150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tolterodine tartrate loaded biodegradable and pH-responsive amphiphilic block copolymer (PF127) hydrogels: synthesis, characterization, and acute toxicity evaluation

ORCID Icon, , , , , & show all
Pages 1691-1705 | Received 14 Feb 2022, Accepted 05 May 2022, Published online: 24 May 2022

References

  • Sabu, A., Priya, V., Rugma, N., Fredi, F. C. 2021. Singapore: Springer, p. 205–211.
  • Minhas, M. U.; Ahmad, M.; Anwar, J., and Khan, S. Synthesis and Characterization of Biodegradable Hydrogels for Oral Delivery of 5‐fluorouracil Targeted to Colon: Screening with Preliminary in Vivo Studies. Adv. Polym. Technol. 2018, 37(1), 221–229.
  • Park, K. Controlled Drug Delivery Systems: Past Forward and Future Back. J. Control. Release. 2014, 190, 3–8. DOI: 10.1016/j.jconrel.2014.03.054.
  • Rezaie, H. R.; Esnaashary, M., and Öchsner, A. The History of Drug Delivery Systems, in A Review of Biomaterials and Their Applications in Drug Delivery; Singapore: Springer, 2018; pp 1–8.
  • Wei, Q.; Chen, K.; Zhang, X.; Ma, G.; Zhang, W.; Hu, Z., et al. Facile Preparation of polysaccharides-based Adhesive Hydrogel with Antibacterial and Antioxidant Properties for Promoting Wound Healing. Colloids Surf., B. 2022, 209, 112208. DOI: 10.1016/j.colsurfb.2021.112208.
  • Mahmood, A., Ahmad, M., Sarfraz, R.M., Minhas, M.U. Development of Acyclovir Loaded b-Cyclodextrin-g-Poly Methacrylic Acid Hydrogel Microparticles: An in Vitro Characterization. Adv. Polym. Tech. 2016,10, 697–705.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6(2), 105–121. DOI: 10.1016/j.jare.2013.07.006.
  • Bashir, S.; Teo, Y. Y.; Ramesh, S., and Ramesh, K. Synthesis, Characterization, Properties of N-succinyl chitosan-g-poly (Methacrylic Acid) Hydrogels and in Vitro Release of Theophylline. Polymer. 2016, 92, 36–49. DOI: 10.1016/j.polymer.2016.03.045.
  • Croisfelt, F. M.; Tundisi, L. L.; Ataide, J. A.; Silveira, E.; Tambourgi, E. B.; Jozala, A. F.; Souto, E. M. B., and Mazzola, P. G., Modified-release Topical Hydrogels: A ten-year Review. J. Mater. Sci. 2019, 54, 10963–10983. DOI: 10.1007/s10853-019-03557-x.
  • Khalid, I., Ahmad, M., Minhas, M.U., Barkat, K., Sohail, M. Cross‐Linked Sodium Alginate‐g‐poly (Acrylic Acid) Structure: A Potential Hydrogel Network for Controlled Delivery of Loxoprofen Sodium. Adv. Polym. Tech. 2016, 37(4), 985–995.
  • Peppas, N. A., and Hoffman, A. S. Hydrogels, in Biomaterials Science; Amsterdam: Elsevier, 2020; pp 153–166.
  • Nasir, N.; Ahmad, M.; Minhas, M. U.; Barkat, K., and Khalid, M. F. pH-responsive Smart Gels of Block Copolymer [Pluronic F127-co-poly (Acrylic Acid)] for Controlled Delivery of Ivabradine Hydrochloride: Its Toxicological Evaluation. J. Polym. Res. 2019, 26(9), 1–15.
  • Jin, E.; Zhang, Z.; Lian, H.; Chen, X.; Xiao, C.; Zhuang, X., and Chen, X. Injectable Electroactive Hydrogels Based on Pluronic® F127 and Tetraaniline Copolymer. Eur. Polym. J. 2017, 88, 67–74. DOI: 10.1016/j.eurpolymj.2017.01.013.
  • Gioffredi, E.; Boffito, M.; Calzone, S.; Giannitelli, S. M.; Rainer, A.; Trombetta, M.; Mozetic, P., and Chiono, V. Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. Procedia CIRP. 2016, 49, 125–132. DOI: 10.1016/j.procir.2015.11.001.
  • Moreno, E.; Schwartz, J.; Larrañeta, E.; Nguewa, P. A.; Sanmartín, C.; Agüeros, M.; Irache, J. M., and Espuelas, S. Thermosensitive Hydrogels of Poly (Methyl Vinyl ether-co-maleic anhydride)–Pluronic® F127 Copolymers for Controlled Protein Release. Int. J. Pharm. 2014, 459(1–2), 1–9.
  • Li, P.; Zhang, C.; Li, R.; Qu, L.; Dai, X.; Sui, Y., and Hou, J. Multiple Physically cross-linked F127− α-CD Hydrogels: Preparation, sol–gel Transformation, and Controlled Release of 5-fluorouracil. ACS Appl. Bio. Mater. 2019, 2(1), 527–532.
  • Zarrintaj, P.; Ramsey, JD.; Samadi, A.; Atoufi, Z.; Yazdi, M.K.; Ganjali, M.Z.; Amirabad, L.M.; Zengene, E.; Farokhi, M.; Formela, K. Poloxamer: A Versatile tri-block Copolymer for Biomedical Applications. Acta Biomater. 2020.
  • LIANG, G.X., LIANG, Y.R., Leu, S.W., Shan, K.Z., Lin, Y., Jin, J.X., Wu, H.F. PF-127-LV-NTFs three-dimensional Composite Scaffold in Culturing Rat Neural Stem Cells. Basic & ClinMed. 2022, 42, 75.
  • Ganguly, S.; Maity, P. P.; Mondal, S.; Das, P.; Bhawal, P.; Dhara, S., and Das, N. C. Polysaccharide and Poly (Methacrylic Acid) Based Biodegradable Elastomeric Biocompatible semi-IPN Hydrogel for Controlled Drug Delivery. Mater. Sci. Eng C. 2018, 92, 34–51. DOI: 10.1016/j.msec.2018.06.034.
  • Seeli, D. S.; Prabaharan, M. Guar Gum oleate-graft-poly (Methacrylic Acid) Hydrogel as a colon-specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. DOI: 10.1016/j.carbpol.2016.11.092.
  • Faizan, S.; Shah, L. A.; Shah, L. A. Adhesion Tuning of Hydrogels via cross-linker for the Junction of Solid Surfaces in Dry and Wet Conditions. Surf. Interfaces. 2022, 28, 101659. DOI: 10.1016/j.surfin.2021.101659.
  • Golker, K.; Nicholls, I. A. The Effect of Crosslinking Density on Molecularly Imprinted Polymer Morphology and Recognition. Eur. Polym. J. 2016, 75, 423–430. DOI: 10.1016/j.eurpolymj.2016.01.008.
  • Da Ros, S.; Braido, R. S.; de Souza E Castro, N. L.; Brandão, A. L. T.; Schwaab, M., and Pinto, J. C. Modelling the Chemical Recycling of Crosslinked Poly (Methyl Methacrylate): Kinetics of Depolymerisation. J. Anal. Appl. Pyrolysis. 2019, 144, 104706. DOI: 10.1016/j.jaap.2019.104706.
  • Ugochukwu, A. E.; Nnedimkpa, O. J.; Rita, N. O.; Nnedimkpa, O. J.; Rita, N. O., and Rita, N. O. Preparation and Characterization of Tolterodine Tartrate Proniosomes. Universal Journal of Pharmaceutical Research. 2017, 2(2), 22–25. DOI: 10.22270/ujpr.v2i2.R1.
  • Narain, S., and Parmar, M. Tolterodine. StatPearls. 2020, 2. Internet. https://www.ncbi.nlm.nih.gov/books/NBK557858/.
  • Sun, F.; Sui, C.; Zhou, Y.; Liu, X.; Shi, Y.; Wu, Y., and Li, Y. Preparation, Characterization and Pharmacological Evaluation of Tolterodine Hydrogels for the Treatment of Overactive Bladder. Int. J. Pharm. 2013, 454, 532–538. DOI: 10.1016/j.ijpharm.2013.07.041.
  • Danafar, H. Comparative in Vitro Assessment of Tolterodine Tartrate Tablets by High Performance Liquid Chromatographic (HPLC). Pharm. and Biomed. Res. 2016, 2(2), 47–57. DOI: 10.18869/acadpub.pbr.2.2.47.
  • Donath, F.; Hoffmann, L.; Todorova‐Sanjari, M.; Wedemeyer, R.-S.; Warnke, A., and Nickisch, K. Intravaginal Tolterodine Formulation Intended for Overactive Bladder Treatment—Results of a Pharmacokinetic Phase I Pilot Study in Healthy, Postmenopausal Women. Clin. Pharmacol. Drug Dev. 2022,11, 80–90. DOI: 10.1002/cpdd.968.
  • Cetinel, B.; Onal, B.; Gultekin, M. H.; Guzelsoy, M.; Turegun, F. A., and Dincer, M. Which Antimuscarinic Agents Used in the Treatment of Overactive Bladder Increase Heart Rate? a Prospective Randomized Clinical Trial. Int. Urol. Nephrol. 2019, 51(3), 417–424. DOI: 10.1007/s11255-019-02090-9
  • Rajabalaya, R.; Mun, C. Y.; Chellian, J.; Chakravarthi, S., and David, S. R. Transdermal Delivery of Tolterodine Tartrate for Overactive Bladder Treatment: In Vitro and in Vivo Evaluation. Acta Pharm. 2017, 67(3), 325–339.
  • Das, D.; Pham, T. T. H.; Noh, I. Characterizations of hyaluronate-based Terpolymeric Hydrogel Synthesized via Free Radical Polymerization Mechanism for Biomedical Applications. Colloid. Surf. B. 2018, 170, 64–75. DOI: 10.1016/j.colsurfb.2018.05.059.
  • Minhas, M. U., Ahmad, M., Anwar, J., Khan, S. Synthesis and Characterization of Biodegradable Hydrogels for Oral Delivery of 5‐fluorouracil Targeted to Colon: Screening with Preliminary in Vivo Studies. Adv. Polym. Tech. 2016.
  • Naeem, S.; Barkat, K.; Malik, N. S., and Maryam, S. PF-127 Based Vildagliptin Loaded Polymeric Hydrogels Prepared by Aqueous Polymerization Technique for Treatment of Diabetes Mellitus. J. Polym. Res. 2021, 28, 1–16. DOI: 10.1007/s10965-021-02747-z.
  • Su, Y.; Liu, Y.; Zhao, X.; Li, Y., and Jiang, Z. Preparation of pH-responsive Membranes with Amphiphilic Copolymers by Surface Segregation Method. Chin. J. Chem. Eng. 2015, 23, 1283–1290. DOI: 10.1016/j.cjche.2015.05.013.
  • Boyaci, T.; Orakdogen, N. Tuning the Synthetic Routes of Dimethylaminoethyl methacrylate‐Based Superabsorbent Copolymer Hydrogels Containing Sulfonate Groups: Elasticity, Dynamic, and Equilibrium Swelling Properties. Adv. Polym. Technol. 2017, 36(4), 442–454. DOI: 10.1002/adv.21626.
  • Babaei, J.; Mohammadian, M.; Madadlou, A. Gelatin as Texture Modifier and Porogen in Egg White Hydrogel. Food Chem. 2019, 270, 189–195. DOI: 10.1016/j.foodchem.2018.07.109.
  • Malayeri, M.; Lee, C.-S.; Niu, J.; Zhu, J., and Haghighat, F. Kinetic Modeling and Reaction Mechanism of Toluene and by-products in Photocatalytic Oxidation Reactor. Chem. Eng. J. 2022, 427, 131536. DOI: 10.1016/j.cej.2021.131536.
  • Nasir, N.; Ahmad, M.; Minhas, M. U.; Barkat, K., and Khalid M. F. pH-responsive Smart Gels of Block Copolymer [Pluronic F127-co-poly (Acrylic Acid)] for Controlled Delivery of Ivabradine Hydrochloride: Its Toxicological Evaluation. J. Polym. Res. 2019, 26(9), 212. DOI: 10.1007/s10965-019-1872-8.
  • Tong, N. A. N.; Tran, N. Q.; Nguyen, X. T. D. T.; Cao, V. D.; Nguyen, T. P., and Nguyen, C. K. Thermosensitive heparin-Pluronic® Copolymer as Effective Dual Anticancer Drugs Delivery System for Combination Cancer Therapy. International journal of nanotechnology. 2018, 15(1/2/3), 174–187. DOI: 10.1504/IJNT.2018.089566
  • Chatterjee, S.; Hui, P. C.-L.; Kan, C.-W., and Wang, W. Dual-responsive (pH/temperature) Pluronic F-127 Hydrogel Drug Delivery System for textile-based Transdermal Therapy. Sci. Rep. 2019, 9, 1–13. DOI: 10.1038/s41598-019-48254-6.
  • Chatterjee, S.; Hui, P.C.L.; Wat, E.; Lieung, P.C.; Wang, W. Drug Delivery System of dual-responsive PF127 Hydrogel with polysaccharide-based nano-conjugate for textile-based Transdermal Therapy. 2020, Vol. 236: Carbohydrate polymers. 116074.
  • Anirudhan, T. S.; Mohan, A. M. Novel pH Sensitive Dual Drug loaded-gelatin methacrylate/methacrylic Acid Hydrogel for the Controlled Release of Antibiotics. Int. J. Biol. Macromol. 2018, 110, 167–178. DOI: 10.1016/j.ijbiomac.2018.01.220.
  • Rajabalaya, R., Mun, C.Y., Chellian, J., Chakravarthi, S., David, S.R. Transdermal Delivery of Tolterodine Tartrate for Overactive Bladder Treatment: In Vitro and in Vivo Evaluation. Acta Pharmaceut. 2017, 67, 325–339. doi:10.1515/acph-2017-0027.
  • Rajabalaya, R., Leen, G., Chellian, J., Chakravarthi, S., David, S.R. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder. Pharmaceutics. 2016, 8, 27. DOI: 10.3390/pharmaceutics8030027.
  • Li, Y.; Chen, T.-H.; Yu, C.-Y.; Wu, T.; Zhao, X.-T.; Pan, J.-F., and Liu, L.-F. Facile Polyamide Microstructure Adjustment of the Composite Reverse Osmosis Membrane Assisted by PF127/SDS Mixed Micelles for Improving Seawater Desalination Performance. Desalination. 2022, 521, 115395. DOI: 10.1016/j.desal.2021.115395.
  • Baniasadi, J.; Zarghami, S.; Kamelian, F. S.; Mohammadi, T., and Nikbakht, R. Fabrication of Asymmetric Cellulose acetate/pluronic F-127 Forward Osmosis Membrane: Minimization of Internal Concentration Polarization via Control Thickness and Porosity. Polym. Bull. 2022, 79(1), 569–586.
  • Tulain, U.; Ahmad, M. Development and Characterization of New Crosslinked Polymer of Carboxymethyl arabinoxylan-g-methacrylic Acid for Controlled Drug Release. Ijbpas. 2015, 4, 5617–5637.
  • Mohammed, A. M.; Osman, S. K.; Saleh, K. I., and Samy, A. M. In Vitro Release of 5-Fluorouracil and Methotrexate from Different Thermosensitive Chitosan Hydrogel Systems. AAPS PharmSciTech. 2020, 21(4), 1–11.
  • Byeon, J.-Y.; Lee, C.-M.; Lee, Y.-J.; Kim, Y.-H.; Kim, S.-H.; Jung, E. H.; Chae, W. K.; Lee, Y. J.; Jang, C.-G., and Lee, S.-Y. Influence of CYP2D6 Genetic Polymorphism on Pharmacokinetics of Active Moiety of Tolterodine. Arch. Pharm. Res. 2019, 42(2), 182–190.
  • Dakarapu, V. V.; Allaka, T. R.; Uppalla, L. K., and Jha, A., Design, Synthesis, and Molecular Modeling of Asymmetric Tolterodine Derivatives as Anticancer Agents. J. Heterocycl. Chem. 2018, 55(9), 2157–2167. DOI: 10.1002/jhet.3274
  • Manikandan, G.; Kalavathy, H. Performance Studies of GO/PF127 Incorporated Polyetherimide Ultrafiltration Membranes for the Rejection of Oil from Oil Wastewater. Chem. Eng. Res. Des. 2021, 168, 214–226. DOI: 10.1016/j.cherd.2021.01.019.
  • Ullah, K.; Sohail, M.; Buabeid, M. A.; Murtaza, G.; Ullah, A.; Rashid, H.; Khan, M. A., and Khan, S. A. Pectin-based (LA-co-MAA) semi-IPNS as a Potential Biomaterial for Colonic Delivery of Oxaliplatin. Int. J. Pharm. 2019, 569, 118557. DOI: 10.1016/j.ijpharm.2019.118557.
  • Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X., and Guo, B. Antibacterial Adhesive Injectable Hydrogels with Rapid self-healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials. 2018, 183, 185–199. DOI: 10.1016/j.biomaterials.2018.08.044.
  • Jayaramudu, T.; Varaprasad, K.; Sadiku, E. R., and Amalraj, J. Temperature-sensitive semi-IPN Composite Hydrogels for Antibacterial Applications. Colloids Surf. A. 2019, 572, 307–316. DOI: 10.1016/j.colsurfa.2019.04.012.
  • Ammar, N. E. B.; Saied, T.; Barbouche, M.; Hosni, F.; Hamzaoui, A. H., and Şen, M. A Comparative Study between Three Different Methods of Hydrogel Network Characterization: Effect of Composition on the Crosslinking Properties Using sol–gel, Rheological and Mechanical Analyses. Polym. Bull. 2018, 75, 3825–3841. DOI: 10.1007/s00289-017-2239-0.
  • Turabee, M. H., Jeong, T.H.; Ramalingam, P.; Kang, J.H.; Ko, Y.T. N, N, N-trimethyl Chitosan Embedded in Situ Pluronic F127 Hydrogel for the Treatment of Brain Tumor. Carbohydr. Polym. 2019, 203, 302–309. DOI: 10.1016/j.carbpol.2018.09.065.
  • Khan, S.; Anwar, N. Highly Porous pH-Responsive Carboxymethyl Chitosan-Grafted-Poly (Acrylic Acid) Based Smart Hydrogels for 5-Fluorouracil Controlled Delivery and ColonTargeting. Int. J. Polym. Sci. 2019, 2019, 1–15. DOI: 10.1155/2019/6579239.
  • Drozdov, A.; Christiansen, J. D. Swelling of P H -sensitive Hydrogels. Phys. Rev. E. 2015, 91(2), 022305. DOI: 10.1103/PhysRevE.91.022305.
  • Quintanar-Guerrero, D.; Zorraquín-Cornejo, B.N.; Ganem-Rondero, A.; Piñón-Segundo, E.; Nava-Arzaluz, M.G.; Cornejo-Bravo, J.M. Controlled Release of Model Substances from pH-sensitive Hydrogels. J. Mex. Chem. Soc. 2008, 52, 272–278.
  • Güler, M. A.; Gök, M. K.; Özgümüş, S. Effects of the Starch Types and the Grafting Conditions on the in Vitro Mucoadhesiveness of the Starch‐graft‐Poly (Methacrylic Acid) Hydrogels. Starch‐Stärke. 2020, 72, 1900266. DOI: 10.1002/star.201900266.
  • Mamman, I. S.; Teo, Y. Y., and Misran, M. Synthesis, Characterization and Rheological Study of Arabic gum-grafted-poly (Methacrylic Acid) Hydrogels. Polym. Bull. 2020, 78, 1–25.
  • Yu, S.; Zhang, X.; Tan, G.; Tian, L.; Liu, D.; Liu, Y.; Yan, X., Pan, W. A Novel pH-induced Thermosensitive Hydrogel Composed of Carboxymethyl Chitosan and Poloxamer cross-linked by Glutaraldehyde for Ophthalmic Drug Delivery. Carbohydr. Polym. 2017, 155, 208–217. DOI: 10.1016/j.carbpol.2016.08.073.
  • Bradberry, S. J.; Dee, G.; Kotova, O.; McCoy, C. P., and Gunnlaugsson, T. Luminescent Lanthanide (Eu(iii)) cross-linked Supramolecular Metallo co-polymeric Hydrogels: The Effect of Ligand Symmetry. Chem. Commun. 2019, 55(12), 1754–1757.
  • Das, D.; Pal, S. Dextrin/poly (HEMA): PH Responsive Porous Hydrogel for Controlled Release of Ciprofloxacin. Int. J. Biol. Macromol. 2015, 72, 171–178. DOI: 10.1016/j.ijbiomac.2014.08.007.
  • Tulain, U. R.; Ahmad, M.; Rashid, A.; Iqbal, F.M. Development and Characterization of Smart Drug Delivery System Acta Pol. Pharm. 2016, 73, 1009–1022.
  • Garcia-del Rio, L.; Diaz-Rodriguez, P.; Landin, M. New Tools to Design Smart Thermosensitive Hydrogels for Protein Rectal Delivery in IBD. Mater. Sci. Eng C. 2020, 106, 110252. DOI: 10.1016/j.msec.2019.110252.
  • Abdullah, O.; Usman Minhas, M.; Ahmad, M.; Ahmad, S.; Ahmad, A., et al. Synthesis of Hydrogels for Combinatorial Delivery of 5-fluorouracil and Leucovorin Calcium in Colon Cancer: Optimization, in Vitro Characterization and Its Toxicological Evaluation. Polym. Bull. 2019, 76, 3017–3037. DOI: 10.1007/s00289-018-2509-5.
  • Geraili, A.; Mequanint, K. Systematic Studies on Surface Erosion of Photocrosslinked Polyanhydride Tablets and Data Correlation with Release Kinetic Models. Polymers. 2020, 12(5), 1105. DOI: 10.3390/polym12051105.
  • Chinnasamy, G.; Chandrasekharan, S.; Koh, T. W., and Bhatnagar, S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles from Azadirachta Indica. Front. Microbiol. 2021, 12, 204. DOI: 10.3389/fmicb.2021.611560.
  • Chatterjee, S.; Hui, C.-L. Review of stimuli-responsive Polymers in Drug Delivery and Textile Application. Molecules. 2019, 24(14), 2547. DOI: 10.3390/molecules24142547.
  • D’Este, M.; Sprecher, C. M.; Milz, S.; Nehrbass, D.; Dresing, I.; Zeiter, S.; Alini, M., and Eglin, D. Evaluation of an Injectable Thermoresponsive Hyaluronan Hydrogel in a Rabbit Osteochondral Defect Model. J. Biomed. Mater. Res. A. 2016, 104, 1469–1478. DOI: 10.1002/jbm.a.35673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.