286
Views
0
CrossRef citations to date
0
Altmetric
Review

A critical review on cellulose nano structures based polymer nanocomposites for packaging applications

, , , &
Pages 1933-1958 | Received 14 Mar 2022, Accepted 02 Jun 2022, Published online: 30 Jun 2022

References

  • Youssef, A. M. Polymer Nanocomposites as a New Trend for Packaging Applications. Polym.-Plast. Technol. Eng. 2013, 52(7), 635–660. DOI: 10.1080/03602559.2012.762673.
  • Wei, H.; Wang, H.; Li, A.; Cui, D.; Zhao, Z.; Chu, L.; Guo, Z.; Wang, L.; Pan, D.; Fan, J. Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, and Sensing Applications. ChemNanoMat. 2020, 6(2), 174–184. DOI: 10.1002/cnma.201900588.
  • Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-supported Nanocomposites for Environmental Application: A Review. Chem. Eng. J. 2011, 170(2–3), 381–394. DOI: 10.1016/j.cej.2011.02.071.
  • Dong, S.; Roman, M. Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications. J. Am. Chem. Soc. 2007, 129(45), 13810–13811. DOI: 10.1021/ja076196l.
  • Khan, M. M. Polymer Nanocomposite Application in Sorption Processes for Removal of Environmental Contaminants. In Polymer-based Nanocomposites for Energy and Environmental Applications Jawaid , Mohammad; Woodhead Publishing, 2018; pp 491–505 978-0-08-102262-7 .
  • Mittal, V.; (Ed.). (2011). In-situ synthesis of polymer nanocomposites. John Wiley & Sons.
  • Arrieta, M. P.; Fortunati, E.; Burgos, N.; Peltzer, M. A.; López, J.; Peponi, L. Nanocellulose-based Polymeric Blends for Food Packaging Applications. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; Elsevier, 2016; pp 205–252.
  • Tajeddin, B. (2014). Cellulose-based Polymers for Packaging Applications. Lignocellulosic polymer composites: Processing, characterization, and properties doi:10.1016/j.cocis.2017.01.004, 1–584. (Amsterdam, Netherlands: Elsevier)
  • Yu, Q.; Wu, P.; Xu, P.; Li, L.; Liu, T.; Zhao, L. Synthesis of cellulose/titanium Dioxide Hybrids in Supercritical Carbon Dioxide. Green Chem. 2008, 10(10), 1061–1067. DOI: 10.1039/b806094k.
  • Kalia, S.; Dufresne, A.; Cherian, B. M.; Kaith, B. S.; Avérous, L.; Njuguna, J., and Nassiopoulos, E. Cellulose-based bio-and Nanocomposites: A Review. Int. J. Polym. Sci. 1 2011, 2011 doi:https://doi.org/10.1155/2011/837875.
  • Dufresne, A. Cellulose nanomaterial reinforced polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1–8. DOI: 10.1016/j.cocis.2017.01.004.
  • Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose nano-composites–A Review. Biotechnol. Rep. 2019, 21, e00316. DOI: 10.1016/j.btre.2019.e00316.
  • Khalil, H. A.; Davoudpour, Y.; Saurabh, C. K.; Hossain, M. S.; Adnan, A. S.; Dungani, R.; Haafiz, M. K. M.; Islam Sarker, M. Z.; Fazita, M. R. N.; Syakir, M. I. A Review on Nanocellulosic Fibres as New Material for Sustainable Packaging: Process and Applications. Renewable Sustainable Energy Rev. 2016, 64, 823–836. DOI: 10.1016/j.rser.2016.06.072.
  • Vilela, C.; Pinto, R. J.; Figueiredo, A. R.; Neto, C. P.; Silvestre, A. J.; Freire, C. S. 1 Development and Applications of Cellulose Nanofibres Based Polymer Nanocomposites.
  • Wang, B.; Gao, X.; Piao, G. Preparation of polyaniline-doped Fullerene Whiskers. Int. J. Polym. Sci. 2013, 2013, 1–4. DOI: 10.1155/2013/867934.
  • Sheikhi, A. Emerging cellulose-based Nanomaterials and Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Amsterdam: Elsevier, 2019; pp 307–351 9780128146163 doi:10.1016/B978-0-12-814615-6.00009-6 .
  • Zhao, R.; Torley, P.; Halley, P. J. Emerging Biodegradable Materials: Starch-and protein-based bio-nanocomposites. J. Mater. Sci. 2008, 43(9), 3058–3071. DOI: 10.1007/s10853-007-2434-8.
  • Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules. 2005, 6(2), 612–626. DOI: 10.1021/bm0493685.
  • Ferreira, F. V.; Dufresne, A.; Pinheiro, I. F.; Souza, D. H. S.; Gouveia, R. F.; Mei, L. H. I.; Lona, L. M. F. How Do Cellulose Nanocrystals Affect the Overall Properties of Biodegradable Polymer Nanocomposites: A Comprehensive Review. Eur. Polym. J. 2018, 108, 274–285. DOI: 10.1016/j.eurpolymj.2018.08.045.
  • Hu, F.; Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. Bioenergy Res. 2012, 5(4), 1043–1066. DOI: 10.1007/s12155-012-9208-0.
  • Mishra, R. K.; Sabu, A.; Tiwari, S. K. Materials Chemistry and the Futurist eco-friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22(8), 949–978.
  • Petersen, K.; Nielsen, P. V.; Bertelsen, G.; Lawther, M.; Olsen, M. B.; Nilsson, N. H.; Mortensen, G. Potential of Biobased Materials for Food Packaging. Trends Food Sci. Technol. 1999, 10(2), 52–68. DOI: 10.1016/S0924-2244(99)00019-9.
  • Lavoine, N.; Givord, C.; Tabary, N.; Desloges, I.; Martel, B.; Bras, J. Elaboration of a New Antibacterial bio-nano-material for food-packaging by Synergistic Action of Cyclodextrin and Microfibrillated Cellulose. Innovative Food Sci. Emerg. Technol. 2014, 26, 330–340. DOI: 10.1016/j.ifset.2014.06.006.
  • Qasim, U.; Osman, A. I.; Al-Muhtaseb, A. A. H.; Farrell, C.; Al-Abri, M.; Ali, M.; Rooney, D. W.; Jamil, F.; Rooney, D. W. Renewable Cellulosic Nanocomposites for Food Packaging to Avoid Fossil Fuel Plastic Pollution: A Review. Environ. Chem. Lett. 2021, 19(1), 613–641. DOI: 10.1007/s10311-020-01090-x.
  • Youssef, A. M.; El-Sayed, S. M. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym. 2018, 193, 19–27. DOI: 10.1016/j.carbpol.2018.03.088.
  • Azeredo, H. M.; Rosa, M. F.; Mattoso, L. H. C. Nanocellulose in bio-based Food Packaging Applications. Ind. Crops Prod. 2017, 97, 664–671. DOI: 10.1016/j.indcrop.2016.03.013.
  • Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges. Nanomaterials. 2020, 10(9), 1726. DOI: 10.3390/nano10091726.
  • Yaradoddi, J. S.; Banapurmath, N. R.; Ganachari, S. V.; Soudagar, M. E. M.; Mubarak, N. M.; Hallad, S.; Fayaz, H.; Fayaz, H. Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Sci. Rep. 2020, 10(1), 1–13. DOI: 10.1038/s41598-020-78912-z.
  • Vilarinho, F.; Sanches Silva, A.; Vaz, M. F.; Farinha, J. P. Nanocellulose in Green Food Packaging. Crit. Rev. Food Sci. Nutr. 2018, 58(9), 1526–1537. DOI: 10.1080/10408398.2016.1270254.
  • Dufresne, A.; Belgacem, M. N. Cellulose-reinforced Composites: From micro-to Nanoscale. Polímeros. 2013, 23(3), 277–286.
  • Morandi, G.; Heath, L.; Thielemans, W. Cellulose Nanocrystals Grafted with Polystyrene Chains through surface-initiated Atom Transfer Radical Polymerization (SI-ATRP). Langmuir. 2009, 25(14), 8280–8286. DOI: 10.1021/la900452a.
  • Osong, S. H.; Norgren, S.; Engstrand, P. Feasibility of Ramie Fibers as Raw Material for the Isolation of Nanofibrillated Cellulose and Nanofibrillated Cellulose, and Applications Relating to Papermaking: A Review. Cellulose. 2016, 23, 93–123.
  • Franck, V. M.; Hungate, B. A.; Chapin, F. S.; Field, C. B. Decomposition of Litter Produced under Elevated CO2: Dependence on Plant Species and Nutrient Supply. Biogeochemistry. 1997, 36(3), 223–237. DOI: 10.1023/A:1005705300959.
  • Weber, C. J.; Haugaard, V.; Festersen, R.; Bertelsen, G. Production and Applications of Biobased Packaging Materials for the Food Industry. Food Addit. Contam. 2002, 19(sup1), 172–177. DOI: 10.1080/02652030110087483.
  • Rebouillat, S.; Pla, F. (2013). State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. Scientific Research Publishing
  • Miao, C.; Hamad, W. Y. Cellulose Reinforced Polymer Composites and Nanocomposites: A Critical Review. Cellulose. 2013, 20(5), 2221–2262.
  • Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Multifunctional micro/nanoscale Fibers Based on Microfluidic Spinning Technology. Adv.Mate. 2019, 31(52), 1903733. DOI: 10.1002/adma.201903733.
  • Siqueira, G.; Bras, J.; Follain, N.; Belbekhouche, S.; Marais, S.; Dufresne, A. Thermal and Mechanical Properties of bio-nanocomposites Reinforced by Luffa Cylindrica Cellulose Nanocrystals. Carbohydr. Polym. 2013, 91(2), 711–717. DOI: 10.1016/j.carbpol.2012.08.057.
  • Mondal, S. Review on Nanocellulose Polymer Nanocomposites. Polym.-Plast. Technol. Eng. 2018, 57(13), 1377–1391. DOI: 10.1080/03602559.2017.1381253.
  • Morelli, C. L.; Belgacem, M. N.; Branciforti, M. C.; Bretas, R. E.; Crisci, A.; Bras, J. Supramolecular Aromatic Interactions to Enhance Biodegradable Film Properties through Incorporation of Functionalized Cellulose Nanocrystals. Compos. Part A Appl. Sci. Manuf. 2016, 83, 80–88. DOI: 10.1016/j.compositesa.2015.10.038.
  • Espino-Pérez, E.; Bras, J.; Ducruet, V.; Guinault, A.; Dufresne, A.; Domenek, S. Influence of Chemical Surface Modification of Cellulose Nanowhiskers on Thermal, Mechanical, and Barrier Properties of Poly (Lactide) Based Bionanocomposites. Eur. Polym. J. 2013, 49(10), 3144–3154. DOI: 10.1016/j.eurpolymj.2013.07.017.
  • Ferreira, F. V.; Francisco, W.; Menezes, B. R.; Brito, F. S.; Coutinho, A. S.; Cividanes, L. S.; Thim, G. P.; Thim, G. P. Correlation of Surface Treatment, Dispersion and Mechanical Properties of HDPE/CNT Nanocomposites. Appl. Surf. Sci. 2016, 389, 921–929. DOI: 10.1016/j.apsusc.2016.07.164.
  • Jiang, L.; Morelius, E.; Zhang, J.; Wolcott, M.; Holbery, J. Study of the Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing. J. Compos. Mater. 2008, 42(24), 2629–2645. DOI: 10.1177/0021998308096327.
  • Pei, A.; Zhou, Q.; Berglund, L. A. Functionalized Cellulose Nanocrystals as Biobased Nucleation Agents in Poly (l-lactide)(PLLA)–Crystallization and Mechanical Property Effects. Compos. Sci. Technol. 2010, 70(5), 815–821. DOI: 10.1016/j.compscitech.2010.01.018.
  • Sanchez-Garcia, M. D.; Lagaron, J. M. On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid. Cellulose. 2010, 17(5), 987–1004. DOI: 10.1007/s10570-010-9430-x.
  • Velleman, L.; Shapter, J. G.; Losic, D. Gold Nanotube Membranes Functionalised with Fluorinated Thiols for Selective Molecular Transport. J. Membr. Sci. 2009, 328(1–2), 121–126. DOI: 10.1016/j.memsci.2008.11.055.
  • Espino-Pérez, E.; Bras, J.; Almeida, G.; Relkin, P.; Belgacem, N.; Plessis, C.; Domenek, S. Cellulose Nanocrystal Surface Functionalization for the Controlled Sorption of Water and Organic Vapours. Cellulose. 2016, 23(5), 2955–2970. DOI: 10.1007/s10570-016-0994-y.
  • Al‐Sabagh, A. M.; Betiha, M. A.; Osman, D. I.; Mahmoud, T. Synthesis and Characterization of Nanohybrid of Poly (Octadecylacrylates Derivatives)/montmorillonite as Pour Point Depressants and Flow Improver for Waxy Crude Oil. J. Appl. Polym. Sci. 2019, 136(17), 47333. DOI: 10.1002/app.47333.
  • Chen, J.; Xu, C.; Wu, D.; Pan, K.; Qian, A.; Sha, Y.; Tong, W.; Tong, W. Insights into the Nucleation Role of Cellulose Crystals during Crystallization of Poly (β-hydroxybutyrate). Carbohydr. Polym. 2015, 134, 508–515. DOI: 10.1016/j.carbpol.2015.08.023.
  • Wu, D.; Yang, T.; Sun, Y.; Shi, T.; Zhou, W.; Zhang, M. Banded Spherulites of Electrospun Poly (Trimethylene Terephthalate)/carbon Nanotube Composite Mats. Polym. Int. 2011, 60(10), 1497–1503. DOI: 10.1002/pi.3108.
  • Patel, D.; Bassett, D. C. On the Formation of S-profiled Lamellae in Polyethylene and the Genesis of Banded Spherulites. Polymer. 2002, 43(13), 3795–3802. DOI: 10.1016/S0032-3861(02)00178-7.
  • Zhang, Y.; Fang, H.; Wang, Z.; Tang, M.; Wang, Z. Disclosing the Formation of ring-banded Spherulites for Semicrystalline Polymers through the double-layer Film Method. CrystEngComm. 2014, 16(6), 1026–1037. DOI: 10.1039/C3CE42083C.
  • Cherian, B. M.; Leão, A. L.; De Souza, S. F.; Thomas, S.; Pothan, L. A.; Kottaisamy, M. Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion. Carbohydr. Polym. 2010, 81(3), 720–725. DOI: 10.1016/j.carbpol.2010.03.046.
  • Khattab, M. M.; Abdel-Hady, N. A., and Dahman, Y. Cellulose Nanocomposites: Opportunities, Challenges, and Applications. In Cellulose-Reinforced Nanofibre Composites; Amsterdam: Woodhead Publishing, 2017; pp 483–516 DOI:10.1016/B978-0-08-100957-4.00021-8.
  • Amidon, G. L.; Lennernäs, H.; Shah, V. P.; Crison, J. R. A Theoretical Basis for A Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12(3), 413–420. DOI: 10.1023/A:1016212804288.
  • Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose. 2010, 17(3), 459–494.
  • Khalil, H. P. S. A.; Davoudpour, Y.; Aprilia, N. S.; Mustapha, A.; Hossain, S.; Islam, N.; Dungani, R. (2014). Nanocellulose-based Polymer Nanocomposite: Isolation, Characterization and Applications. Nanocellulose polymer nanocomposites, 273–309.
  • Abou-Zeid, R. E.; Diab, M. A.; Mohamed, S. A.; Salama, A.; Aljohani, H. A.; Shoueir, K. R. Surfactant-assisted Poly (Lactic Acid)/cellulose Nanocrystal Bionanocomposite for Potential Application in Paper Coating. J. Renewable Mater. 2018, 6(4), 394–401. DOI: 10.7569/JRM.2017.634156.
  • de Souza Lima, M. M.; Borsali, R. Rodlike Cellulose Microcrystals: Structure, Properties, and Applications. Macromol. Rapid Commun. 2004, 25(7), 771–787. DOI: 10.1002/marc.200300268.
  • Dong, X. M.; Revol, J. F.; Gray, D. G. Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose. Cellulose. 1998, 5(1), 19–32. DOI: 10.1023/A:1009260511939.
  • Follain, N.; Belbekhouche, S.; Bras, J.; Siqueira, G.; Marais, S.; Dufresne, A. Water Transport Properties of bio-nanocomposites Reinforced by Luffa Cylindrica Cellulose Nanocrystals. J. Membr. Sci. 2013, 427, 218–229. DOI: 10.1016/j.memsci.2012.09.048.
  • Melo, P. T.; Otoni, C. G.; Barud, H. S.; Aouada, F. A.; de Moura, M. R. Upcycling Microbial Cellulose Scraps into Nanowhiskers with Engineered Performance as Fillers in all-cellulose Composites. ACS Appl. Mater. Interfaces. 2020, 12(41), 46661–46666. DOI: 10.1021/acsami.0c12392.
  • Nollet, L. M., and Toldrá, F. Advanced Technologies for Meat Processing; Boca Raton: CRC Press 9780429135323 doi:https://doi.org/10.1201/9781420017311 , 2006.
  • de Azeredo, H. M. C.; Mattoso, L. H. C.; McHugh, T. H. (2011). Nanocomposites in Food packaging–a Review. Advances in diverse industrial applications of nanocomposites, 57–78.
  • Paul, M. A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005, 87(3), 535–542. DOI: 10.1016/j.polymdegradstab.2004.10.011.
  • Mueller, R. J. Biological Degradation of Synthetic polyesters—Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41(10), 2124–2128. DOI: 10.1016/j.procbio.2006.05.018.
  • de Azeredo, H. M. Antimicrobial Nanostructures in Food Packaging. Trends Food Sci. Technol. 2013, 30(1), 56–69. DOI: 10.1016/j.tifs.2012.11.006.
  • Kumar, R.; Münstedt, H. Silver Ion Release from Antimicrobial polyamide/silver Composites. Biomaterials. 2005, 26(14), 2081–2088. DOI: 10.1016/j.biomaterials.2004.05.030.
  • Cho, H. S.; Moon, H. S.; Kim, M.; Nam, K.; Kim, J. Y. Biodegradability and Biodegradation Rate of Poly (Caprolactone)-starch Blend and Poly (Butylene Succinate) Biodegradable Polymer under Aerobic and Anaerobic Environment. Waste Manag. 2011, 31(3), 475–480. DOI: 10.1016/j.wasman.2010.10.029.
  • Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. Negligible particle-specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12(8), 4271–4275. DOI: 10.1021/nl301934w.
  • Youssef, A. M.; El-Samahy, M. A.; Rehim, M. H. A. Preparation of Conductive Paper Composites Based on Natural Cellulosic Fibers for Packaging Applications. Carbohydr. Polym. 2012, 89(4), 1027–1032. DOI: 10.1016/j.carbpol.2012.03.044.
  • Liu, H.; Yang, S.; Ni, Y. Effect of Pulp Fines on the Dye− Fiber Interactions during the Color-Shading Process. Ind. Eng. Chem. Res. 2010, 49(18), 8544–8549. DOI: 10.1021/ie101169s.
  • Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Kenny, J. M.; Kenny, J. M. Multifunctional Bionanocomposite Films of Poly (Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87(2), 1596–1605. DOI: 10.1016/j.carbpol.2011.09.066.
  • Imre, B.; Pukánszky, B. Compatibilization in bio-based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49(6), 1215–1233. DOI: 10.1016/j.eurpolymj.2013.01.019.
  • Cherpinski, A.; Torres-Giner, S.; Vartiainen, J.; Peresin, M. S.; Lahtinen, P.; Lagaron, J. M. Improving the Water Resistance of nanocellulose-based Films with Polyhydroxyalkanoates Processed by the Electrospinning Coating Technique. Cellulose. 2018, 25(2), 1291–1307. DOI: 10.1007/s10570-018-1648-z.
  • Park, C. W.; Youe, W. J.; Han, S. Y.; Kim, Y. S.; Lee, S. H. Characteristics of Carbon Nanofibers Produced from lignin/polyacrylonitrile (Pan)/kraft lignin-g-PAN Copolymer Blends Electrospun Nanofibers. Holzforschung. 2017, 71(9), 743–750. DOI: 10.1515/hf-2017-0024.
  • Delgado Aguilar, M.; González Tovar, I.; Tarrés Farrés, J. A.; Alcalà Vilavella, M.; Pèlach Serra, M. À.; Mutjé Pujol, P. Approaching a low-cost Production of Cellulose Nanofibers for Papermaking Applications. Bioresour. 2015, 10(3), 5435.
  • Bhattacharya, A.; Misra, B. N. Grafting: A Versatile Means to Modify Polymers: Techniques, Factors and Applications. Prog. Polym. Sci. 2004, 29(8), 767–814. DOI: 10.1016/j.progpolymsci.2004.05.002.
  • Asl, S. A.; Mousavi, M., and Labbafi, M. Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse. J. Food Process. Technol. 8 8 2017, 8(8 doi:10.4172/2157-7110.1000687.
  • Kalia, S.; Boufi, S.; Celli, A.; Kango, S. Nanofibrillated Cellulose: Surface Modification and Potential Applications. Colloid Polym. Sci. 2014, 292(1), 5–31. DOI: 10.1007/s00396-013-3112-9.
  • Khalil, H. A.; Davoudpour, Y.; Islam, M. N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. DOI: 10.1016/j.carbpol.2013.08.069.
  • Spence, K. L.; Venditti, R. A.; Rojas, O. J.; Habibi, Y.; Pawlak, J. J. A Comparative Study of Energy Consumption and Physical Properties of Microfibrillated Cellulose Produced by Different Processing Methods. Cellulose. 2011, 18(4), 1097–1111. DOI: 10.1007/s10570-011-9533-z.
  • Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose–Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydr. Polym. 2012, 90(2), 735–764. DOI: 10.1016/j.carbpol.2012.05.026.
  • Isik, M.; Sardon, H.; Mecerreyes, D. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials. Int. J. Mol. Sci. 2014, 15(7), 11922–11940. DOI: 10.3390/ijms150711922.
  • Laycock, B.; Nikolić, M.; Colwell, J. M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G. Lifetime Prediction of Biodegradable Polymers. Prog. Polym. Sci. 2017, 71, 144–189.
  • Garcia-Garcia, D.; Lopez-Martinez, J.; Balart, R.; Strömberg, E.; Moriana, R. Reinforcing Capability of Cellulose Nanocrystals Obtained from Pine Cones in a Biodegradable Poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) Thermoplastic Blend. Eur. Polym. J. 2018, 104, 10–18. DOI: 10.1016/j.eurpolymj.2018.04.036.
  • Witt, U.; Einig, T.; Yamamoto, M.; Kleeberg, I.; Deckwer, W. D.; Müller, R. J. Biodegradation of aliphatic–aromatic Copolyesters: Evaluation of the Final Biodegradability and Ecotoxicological Impact of Degradation Intermediates. Chemosphere. 2001, 44(2), 289–299. DOI: 10.1016/S0045-6535(00)00162-4.
  • Pinheiro, I. F.; Ferreira, F. V.; Souza, D. H. S.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Mechanical, Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Eur. Polym. J. 2017, 97, 356–365. DOI: 10.1016/j.eurpolymj.2017.10.026.
  • Yu, Z.; Ji, Y.; Bourg, V.; Bilgen, M.; Meredith, J. C. Chitin-and cellulose-based Sustainable Barrier Materials: A Review. Emergent Mater. 2020, 3(6), 919–936. DOI: 10.1007/s42247-020-00147-5.
  • Dos Santos, F. A.; Iulianelli, G. C.; Tavares, M. I. B. The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications. Mater. Sci. Appl. 2016, 7(5), 257. DOI: 10.4236/msa.2016.75026.
  • Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-mediated Oxidation of Native Cellulose. Biomacromolecules. 2007, 8(8), 2485–2491. DOI: 10.1021/bm0703970.
  • Dong, H.; Sliozberg, Y. R.; Snyder, J. F.; Steele, J.; Chantawansri, T. L.; Orlicki, J. A.; Rudie, A. W.; Reiner, R. S.; Rudie, A. W. Highly Transparent and Toughened Poly (Methyl Methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. ACS Appl. Mater. Interfaces. 2015, 7(45), 25464–25472. DOI: 10.1021/acsami.5b08317.
  • Dehnad, D.; Mirzaei, H.; Emam-Djomeh, Z.; Jafari, S. M.; Dadashi, S. Thermal and Antimicrobial Properties of chitosan–nanocellulose Films for Extending Shelf Life of Ground Meat. Carbohydr. Polym. 2014, 109, 148–154. DOI: 10.1016/j.carbpol.2014.03.063.
  • El-Wakil, N. A.; Hassan, E. A.; Abou-Zeid, R. E.; Dufresne, A. Development of Wheat gluten/nanocellulose/titanium Dioxide Nanocomposites for Active Food Packaging. Carbohydr. Polym. 2015, 124, 337–346. DOI: 10.1016/j.carbpol.2015.01.076.
  • Salmieri, S.; Islam, F.; Khan, R. A.; Hossain, F. M.; Ibrahim, H. M.; Miao, C.; Lacroix, M.; Lacroix, M. Antimicrobial Nanocomposite Films Made of Poly (Lactic Acid)–cellulose Nanocrystals (PLA–CNC) in Food applications—part B: Effect of Oregano Essential Oil Release on the Inactivation of Listeria Monocytogenes in Mixed Vegetables. Cellulose. 2014, 21(6), 4271–4285. DOI: 10.1007/s10570-014-0406-0.
  • Azeredo, H. M.; Miranda, K. W.; Rosa, M. F.; Nascimento, D. M.; de Moura, M. R. Edible Films from alginate-acerola Puree Reinforced with Cellulose Whiskers. Cellulose. 2012, 46(1), 294–297. DOI: 10.1016/j.lwt.2011.09.016.
  • Hubbe, M. A.; Rojas, O. J.; Lucia, L. A.; Sain, M. Cellulosic Nanocomposites: A Review. BioResources. 2008, 3(3), 929–980.
  • Djalia, T.; Tarchoun, A.; Derradji, M.; Hamidon, T.; Masruchin, N.; Brosse, N.; Hussin, M. H. Nanocellulose from Fundamentals to Advanced Applications Enhanced. Front. Chem. 2020, 8, 392. DOI: 10.3389/fchem.2020.00392.
  • Heitz, M.; Capek-Menard, E.; Koeberle, P. G.; Gagne, J.; Chornet, E.; Overend, R. P.; Yu, E.; Yu, E. Fractionation of Populus Tremuloides at the Pilot Plant Scale: Optimization of Steam Pretreatment Conditions Using the STAKE II Technology. Bioresour. Technol. 1991, 35(1), 23–32. DOI: 10.1016/0960-8524(91)90078-X.
  • Anton, F.; (1944). U.S. Patent No. 2,349,950. Washington, DC: U.S. Patent and Trademark Office.
  • Marsh, K.; Bugusu, B. Food packaging—roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72(3), R39–R55. DOI: 10.1111/j.1750-3841.2007.00301.x.
  • Herrick, F. W.; Casebier, R. L.; Hamilton, J. K.; Sandberg, K. R. (1983, January). Microfibrillated Cellulose: Morphology and Accessibility. In J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States) (Vol. 37, No. CONF-8205234-Vol. 2). ITT Rayonier Inc., Shelton, WA.
  • Dufresne, A.; Vignon, M. R. Improvement of Starch Films Performances Using Cellulose Microfibrils. Macromolecules. 1998, 31(8), 2693–2696. DOI: 10.1021/ma971532b.
  • Gousse, C.; Chanzy, H.; Cerrada, M. L.; Fleury, E. Surface Silylation of Cellulose Microfibrils: Preparation and Rheological Properties. Polymer. 2004, 45(5), 1569–1575. DOI: 10.1016/j.polymer.2003.12.028.
  • Iwamoto, S.; Nakagaito, A. N.; Yano, H.; Nogi, M. Optically Transparent Composites Reinforced with Plant fiber-based Nanofibers. Appl. Phys. A. 2005, 81(6), 1109–1112. DOI: 10.1007/s00339-005-3316-z.
  • Saito, T.; Okita, Y.; Nge, T. T.; Sugiyama, J.; Isogai, A. TEMPO-mediated Oxidation of Native Cellulose: Microscopic Analysis of Fibrous Fractions in the Oxidized Products. Carbohydr. Polym. 2006, 65(4), 435–440. DOI: 10.1016/j.carbpol.2006.01.034.
  • Kim, C. W.; Kim, D. S.; Kang, S. Y.; Marquez, M.; Joo, Y. L. Structural Studies of Electrospun Cellulose Nanofibers. Polymer. 2006, 47(14), 5097–5107. DOI: 10.1016/j.polymer.2006.05.033.
  • Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Lindström, T.; Laine, J.; Larsson, P. T.; Ikkala, O. Enzymatic Hydrolysis Combined with Mechanical Shearing and high-pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules. 2007, 8(6), 1934–1941. DOI: 10.1021/bm061215p.
  • Seydibeyoğlu, M. Ö.; Oksman, K. Novel Nanocomposites Based on Polyurethane and Micro Fibrillated Cellulose. Compos. Sci. Technol. 2008, 68(3–4), 908–914. DOI: 10.1016/j.compscitech.2007.08.008.
  • Yun, G. Y.; Kim, H. S.; Kim, J.; Kim, K.; Yang, C. Effect of Aligned Cellulose Film to the Performance of electro-active Paper Actuator. Sens. Actuators A Phys. 2008, 141(2), 530–535. DOI: 10.1016/j.sna.2007.10.014.
  • Johnson, R. K.; Zink-Sharp, A.; Renneckar, S. H.; Glasser, W. G. A New bio-based Nanocomposite: Fibrillated TEMPO-oxidized Celluloses in Hydroxypropylcellulose Matrix. Cellulose. 2009, 16(2), 227–238. DOI: 10.1007/s10570-008-9269-6.
  • Ohkawa, K.; Hayashi, S.; Nishida, A.; Yamamoto, H.; Ducreux, J. Preparation of Pure Cellulose Nanofiber via Electrospinning. Text. Res. J. 2009, 79(15), 1396–1401. DOI: 10.1177/0040517508101455.
  • Quiévy, N.; Jacquet, N.; Sclavons, M.; Deroanne, C.; Paquot, M.; Devaux, J. Influence of Homogenization and Drying on the Thermal Stability of Microfibrillated Cellulose. Polym. Degrad. Stab. 2010, 95(3), 306–314. DOI: 10.1016/j.polymdegradstab.2009.11.020.
  • Peresin, M. S.; Habibi, Y.; Vesterinen, A. H.; Rojas, O. J.; Pawlak, J. J.; Seppälä, J. V. Effect of Moisture on Electrospun Nanofiber Composites of Poly (Vinyl Alcohol) and Cellulose Nanocrystals. Biomacromolecules. 2010, 11(9), 2471–2477. DOI: 10.1021/bm1006689.
  • Vartiainen, J.; Pöhler, T.; Sirola, K.; Pylkkänen, L.; Alenius, H.; Hokkinen, J.; Laukkanen, A.; Lahtinen, P.; Kapanen, A.; Putkisto, K. Health and Environmental Safety Aspects of Friction Grinding and Spray Drying of Microfibrillated Cellulose. Cellulose. 2011, 18(3), 775–786. DOI: 10.1007/s10570-011-9501-7.
  • Jin, H.; Kettunen, M.; Laiho, A.; Pynnönen, H.; Paltakari, J.; Marmur, A.; Ras, R. H.; Ras, R. H. A. Superhydrophobic and Superoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil. Langmuir. 2011, 27(5), 1930–1934. DOI: 10.1021/la103877r.
  • Chen, H.; Yada, R. Nanotechnologies in Agriculture: New Tools for Sustainable Development. Trends Food Sci. Technol. 2011, 22(11), 585–594. DOI: 10.1016/j.tifs.2011.09.004.
  • Tischer, P. C. F.; Sierakowski, M. R.; Westfahl, H., Jr; Tischer, C. A. Nanostructural Reorganization of Bacterial Cellulose by Ultrasonic Treatment. Biomacromolecules. 2010, 11(5), 1217–1224. DOI: 10.1021/bm901383a.
  • Rattaz, A.; Mishra, S. P.; Chabot, B.; Daneault, C. Cellulose Nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose. 2011, 18(3), 585–593. DOI: 10.1007/s10570-011-9529-8.
  • Freire, M. G.; Teles, A. R. R.; Ferreira, R. A.; Carlos, L. D.; Lopes-da-Silva, J. A.; Coutinho, J. A. Electrospun Nanosized Cellulose Fibers Using Ionic Liquids at Room Temperature. Green Chem. 2011, 13(11), 3173–3180. DOI: 10.1039/c1gc15930e.
  • Deepa, B.; Abraham, E.; Cherian, B. M.; Bismarck, A.; Blaker, J. J.; Pothan, L. A.; Kottaisamy, M.; de Souza, S. F.; Kottaisamy, M. Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion. Bioresour. Technol. 2011, 102(2), 1988–1997. DOI: 10.1016/j.biortech.2010.09.030.
  • Kaushik, A.; Singh, M. Isolation and Characterization of Cellulose Nanofibrils from Wheat Straw Using Steam Explosion Coupled with High Shear Homogenization. Carbohydr. Res. 2011, 346(1), 76–85. DOI: 10.1016/j.carres.2010.10.020.
  • Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Liu, Y.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90(4), 1609–1613. DOI: 10.1016/j.carbpol.2012.07.038.
  • Ferrer, A.; Filpponen, I.; Rodríguez, A.; Laine, J.; Rojas, O. J. Valorization of Residual Empty Palm Fruit Bunch Fibers (EPFBF) by Microfluidization: Production of Nanofibrillated Cellulose and EPFBF Nanopaper. Bioresour. Technol. 2012, 125, 249–255. DOI: 10.1016/j.biortech.2012.08.108.
  • Hassan, M. L.; Mathew, A. P.; Hassan, E. A.; El-Wakil, N. A.; Oksman, K. Nanofibers from Bagasse and Rice Straw: Process Optimization and Properties. Wood Sci. Technol. 2012, 46(1–3), 193–205. DOI: 10.1007/s00226-010-0373-z.
  • Tanpichai, S.; Quero, F.; Nogi, M.; Yano, H.; Young, R. J.; Lindström, T.; Eichhorn, S. J.; Eichhorn, S. J. Effective Young’s Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules. 2012, 13(5), 1340–1349. DOI: 10.1021/bm300042t.
  • Jonoobi, M.; Mathew, A. P.; Oksman, K. Producing low-cost Cellulose Nanofiber from Sludge as New Source of Raw Materials. Ind. Crops Prod. 2012, 40, 232–238. DOI: 10.1016/j.indcrop.2012.03.018.
  • Martínez-Sanz, M.; Lopez-Rubio, A.; Lagaron, J. M. Nanocomposites of Ethylene Vinyl Alcohol Copolymer with Thermally Resistant Cellulose Nanowhiskers by Melt Compounding (I): Morphology and Thermal Properties. J. Appl. Polym. Sci. 2013, 128(5), 2666–2678. DOI: 10.1002/app.38433.
  • Abraham, E.; Elbi, P. A.; Deepa, B.; Jyotishkumar, P.; Pothen, L. A.; Narine, S. S.; Thomas, S. X-ray Diffraction and Biodegradation Analysis of Green Composites of Natural rubber/nanocellulose. Polym. Degrad. Stab. 2012, 97(11), 2378–2387. DOI: 10.1016/j.polymdegradstab.2012.07.028.
  • Uetani, K.; Yano, H. Zeta Potential Time Dependence Reveals the Swelling Dynamics of Wood Cellulose Nanofibrils. Langmuir. 2012, 28(1), 818–827. DOI: 10.1021/la203404g.
  • Rezayati Charani, P.; Dehghani-Firouzabadi, M.; Afra, E.; Blademo, Å.; Naderi, A.; Lindström, T. Production of Microfibrillated Cellulose from Unbleached Kraft Pulp of Kenaf and Scotch Pine and Its Effect on the Properties of Hardwood Kraft: Microfibrillated Cellulose Paper. Cellulose. 2013, 20(5), 2559–2567. DOI: 10.1007/s10570-013-9998-z.
  • Cao, X.; Wang, X.; Ding, B.; Yu, J.; Sun, G. Novel spider-web-like Nanoporous Networks Based on Jute Cellulose Nanowhiskers. Carbohydr. Polym. 2013, 92(2), 2041–2047. DOI: 10.1016/j.carbpol.2012.11.085.
  • Šutka, A.; Kukle, S.; Gravitis, J.; Grave, L. (2013). Characterization of Cellulose Microfibrils Obtained from Hemp. In Conference Papers in Science (Vol. 2013). Hindawi.
  • Li, J.; Wang, Y.; Wei, X.; Wang, F.; Han, D.; Wang, Q.; Kong, L. Homogeneous Isolation of Nanocelluloses by Controlling the Shearing Force and Pressure in Microenvironment. Carbohydr. Polym. 2014, 113, 388–393. DOI: 10.1016/j.carbpol.2014.06.085.
  • Karimi, S.; Tahir, P. M.; Karimi, A.; Dufresne, A.; Abdulkhani, A. Kenaf Bast Cellulosic Fibers Hierarchy: A Comprehensive Approach from Micro to Nano. Carbohydr. Polym. 2014, 101, 878–885. DOI: 10.1016/j.carbpol.2013.09.106.
  • Nair, S. S.; Zhu, J. Y.; Deng, Y.; Ragauskas, A. J. Characterization of Cellulose Nanofibrillation by Micro Grinding. J. Nanopart. Res. 2014, 16(4), 1–10. DOI: 10.1007/s11051-014-2349-7.
  • Li, Y.; Zhu, H.; Xu, M.; Zhuang, Z.; Xu, M.; Dai, H. High Yield Preparation Method of Thermally Stable Cellulose Nanofibers. BioResources. 2014, 9(2), 1986–1997.
  • He, X.; Xiao, Q.; Lu, C.; Wang, Y.; Zhang, X.; Zhao, J.; Deng, Y.; Zhang, X.; Deng, Y. Uniaxially Aligned Electrospun all-cellulose Nanocomposite Nanofibers Reinforced with Cellulose Nanocrystals: Scaffold for Tissue Engineering. Biomacromolecules. 2014, 15(2), 618–627. DOI: 10.1021/bm401656a.
  • Wang, W.; Mozuch, M. D.; Sabo, R. C.; Kersten, P.; Zhu, J. Y.; Jin, Y. Production of Cellulose Nanofibrils from Bleached Eucalyptus Fibers by Hyperthermostable Endoglucanase Treatment and Subsequent Microfluidization. Cellulose. 2015, 22(1), 351–361. DOI: 10.1007/s10570-014-0465-2.
  • Savadekar, N. R.; Karande, V. S.; Vigneshwaran, N.; Kadam, P. G.; Mhaske, S. T. Preparation of Cotton Linter Nanowhiskers by high-pressure Homogenization Process and Its Application in Thermoplastic Starch. Appl. Nanosci. 2015, 5(3), 281–290. DOI: 10.1007/s13204-014-0316-3.
  • Davoudpour, Y.; Hossain, S.; Khalil, H. A.; Haafiz, M. M.; Ishak, Z. M.; Hassan, A.; Sarker, Z. I. Optimization of High Pressure Homogenization Parameters for the Isolation of Cellulosic Nanofibers Using Response Surface Methodology. Ind. Crops Prod. 2015, 74, 381–387. DOI: 10.1016/j.indcrop.2015.05.029.
  • Wei, L.; Agarwal, U. P.; Hirth, K. C.; Matuana, L. M.; Sabo, R. C.; Stark, N. M. Chemical Modification of Nanocellulose with Canola Oil Fatty Acid Methyl Ester. Carbohyd. Polym. 2017, 169, 108–116. DOI: 10.1016/j.carbpol.2017.04.008.
  • Robles, E.; Urruzola, I.; Labidi, J.; Serrano, L. Surface-modified nano-cellulose as Reinforcement in Poly (Lactic Acid) to Conform New Composites. Ind. Crops Prod. 2015, 71, 44–53. DOI: 10.1016/j.indcrop.2015.03.075.
  • Zhang, R.; Liu, Y.; Araujo, M. T. F.; Martins Filho, A. J.; de Alcantara, B. N.; Araujo, F. M. C.; Queiroz, M. G. L.; Cruz, A. C. R.; Vasconcelos, B. H. B.; Chiang, J. O. High Energy Oxidation and Organosolv Solubilization for High Yield Isolation of Cellulose Nanocrystals (CNC) from Eucalyptus Hardwood. Sci. Rep. 2018, 8(1), 1–11. DOI: 10.1038/s41598-017-17765-5.
  • Camarero Espinosa, S.; Kuhnt, T.; Foster, E. J.; Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules. 2013, 14(4), 1223–1230. DOI: 10.1021/bm400219u.
  • Barbash, V. A.; Yashchenko, O. V. Preparation and Application of Nanocellulose from non-wood Plants to Improve the Quality of Paper and Cardboard. Appl. Nanosci. 2020, 10(8), 2705–2716. DOI: 10.1007/s13204-019-01242-8.
  • Qu, J.; Yuan, Z.; Wang, C.; Wang, A.; Liu, X.; Wei, B.; Wen, Y. Enhancing the Redispersibility of TEMPO-mediated Oxidized Cellulose Nanofibrils in N, N-dimethylformamide by Modification with Cetyltrimethylammonium Bromide. Cellulose. 2019, 26(13–14), 7769–7780. DOI: 10.1007/s10570-019-02655-y.
  • Sethi, J.; Oksman, K.; Illikainen, M.; Sirviö, J. A. Sonication-assisted Surface Modification Method to Expedite the Water Removal from Cellulose Nanofibers for Use in Nanopapers and Paper Making. Carbohydr. Polym. 2018, 197, 92–99. DOI: 10.1016/j.carbpol.2018.05.072.
  • Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F. Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a micro-to a nano-scale View. Appl. Surf. Sci. 2018, 436, 1113–1122. DOI: 10.1016/j.apsusc.2017.12.137.
  • Wang, W.; Yu, Z.; Alsammarraie, F. K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl alcohol-modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocolloids. 2020, 100, 105411. DOI: 10.1016/j.foodhyd.2019.105411.
  • Li, H.; Yan, Z.; Xiong, Q.; Chen, X.; Lin, Y.; Xu, Y.; … Xing, C. Renoprotective Effect and Mechanism of Polysaccharide from Polyporus Umbellatus Sclerotia on Renal Fibrosis. Carbohydr. Polym. 2019, 212, 1–10.
  • Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M. Adsorption of Cu (II), Pb (II) and Cr (VI) from Aqueous Solutions Using Black Wattle tannin-immobilized Nanocellulose. J. Hazard. Mater. 2017, 339, 91–99. DOI: 10.1016/j.jhazmat.2017.06.005.
  • Fortunati, E.; Benincasa, P.; Balestra, G. M.; Luzi, F.; Mazzaglia, A.; Del Buono, D.; Torre, L.; Torre, L. Revalorization of Barley Straw and Husk as Precursors for Cellulose Nanocrystals Extraction and Their Effect on PVA_CH Nanocomposites. Ind. Crops Prod. 2016, 92, 201–217. DOI: 10.1016/j.indcrop.2016.07.047.
  • Thambiraj, S.; Shankaran, D. R. Preparation and Physicochemical Characterization of Cellulose Nanocrystals from Industrial Waste Cotton. Appl. Surf. Sci. 2017, 412, 405–416. DOI: 10.1016/j.apsusc.2017.03.272.
  • El Achaby, M.; El Miri, N.; Aboulkas, A.; Zahouily, M.; Bilal, E.; Barakat, A.; Solhy, A. Processing and Properties of eco-friendly bio-nanocomposite Films Filled with Cellulose Nanocrystals from Sugarcane Bagasse. Int. J. Biol. Macromol. 2017, 96, 340–352. DOI: 10.1016/j.ijbiomac.2016.12.040.
  • El Miri, N.; Abdelouahdi, K.; Barakat, A.; Zahouily, M.; Fihri, A.; Solhy, A.; El Achaby, M. Bio-nanocomposite Films Reinforced with Cellulose Nanocrystals: Rheology of film-forming Solutions, Transparency, Water Vapor Barrier and Tensile Properties of Films. Carbohydr. Polym. 2015, 129, 156–167. DOI: 10.1016/j.carbpol.2015.04.051.
  • Luzi, F.; Fortunati, E.; Giovanale, G.; Mazzaglia, A.; Torre, L.; Balestra, G. M. Cellulose Nanocrystals from Actinidia Deliciosa Pruning Residues Combined with Carvacrol in PVA_CH Films with antioxidant/antimicrobial Properties for Packaging Applications. Int. J. Biol. Macromol. 2017, 104, 43–55. DOI: 10.1016/j.ijbiomac.2017.05.176.
  • Khan, A.; Khan, R. A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Lacroix, M.; Tan, V.; Kamal, M. R.; Lacroix, M. Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydr. Polym. 2012, 90(4), 1601–1608. DOI: 10.1016/j.carbpol.2012.07.037.
  • Perumal, A. B.; Sellamuthu, P. S.; Nambiar, R. B.; Sadiku, E. R. Development of Polyvinyl alcohol/chitosan bio-nanocomposite Films Reinforced with Cellulose Nanocrystals Isolated from Rice Straw. Appl. Surf. Sci. 2018, 449, 591–602. DOI: 10.1016/j.apsusc.2018.01.022.
  • El Achaby, M.; Kassab, Z.; Aboulkas, A.; Gaillard, C.; Barakat, A. Reuse of Red Algae Waste for the Production of Cellulose Nanocrystals and Its Application in Polymer Nanocomposites. Int. J. Biol. Macromol. 2018, 106, 681–691. DOI: 10.1016/j.ijbiomac.2017.08.067.
  • Huq, T.; Salmieri, S.; Khan, A.; Khan, R. A.; Le Tien, C.; Riedl, B.; Fraschini, M.; Bouchard, J.; Uribe-Calderon, J.; Kamal, M. R. Nanocrystalline Cellulose (NCC) Reinforced Alginate Based Biodegradable Nanocomposite Film. Carbohydr. Polym. 2012, 90(4), 1757–1763. DOI: 10.1016/j.carbpol.2012.07.065.
  • Popescu, M. C. Structure and Sorption Properties of CNC Reinforced PVA Films. Int. J. Biol. Macromol. 2017, 101, 783–790. DOI: 10.1016/j.ijbiomac.2017.03.168.
  • Zainuddin, S. Y. Z.; Ahmad, I.; Kargarzadeh, H.; Abdullah, I.; Dufresne, A. Potential of Using Multiscale Kenaf Fibers as Reinforcing Filler in Cassava starch-kenaf Biocomposites. Carbohydr. Polym. 2013, 92(2), 2299–2305. DOI: 10.1016/j.carbpol.2012.11.106.
  • Alemdar, A.; Sain, M. Isolation and Characterization of Nanofibers from Agricultural residues–Wheat Straw and Soy Hulls. Bioresour. Technol. 2008, 99(6), 1664–1671. DOI: 10.1016/j.biortech.2007.04.029.
  • Khan, R. A.; Salmieri, S.; Dussault, D.; Uribe-Calderon, J.; Kamal, M. R.; Safrany, A.; Lacroix, M. Production and Properties of nanocellulose-reinforced methylcellulose-based Biodegradable Films. J. Agric. Food Chem. 2010, 58(13), 7878–7885. DOI: 10.1021/jf1006853.
  • Abdollahi, M.; Alboofetileh, M.; Behrooz, R.; Rezaei, M.; Miraki, R. Reducing Water Sensitivity of Alginate bio-nanocomposite Film Using Cellulose Nanoparticles. Int. J. Biol. Macromol. 2013, 54, 166–173. DOI: 10.1016/j.ijbiomac.2012.12.016.
  • Xu, X.; Liu, F.; Jiang, L.; Zhu, J. Y.; Haagenson, D.; Wiesenborn, D. P. Cellulose Nanocrystals Vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces. 2013, 5(8), 2999–3009.
  • George, J.; Kumar, R.; Sajeevkumar, V. A.; Ramana, K. V.; Rajamanickam, R.; Abhishek, V.; Nadanasabapathy, S. Hybrid HPMC Nanocomposites Containing Bacterial Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2014, 105, 285–292. DOI: 10.1016/j.carbpol.2014.01.057.
  • George, J. High Performance Edible Nanocomposite Films Containing Bacterial Cellulose Nanocrystals. Carbohydr. Polym. 2012, 87(3), 2031–2037. DOI: 10.1016/j.carbpol.2011.10.019.
  • George, J.; Ramana, K. V.; Bawa, A. S. Bacterial Cellulose Nanocrystals Exhibiting High Thermal Stability and Their Polymer Nanocomposites. Int. J. Biol. Macromol. 2011, 48(1), 50–57. DOI: 10.1016/j.ijbiomac.2010.09.013.
  • Dufresne, A.; Dupeyre, D.; Vignon, M. R. Cellulose Microfibrils from Potato Tuber Cells: Processing and Characterization of starch–cellulose Microfibril Composites. J. Appl. Polym. Sci. 2000, 76(14), 2080–2092. DOI: 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U.
  • Chen, Y.; Liu, C.; Chang, P. R.; Cao, X.; Anderson, D. P. Bionanocomposites Based on Pea Starch and Cellulose Nanowhiskers Hydrolyzed from Pea Hull Fibre: Effect of Hydrolysis Time. Carbohydr. Polym. 2009, 76(4), 607–615. DOI: 10.1016/j.carbpol.2008.11.030.
  • de Mesquita, J. P.; Donnici, C. L.; Teixeira, I. F.; Pereira, F. V. Bio-based Nanocomposites Obtained through Covalent Linkage between Chitosan and Cellulose Nanocrystals. Carbohydr. Polym. 2012, 90(1), 210–217. DOI: 10.1016/j.carbpol.2012.05.025.
  • Soykeabkaew, N.; Laosat, N.; Ngaokla, A.; Yodsuwan, N.; Tunkasiri, T. Reinforcing Potential of micro-and nano-sized Fibers in the starch-based Biocomposites. Compos. Sci. Technol. 2012, 72(7), 845–852. DOI: 10.1016/j.compscitech.2012.02.015.
  • Khan, R. A.; Beck, S.; Dussault, D.; Salmieri, S.; Bouchard, J.; Lacroix, M. Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Poly (Caprolactone) Composites: Effect of Gamma Radiation. J. Appl. Polym. Sci. 2013, 129(5), 3038–3046. DOI: 10.1002/app.38896.
  • Wang, Y.; Cao, X.; Zhang, L. Effects of Cellulose Whiskers on Properties of Soy Protein Thermoplastics. Macromol. Biosci. 2006, 6(7), 524–531. DOI: 10.1002/mabi.200600034.
  • Iwatake, A.; Nogi, M.; Yano, H. Cellulose nanofiber-reinforced Polylactic Acid. Compos. Sci. Technol. 2008, 68(9), 2103–2106. DOI: 10.1016/j.compscitech.2008.03.006.
  • Pereda, M.; Dufresne, A.; Aranguren, M. I.; Marcovich, N. E. Polyelectrolyte Films Based on chitosan/olive Oil and Reinforced with Cellulose Nanocrystals. Carbohydr. Polym. 2014, 101, 1018–1026. DOI: 10.1016/j.carbpol.2013.10.046.
  • Azeredo, H. M.; Mattoso, L. H. C.; Avena‐Bustillos, R. J.; Filho, G. C.; Munford, M. L.; Wood, D.; McHugh, T. H. Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content. J. Food Sci. 2010, 75(1), N1–N7. DOI: 10.1111/j.1750-3841.2009.01386.x.
  • Fernández, A.; Picouet, P.; Lloret, E. Cellulose-silver Nanoparticle Hybrid Materials to Control spoilage-related Microflora in Absorbent Pads Located in Trays of fresh-cut Melon. Int. J. Food Microbiol. 2010, 142(1–2), 222–228. DOI: 10.1016/j.ijfoodmicro.2010.07.001.
  • Wu, T.; Farnood, R.; O’Kelly, K.; Chen, B. Mechanical Behavior of Transparent Nanofibrillar cellulose–chitosan Nanocomposite Films in Dry and Wet Conditions. J. Mech. Behav. Biomed. Mater. 2014, 32, 279–286. DOI: 10.1016/j.jmbbm.2014.01.014.
  • Dhar, P.; Bhardwaj, U.; Kumar, A.; Katiyar, V. Poly (3‐hydroxybutyrate)/cellulose Nanocrystal Films for Food Packaging Applications: Barrier and Migration Studies. Polym. Eng. Sci. 2015, 55(10), 2388–2395. DOI: 10.1002/pen.24127.
  • Li, Q.; Zhou, J.; Zhang, L. Structure and Properties of the Nanocomposite Films of Chitosan Reinforced with Cellulose Whiskers. J. Polym. Sci. B Polym. Phys. 2009, 47(11), 1069–1077. DOI: 10.1002/polb.21711.
  • Jonoobi, M.; Harun, J.; Mathew, A. P.; Oksman, K. Mechanical Properties of Cellulose Nanofiber (CNF) Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. Compos. Sci. Technol. 2010, 70(12), 1742–1747.
  • Fortunati, E.; Rinaldi, S.; Peltzer, M.; Bloise, N.; Visai, L.; Armentano, I.; … Kenny, J. M. Nano-biocomposite Films with Modified Cellulose Nanocrystals and Synthesized Silver Nanoparticles. Carbohydr. Polym. 2014, 101, 1122–1133. DOI: 10.1016/j.carbpol.2013.10.055.
  • Oksman, K.; Mathew, A. P.; Bondeson, D.; Kvien, I. Manufacturing Process of Cellulose whiskers/polylactic Acid Nanocomposites. Compos. Sci. Technol. 2006, 66(15), 2776–2784. DOI: 10.1016/j.compscitech.2006.03.002.
  • Paralikar, S. A.; Simonsen, J.; Lombardi, J. Poly (Vinyl Alcohol)/cellulose Nanocrystal Barrier Membranes. J. Membr. Sci. 2008, 320(1–2), 248–258. DOI: 10.1016/j.memsci.2008.04.009.
  • Bideau, B.; Bras, J.; Saini, S.; Daneault, C.; Loranger, E. Mechanical and Antibacterial Properties of a nanocellulose-polypyrrole Multilayer Composite. Mater. Sci. Eng C. 2016, 69, 977–984. DOI: 10.1016/j.msec.2016.08.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.