of Aniline under CW Laser Excitation. Opt. Mater. 2015, 46, 186–194. DOI: 10.1016/j.optmat.2015.04.017.
  • Li, M.; Nykypanchuk, D.; Cotlet, M. Improving the Responsivity of Hybrid Graphene–Conductive Polymer Photodetectors via Nanowire Self-Assembly. ACS Photonics. 2018, 5(11), 4296–4302. DOI: 10.1021/acsphotonics.8b00420.
  • Dhar, S.; Chakraborty, P.; Majumder, T.; Mondal, S. P. Acid-Treated PEDOT: PSS Polymer and TiO2 Nanorod Schottky Junction Ultraviolet Photodetectors with Ultrahigh External Quantum Efficiency, Detectivity, and Responsivity. ACS Appl. Mater. Interfaces. 2018, 10(48), 41618–41626. DOI: 10.1021/acsami.8b12643.
  • Wen, P.; Tan, C.; Zhang, J.; Meng, F.; Jiang, L.; Sun, Y.; Chen, X. Chemically Tunable Photoresponse of Ultrathin Polypyrrole. Nanoscale. 2017, 9(23), 7760–7764. DOI: 10.1039/C6NR07143K.
  • Lee, S.-C.; Lee, S.-H.; Kwon, O.-P. Photoactive Conducting Polymers with Light-Driven Conductivity Modulation: Dual Functionality for Simple Circuits. J. Mater. Chem. C. 2016, 4(10), 1935–1944. DOI: 10.1039/C5TC03493K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.