61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New ARBOFILL composites: preparation and characterization

, , &
Pages 1783-1791 | Received 04 Feb 2022, Accepted 27 May 2022, Published online: 02 Jun 2022

References

  • Darie, R. N.; Bodirlau, R.; Teaca, C. A.; Macyszyn, J.; Kozlowski, M.; Spiridon, I. Influence of Accelerated Weathering on the Properties of Polypropylene/Polylactic Acid/Eucalyptus Wood Composites. Int. J. Polym. Anal. Charact. 2013, 18, 315. DOI: 10.1080/1023666X.2013.784936.
  • Olakanmi, E. O.; Strydom, M. J. Critical Materials and Processing Challenges Affecting the Interface and Functional Performance of Wood Polymer Composites (Wpcs). Mater. Chem. Phys. 2016, 171, 290. 10.1016/. j.matchemphys. 2016.01.020. DOI:10.1016/j.matchemphys.2016.01.020.
  • Cicala, G.; Tosto, C.; Latteri, A.; La Rosa, A. D.; Blanco, I.; Elsabbagh, A.; Russo, P.; Ziegman, G. Green Composites Based on Blends of Polypropylene with Liquid Wood Reinforced with Hemp Fibers: Thermomechanical Properties and the Effect of Recycling Cycles. Materials. 2017, 10, 998. DOI: 10.3390/ma10090998.
  • Nedelcu, D. Investigation on Microstructure and Mechanical Properties of Samples Obtained by Injection from Arbofill. Compos. Part B: Eng. 2013, 47, 126. DOI: 10.1016/j.compositesb.2012.11.023.
  • Worgull, M.; Schneider, M.; Rohrig, M.; Meier, T.; Heili, G. M.; Kolew, A.; Feit, K.; Holscher, H.; Leuthold, J. Hot Embossing and Thermoforming of Biodegradable Three-dimensional Wood Structures. RSC Adv. 2013, 3, 20060. DOI: 10.1039/C3RA42642D.
  • España, J. M.; Fages, E.; Moriana, R.; Boronat, T.; Balart, R. Antioxidant and Antibacterial Effects of Natural Phenolic Compounds on Green Composite Materials. Polym. Compos. 2012, 33, 1288. DOI: 10.1002/pc.22254.
  • Petrescu, T. C.; Voordijk, J.; Mihai, P. Developing a TRL-Oriented Roadmap for the Adoption of Biocomposite Materials in the Construction Industry. Front. Eng. Manag. 2021, 1–4. DOI: 10.1007/s42524-021-0154-4.
  • Klein, A.; Oreski, G.; Resch–Fauster, K. Applicability of Technical Biopolymers as Absorber Materials in Solar Thermal Collectors. Sol. Energy. 2017, 153, 276. DOI: 10.1016/j.solener.2017.05.069.
  • Chiu, S. H.; Wang, W. K. The Dynamic Flammability and Toxicity of Magnesium Hydroxide Filled Intumescent Fire Retardant Polypropylene. J. Appl. Polym. Sci. 1998, 67, 989. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<989::AID-APP4>3.0.CO;2-I.
  • Pilar Ruiz, M.; Mijnders, J.; Tweehuysen, R.; Warnet, L.; van Drongelen, M.; Kersten, S. R. A.; Lange, J.-P. Fully Recyclable Bio-Based Thermoplastic Materials from Liquefied Wood. ChemSusChem. 2019, 12, 4395. https://doi.org/10.1002/cssc.201901959
  • Du, B.; Ma, H.; Fang, Z. How Nano-Fillers Affect Thermal Stability and Flame Retardancy of Intumescent Flame Retarded Polypropylene. Polym. Adv. Technol. 2011, 22, 1139. DOI: 10.1002/pat.1914.
  • Levchik, S. V.; Weil, E. A Review of Recent Progress in Phosphorus-Based Flame Retardants. J. Fire Sci. 2006, 24, 345. DOI: 10.1177/0734904106068426.
  • Chen, W.; Liu, P.; Liu, Y.; Liu, Y.; Wang, Q. Synergistic Flame-Retardant Effect and Mechanism of Nitrogen–Phosphorus-Containing Compounds for Glass Fiber-Reinforced Polyamide 66. Polym. Plast. Technol. Eng. 2016, 56, 1118. DOI: 10.1080/03602559.2016.1253739.
  • Leventon, I. T.; Stoliarov, S. I.; Kraemer, R. H. The Impact of Bromine - and Phosphorous-Based Flame Retardants on Flame Stability and Heat Feedback from Laminar Wall Flames. Fire Saf J. 2019, 109, 102819. DOI: 10.1016/j.firesaf.2019.05.001.
  • Bocz, K.; Szolnoki, B.; Marosi, A.; Tábi, T.; Wladyka-Przybylak, M.; Marosi, G. Flax Fibre Reinforced PLA/TPS Biocomposites Flame Retarded with Multifunctional Additive System. Polym. Degrad. Stab. 2014, 106, 63. DOI: 10.1016/j.polymdegradstab.2013.10.025.
  • Batistella, M.; Regazzi, A.; Pucci, M. F.; Lopez-Cuesta, J.-M.; Kadri, O.; Bordeaux, D.; Ayme, A. Selective Laser Sintering of Polyamide 12/Flame Retardant Compositions. Polym. Degrad. Stab. 2020, 181, 109318. DOI: 10.1016/j.polymdegradstab.2020.109318.
  • Ramos, R. R. F.; Siqueira, D. D.; Wellen, R. M. R.; Leite, I. F.; Glenn, G. M.; Medeiros, E. S. Development of Green Composites Based on Polypropylene and Corncob Agricultural Residue. J. Polym. Environ. 2019, 27, 1677. DOI: 10.1007/s10924-019-01462-7.
  • Palza, H.; Vergara, R.; Zapata, P. Composites of Polypropylene Melt Blended with Synthesized Silica Nanoparticles. Compos. Sci. Technol. 2011, 71, 535. DOI: 10.1016/j.compscitech.2011.01.002.
  • Yurddaskal, M.; Celik, E. Effect of Halogen-Free Nanoparticles on the Mechanical, Structural, Thermal and Flame Retardant Properties of Polymer Matrix Composite. Compos. Struct. 2018, 183, 381. DOI: 10.1016/j.compstruct.2017.03.093.
  • Umemura, T.; Arao, Y.; Nakamura, S.; Tomita, Y.; Tanaka, T. Synergy Effects of Wood Flour and Fire Retardants in Flammability of Wood-Plastic Composites. Energy Procedia. 2014, 56, 48. DOI: 10.1016/j.egypro.2014.07.130.
  • Moustafa, H.; Darwish, N. A.; Nour, M. A.; Youssef, A. M. Biodegradable Date Stones Filler for Enhancing Mechanical, Dynamic and Flame Retardant Properties of Polyamide-6 Biocomposites. Polym. Compos. 2018, 39, 1978. DOI: 10.1002/pc.24157.
  • El-Wakil, A. E. A. A.; Moustafa, H.; Youssef, A. M. Antimicrobial Low-density Polyethylene/Low-density Polyethylene-grafted Acrylic Acid Biocomposites Based on Rice Bran with Tea Tree Oil for Food Packaging Applications. J. Thermoplast. Compos. Mater. 2020, 5, 1. DOI: 10.1177/0892705720925140.
  • Dahiya, J. B.; Muller–Hagedorn, M.; Bockhorn, H.; Kandola, B. K. Synthesis and Thermal Behaviour of Polyamide 6/Bentonite/Ammonium Polyphosphate Composites. Polym. Degrad. Stab. 2008, 93, 2038. DOI: 10.1016/j.polymdegradstab.2008.02.016.
  • Osman, M. A.; Rupp, J. E. P.; Suter, U. W. Gas Permeation Properties of Polyethylene-Layered Silicate Nanocomposites. J. Mater. Chem. 2005, 15, 1298. DOI: 10.1039/B417673A.
  • Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. 2000, 28, 1. DOI: 10.1016/S0927-796X(00)00012-7.
  • Najafi, N.; Heuzey, M. –. C.; Carreau, P. J.; Therriault, D.; Park, C. B. Mechanical and Morphological Properties of Injection Molded Linear and Branched-Polylactide (PLA) Nanocomposite Foams. Eur. Polym. J. 2015, 73, 455. DOI: 10.1016/j.eurpolymj.2015.11.003.
  • Chen, W.; Liu, P.; Liu, Y.; Liu, Y.; Wang, Q. Synergistic Flame-retardant Effect and Mechanism of Nitrogen–Phosphorus-Containing Compounds for Glass Fiber-reinforced Polyamide 66. Polym. Plast. Technol. Eng. 2017, 56, 1118. DOI: 10.1080/03602559.2016.1253739.
  • Dahiya, J. B.; Rathi, S.; Bockhorn, H.; Haußmann, M.; Kandola, B. K. The Combined Effect of Organic Phoshphinate/Ammonium Polyphosphate and Pentaerythritol on Thermal and Fire Properties of Polyamide 6-Clay Nanocomposites. Polym. Degrad. Stab. 2012, 97, 1458. DOI: 10.1016/j.polymdegradstab.2012.05.012.
  • Ding, Y.; Stoliarov, S. I.; Kraemer, R. H. Pyrolysis Model Development for a Polymeric Material Containing Multiple Flame Retardants: Relationship between Heat Release Rate and Material Composition. Combust. Flame. 2019, 202, 43. DOI: 10.1016/j.combustflame.2019.01.003.
  • Dahiya, J. B.; Kumar, N.; Bockhorn, H. Fire Performance and Thermal Stability of Polypropylene Nanocomposites Containing Organic Phosphinate and Ammonium Polyphosphate Additives. Fire Mater. 2014, 38, 1. DOI: 10.1002/fam.2151.
  • Kaynak, E.; Ureyen, M. E.; Koparal, A. S. Thermal Characterization and Flammability of Polypropylene Containing Sepiolite-APP Combinations. e-Polymers. 2017, 17, 341. DOI: 10.1515/epoly-2016-0275.
  • Isitman, N. A.; Gunduz, H. O.; Kaynak, C. Nanoclay Synergy in Flame Retarded/Glass Fibre Reinforced Polyamide 6. Polym. Degrad. Stab. 2009, 94, 2241. DOI: 10.1016/j.polymdegradstab.2009.08.01.
  • Tang, Y.; Hu, Y.; Wang, S. F.; Gui, Z.; Chen, Z. Y.; Fan, W. C. Intumescent Flame Retardant-Montmorillonite Synergism in Polypropylene-Layered Silicate Nanocomposites. Polym. Int. 2003, 52, 1396. DOI: 10.1002/pi.1270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.