154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanomechanical and thermomechanical evaluation of polypropylene nanocomposites containing functionalized boron nitride decorated with barium titanate

ORCID Icon, , , &
Pages 99-116 | Received 21 Feb 2022, Accepted 28 Jun 2022, Published online: 05 Jul 2022

References

  • Fan, P.; Wang, L.; Yang, J.; Chen, F.; Zhong, M. Graphene/poly(vinylidene Fluoride) Composites with High Dielectric Constant and Low Percolation Threshold. Nanotechnology. 2012, 23(36), 365702. DOI: 10.1088/0957-4484/23/36/365702.
  • Uyor, U. O.; Popoola, A. P.; Popoola, O.; Aigbodion, V. S. Energy Storage and Loss Capacity of Graphene‐reinforced Poly (Vinylidene Fluoride) Nanocomposites from Electrical and Dielectric Properties Perspective: A Review. Adv. Polym. Technol. 2018, 37(8), 2838–2858. DOI: 10.1002/adv.21956.
  • Shen, Y.; Hu, Y.; Chen, W.; Wang, J.; Guan, Y.; Du, J.; Zhang, X.; Ma, J.; Li, M.; Lin, Y., et al. Modulation of Topological Structure Induces Ultrahigh Energy Density of graphene/ba 0.6 Sr 0.4 tio3 nanofiber/polymer Nanocomposites. Nano Energy. 2015, 18, 176–186. DOI: 10.1016/j.nanoen.2015.10.003.
  • Uyor, U.; Popoola, A.; Popoola, O.; Aigbodion, V. Advancement on Suppression of Energy Dissipation of Percolative Polymer Nanocomposites: A Review on Graphene Based. J. Mater. Sci.: Mater. Electron. 2019, 30, 16966–16982.
  • Zhang, W.-B.; Zhang, Z.-X.; Yang, J.-H.; Huang, T.; Zhang, N.; Zheng, X.-T.; Wang, Y.; Zhou, Z.-W. Largely Enhanced Thermal Conductivity of Poly(vinylidene Fluoride)/carbon Nanotube Composites Achieved by Adding Graphene Oxide. Carbon. 2015, 90, 242–254. DOI: 10.1016/j.carbon.2015.04.040.
  • Tan, D. Q. Review of Polymer‐based Nanodielectric Exploration and Film Scale‐up for Advanced Capacitors. Adv. Funct. Mater. 2019, 30(18), 1808567.
  • Adams, S.; MacDougall, F.; Ellwanger, R., and Yializis, A. Advanced Capacitors for Airborne Pulsed High Power Microwave. 1st International Energy Conversion Engineering Conference (IECEC), Portsmouth, Virginia, United States, 2003, p. 5915
  • Shi, A.; Li, Y.; Liu, W.; Xu, J.-Z.; Yan, D.-X.; Lei, J.; Li, Z.-M. Highly Thermally Conductive and Mechanically Robust Composite of Linear Ultrahigh Molecular Weight Polyethylene and Boron Nitride via Constructing nacre-like Structure. Compos. Sci. Technol. 2019, 184, 107858. DOI: 10.1016/j.compscitech.2019.107858.
  • Lu, Z.; Wang, Y.; Ruan, X. The Critical Particle Size for Enhancing Thermal Conductivity in Metal nanoparticle-polymer Composites. J. Appl. Phys. 2018, 123(7), 074302. DOI: 10.1063/1.5014987.
  • Li, X.; Park, W.; Chen, Y. P.; Ruan, X. Effect of Particle Size and Aggregation on Thermal Conductivity of metal–polymer Nanocomposite. J. Heat. Transfer. 2017, 139(2). DOI: 10.1115/1.4034757.
  • Zhuang, J.; Sun, J.; Wu, D.; Liu, Y.; Patil, R. R.; Pan, D.; Guo, Z. Multi-factor Analysis on Thermal Conductive Property of metal-polymer Composite Microstructure Heat Exchanger. Adv. Compos. Hybrid Mater. 2021, 4(1), 27–35. DOI: 10.1007/s42114-021-00204-5.
  • Zhang, P.; Zeng, J.; Zhai, S.; Xian, Y.; Yang, D.; Li, Q. Thermal Properties of Graphene Filled Polymer Composite Thermal Interface Materials. Macromol. Mater. Eng. 2017, 302(9), 1700068. DOI: 10.1002/mame.201700068.
  • Sutar, H.; Mishra, B.; Senapati, P.; Murmu, R.; Sahu, D. Mechanical, Thermal, and Morphological Properties of Graphene nanoplatelet-reinforced Polypropylene Nanocomposites: Effects of Nanofiller Thickness. J. Compos. Sci. 2021, 5(1), 24. DOI: 10.3390/jcs5010024.
  • Al-Saleh, M. A.; Yussuf, A. A.; Al-Enezi, S.; Kazemi, R.; Wahit, M. U.; Al-Shammari, T.; Al-Banna, A. Polypropylene/graphene Nanocomposites: Effects of Gnp Loading and Compatibilizers on the Mechanical and Thermal Properties. Materials. 2019, 12(23), 3924. DOI: 10.3390/ma12233924.
  • Abuoudah, C. K.; Greish, Y. E.; Abu‐Jdayil, B.; El‐said, E. M.; Iqbal, M. Z. Graphene/polypropylene Nanocomposites with Improved Thermal and Mechanical Properties. J. Appl. Polym. Sci. 2021, 138(11), 50024. DOI: 10.1002/app.50024.
  • Uyor, U. O.; Popoola, A. P. I.; Popoola, O. M.; Aigbodion, V. S. Enhanced Thermal and Mechanical Properties of Polymer Reinforced with Slightly Functionalized Graphene Nanoplatelets. J Testing Eval. 2019, 47(4), 2681–2692. DOI: 10.1520/JTE20180336.
  • Kumar, K. S.; Reddy, A. C. Investigation on Mechanical Properties and Wear Performance of Nylon-6/boron Nitride Polymer Composites by Using Taguchi Technique. Results Mater. 2020, 5, 100070. DOI:10.1016/j.rinma.2020.100070.
  • Kwon, O.-S.; Lee, D.; Lee, S. P.; Kang, Y. G.; Kim, N. C.; Song, S. H. Enhancing the Mechanical and Thermal Properties of Boron Nitride nanoplatelets/elastomer Nanocomposites by Latex Mixing. RSC Adv. 2016, 6(65), 59970–59975. DOI: 10.1039/C6RA11356G.
  • Zhou, T.; Smith, M. K.; Berenguer, J. P.; Quill, T. J.; Cola, B. A.; Kalaitzidou, K.; Bougher, T. L. The Impact of Polymer Matrix Blends on Thermal and Mechanical Properties of Boron Nitride Composites. J. Appl. Polym. Sci. 2020, 137(19), 48661. DOI: 10.1002/app.48661.
  • Zhu, M.; Li, J.; Chen, J.; Song, H.; Zhang, H. Improving Thermal Conductivity of Epoxy Resin by Filling Boron Nitride Nanomaterials: A Molecular Dynamics Investigation. Comput. Mater. Sci. 2019, 164, 108–115. DOI: 10.1016/j.commatsci.2019.04.012.
  • Shao, L.; Shi, L.; Li, X.; Song, N.; Ding, P. Synergistic Effect of Bn and Graphene Nanosheets in 3d Framework on the Enhancement of Thermal Conductive Properties of Polymeric Composites. Compos. Sci. Technol. 2016, 135, 83–91. DOI: 10.1016/j.compscitech.2016.09.013.
  • Liem, H.; Choy, H. Superior Thermal Conductivity of Polymer Nanocomposites by Using Graphene and Boron Nitride as Fillers. Solid State Commun. 2013, 163, 41–45. DOI: 10.1016/j.ssc.2013.03.024.
  • Zou, D.; Huang, X.; Zhu, Y.; Chen, J.; Jiang, P. Boron Nitride Nanosheets Endow the Traditional Dielectric Polymer Composites with Advanced Thermal Management Capability. Compos. Sci. Technol. 2019, 177, 88–95. DOI: 10.1016/j.compscitech.2019.04.027.
  • Zheng, M.-S.; Zheng, Y.-T.; Zha, J.-W.; Yang, Y.; Han, P.; Wen, Y.-Q.; Dang, Z.-M. Improved Dielectric, Tensile and Energy Storage Properties of Surface Rubberized batio3/polypropylene Nanocomposites. Nano Energy. 2018, 48, 144–151. DOI: 10.1016/j.nanoen.2018.03.049.
  • Zhao, X.; Bi, Y.; Xie, J.; Hu, J.; Sun, S.; Song, S. Enhanced Dielectric, Energy Storage and Tensile Properties of batio3–nh2/low-density Polyethylene Nanocomposites with poe-gma as Interfacial Modifier. Polym. Test. 2021, 95, 107094. DOI: 10.1016/j.polymertesting.2021.107094.
  • Dai, X.; Xing, Z.; Xiao, Y.; Yang, W.; Zhang, C.; Zhou, J. Improved Dielectric Properties of Polypropylene Nanocomposites with batio3 Nanoparticles. IOP Conf. Ser: Earth and Environ. Sci. 2021, 1, 1–7. IOP Publishing
  • Sadhu, S. P. P.; Siddabattuni, S.; Varma, K. Enhanced Dielectric Properties and Energy Storage Density of Surface Engineered bczt/pvdf-hfp Nanodielectrics. J. Mater. Sci.: Mater. Electron. 2018, 29(8), 6174–6182.
  • Cheng, L.; Chi, X.; Yan, C.; Xie, D.; Liu, X.; Wen, Y.; Liu, W.; Li, S. Polypropylene Nanocomposite for Power Equipment: A Review. IET Nanodielectr. 2018, 1(2), 92–103. DOI: 10.1049/iet-nde.2018.0005.
  • Ertuğ, B. The Overview of the Electrical Properties of Barium Titanate. Am. J. Eng. Res. 2013, 2(8), 1–7.
  • Chen, G.; Lin, X.; Li, J.; Fisher, J. G.; Zhang, Y.; Huang, S.; Cheng, X. Enhanced Dielectric Properties and Discharged Energy Density of Composite Films Using Submicron Pzt Particles. Ceram. Int. 2018, 44(13), 15331–15337. DOI: 10.1016/j.ceramint.2018.05.181.
  • Li, K.; Wang, H.; Xiang, F.; Liu, W.; Yang, H. Surface Functionalized Ba 0.6 Sr 0.4 Tio 3/poly (Vinylidene Fluoride) Nanocomposites with Significantly Enhanced Dielectric Properties. Appl. Phys. Lett. 2009, 95(20), 202904. DOI: 10.1063/1.3257371.
  • Lin, M.-F.; Thakur, V. K.; Tan, E. J.; Lee, P. S. Surface Functionalization of Batio₃ Nanoparticles and Improved Electrical Properties of Batio₃/polyvinylidene Fluoride Composite. RSC Adv. 2011, 1(4), 576–578. DOI: 10.1039/c1ra00210d.
  • Kim, P.; Jones, S. C.; Hotchkiss, P. J.; Haddock, J. N.; Kippelen, B.; Marder, S. R.; Perry, J. W. Phosphonic Acid‐modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength. Adv.Mate. 2007, 19(7), 1001–1005. DOI: 10.1002/adma.200602422.
  • Liu, X.; Gao, Y.; Shang, Y.; Zhu, X.; Jiang, Z.; Zhou, C.; Han, J.; Zhang, H. Non-covalent Modification of Boron Nitride nanoparticle-reinforced Peek Composite: Thermally Conductive, Interfacial, and Mechanical Properties. Polymer. 2020, 203, 122763. DOI: 10.1016/j.polymer.2020.122763.
  • Yang, N.; Zeng, X.; Lu, J.; Sun, R.; Wong, C.-P. Effect of Chemical Functionalization on the Thermal Conductivity of 2d Hexagonal Boron Nitride. Appl. Phys. Lett. 2018, 113(17), 171904. DOI: 10.1063/1.5050293.
  • Pratap, A.; Joshi, N.; Rakshit, P.; Grewal, G., and Shrinet, V. Dielectric Behavior of Nano Barium Titanate Filled Polymeric Composites. In: International Journal of Modern Physics: Conference Series, Bikaner, India 2013, pp. 1–10. World Scientific
  • Luo, B.; Wang, X.; Zhao, Q.; Li, L. Synthesis, Characterization and Dielectric Properties of Surface Functionalized Ferroelectric ceramic/epoxy Resin Composites with High Dielectric Permittivity. Compos. Sci. Technol. 2015, 112, 1–7. DOI: 10.1016/j.compscitech.2015.02.018.
  • Luo, H.; Zhang, D.; Jiang, C.; Yuan, X.; Chen, C.; Zhou, K. Improved Dielectric Properties and Energy Storage Density of Poly (Vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated batio3. ACS Appl. Mater. Interfaces. 2015, 7(15), 8061–8069. DOI: 10.1021/acsami.5b00555.
  • Kim, Y.-K.; Chung, J.-Y.; Lee, J.-G.; Baek, Y.-K.; Shin, P.-W. Synergistic Effect of Spherical al2o3 Particles and Bn Nanoplates on the Thermal Transport Properties of Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 184–191. DOI: 10.1016/j.compositesa.2017.03.030.
  • Bikiaris, D. Microstructure and Properties of polypropylene/carbon Nanotube Nanocomposites. Materials. 2010, 3(4), 2884–2946. DOI: 10.3390/ma3042884.
  • Ho, J., and Jow, R. Characterization of High Temperature Polymer Thin Films for Power Conditioning Capacitors; Virginia, United States: Army Research Lab Adelphi Md Sensors and Electron Devices Directorate: 2009.
  • Díez-Pascual, A. M.; Gómez-Fatou, M. A.; Ania, F.; Flores, A. Nanoindentation in Polymer Nanocomposites. Prog. Mater. Sci. 2015, 67, 1–94. DOI: 10.1016/j.pmatsci.2014.06.002.
  • Koumoulos, E. P.; Jagdale, P.; Kartsonakis, I. A.; Giorcelli, M.; Tagliaferro, A.; Charitidis, C. A. Carbon nanotube/polymer Nanocomposites: A Study on Mechanical Integrity through Nanoindentation. Polym. Compos. 2015, 36(8), 1432–1446. DOI: 10.1002/pc.23049.
  • Dada, M.; Popoola, P.; Mathe, N.; Adeosun, S.; Pityana, S. Investigating the Elastic Modulus and Hardness Properties of a High Entropy Alloy Coating Using Nanoindentation. Int. J. Lightweight Mater. Manuf. 2021, 4(3), 339–345. DOI:10.1016/j.ijlmm.2021.04.002.
  • Uyor, U.; Popoola, A.; Popoola, O.; Aigbodion, V. Nanomechanical Evaluation of Poly (Vinylidene Fluoride) Nanocomposites Reinforced with Hybrid Graphene Nanoplatelets and Titanium Dioxide. Polym. Bull. 2021, 79(4), 1–17.
  • Sreeram, A.; Patel, N. G.; Venkatanarayanan, R. I.; McLaughlin, J. B.; DeLuca, S. J.; Yuya, P. A.; Krishnan, S. Nanomechanical Properties of Poly (para-phenylene Vinylene) Determined Using quasi-static and Dynamic Nanoindentation. Polym. Test. 2014, 37, 86–93. DOI: 10.1016/j.polymertesting.2014.04.012.
  • Geick, R.; Perry, C.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. ?phys. Rev. 1966, 146(2), 543–547. DOI: 10.1103/PhysRev.146.543.
  • Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Exfoliation of Hexagonal Boron Nitride (h-bn) in Liquid Phase by Ion Intercalation. Nanomaterials. 2018, 8(9), 1–12. DOI: 10.3390/nano8090716.
  • Sudeep, P. M.; Vinod, S.; Ozden, S.; Sruthi, R.; Kukovecz, A.; Konya, Z.; Vajtai, R.; Anantharaman, M.; Ajayan, P. M.; Narayanan, T. N. Functionalized Boron Nitride Porous Solids. RSC Adv. 2015, 5(114), 93964–93968. DOI: 10.1039/C5RA19091F.
  • Cao, X. T.; Showkat, A. M.; Lee, W.-K.; Lim, K. T. Luminescence of Terbium (Iii) Complexes Incorporated in Carboxylic Acid Functionalized polystyrene/batio3 Nanocomposites. Mol. Cryst. Liq. Cryst. 2015, 622(1), 36–43. DOI: 10.1080/15421406.2015.1096988.
  • Chang, S.-J.; Liao, W.-S.; Ciou, C.-J.; Lee, J.-T.; Li, -C.-C. An Efficient Approach to Derive Hydroxyl Groups on the Surface of Barium Titanate Nanoparticles to Improve Its Chemical Modification Ability. J. Colloid Interface Sci. 2009, 329(2), 300–305. DOI: 10.1016/j.jcis.2008.10.011.
  • Phan, T. T. M.; Chu, N. C.; Xuan, H. N.; Pham, D. T.; Martin, I.; Carrière, P. Enhancement of Polarization Property of silane-modified batio3 Nanoparticles and Its Effect in Increasing Dielectric Property of epoxy/batio3 Nanocomposites. J. Sci. Adv. Mater. Dev. 2016, 1(1), 90–97.
  • Ahmed, K.; Kanwal, F.; Ramay, S. M.; Atiq, S.; Rehman, R.; Ali, S. M.; Alzayed, N. S. Synthesis and Characterization of batio3/polypyrrole Composites with Exceptional Dielectric Behaviour. Polymers. 2018, 10(11), 1273. DOI: 10.3390/polym10111273.
  • Wu, L.; Wu, K.; Lei, C.; Liu, D.; Du, R.; Chen, F.; Fu, Q. Surface Modifications of Boron Nitride Nanosheets for Poly (Vinylidene Fluoride) Based Film Capacitors: Advantages of edge-hydroxylation. J. Mater. Chem. A. 2019, 7(13), 7664–7674. DOI: 10.1039/C9TA00616H.
  • Huang, C.; Chen, C.; Ye, X.; Ye, W.; Hu, J.; Xu, C.; Qiu, X. Stable Colloidal Boron Nitride Nanosheet Dispersion and Its Potential Application in Catalysis. J. Mater. Chem. A. 2013, 1(39), 12192–12197. DOI: 10.1039/c3ta12231j.
  • Yetgin, S. H. Effect of Multi Walled Carbon Nanotube on Mechanical, Thermal and Rheological Properties of Polypropylene. J. Mater. Res. Technol. 2019, 8(5), 4725–4735. DOI: 10.1016/j.jmrt.2019.08.018.
  • Orozco, V. H.; Vargas, A. F.; Brostow, W.; Datashvili, T.; López, B. L.; Mei, K.; Su, L. Tribological Properties of Polypropylene Composites with Carbon Nanotubes and Sepiolite. J. Nanosci. Nanotechnol. 2014, 14(7), 4918–4929. DOI: 10.1166/jnn.2014.8289.
  • Yang, J.; Zhang, Z.; Friedrich, K.; Schlarb, A. K. Creep Resistant Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes. Macromol. Rapid Commun. 2007, 28(8), 955–961. DOI: 10.1002/marc.200600866.
  • Shokrieh, M.; Hosseinkhani, M.; Naimi-Jamal, M.; Tourani, H. Nanoindentation and Nanoscratch Investigations on graphene-based Nanocomposites. Polym. Test. 2013, 32(1), 45–51. DOI: 10.1016/j.polymertesting.2012.09.001.
  • Bhattacharyya, A.; Chen, S.; Zhu, M. Graphene Reinforced Ultra High Molecular Weight Polyethylene with Improved Tensile Strength and Creep Resistance Properties. Express Polym. Lett. 2014, 8(2), 74–84. DOI: 10.3144/expresspolymlett.2014.10.
  • Zhao, P.; Wang, K.; Yang, H.; Zhang, Q.; Du, R.; Fu, Q. Excellent Tensile Ductility in Highly Oriented injection-molded Bars of polypropylene/carbon Nanotubes Composites. Polymer. 2007, 48(19), 5688–5695. DOI: 10.1016/j.polymer.2007.07.022.
  • Li, Z.; Chen, M.; Ma, W. Polypropylene/hydroxyl-multiwall Carbon Nanotubes Composites: Crystallization Behavior, Mechanical Properties, and Foaming Performance. J. Mater. Sci. 2016, 51(9), 4566–4579. DOI: 10.1007/s10853-016-9770-5.
  • Li, J. Multiwalled Carbon Nanotubes Reinforced Polypropylene Composite Material. J. Nanomater. 2017, 2017, 1–5.
  • Gale, J.; Achuthan, A. The Effect of work-hardening and pile-up on Nanoindentation Measurements. J. Mater. Sci. 2014, 49(14), 5066–5075. DOI: 10.1007/s10853-014-8213-4.
  • Mallikarjunachari, G.; Ghosh, P. Pile-up Response of Polymer Thin Films to Static and Dynamic Loading. Thin Solid Films. 2019, 677, 1–12. DOI: 10.1016/j.tsf.2019.01.040.
  • Ghoshal, S.; Wang, P.-H.; Gulgunje, P.; Verghese, N.; Kumar, S. High Impact Strength Polypropylene Containing Carbon Nanotubes. Polymer. 2016, 100, 259–274. DOI: 10.1016/j.polymer.2016.07.069.
  • Wegrzyn, M.; Galindo, B.; Benedito, A.; Gimenez, E. Morphology, Thermal, and Electrical Properties of Polypropylene Hybrid Composites Co‐filled with Multi‐walled Carbon Nanotubes and Graphene Nanoplatelets. J. Appl. Polym. Sci. 2015, 132(46), 1–8. DOI: 10.1002/app.41437.
  • Karsli, N. G.; Aytac, A. Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide 6 Composites. Compos. B Eng. 2013, 51, 270–275.
  • Ashori, A.; Menbari, S.; Bahrami, R. Mechanical and thermo-mechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites Using Exfoliated Graphene Nanoplatelets Coating. J. Ind. Eng. Chem. 2016, 38, 37–42. DOI: 10.1016/j.jiec.2016.04.003.
  • Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I. Mechanical, Thermal and Dynamic Mechanical Properties of pp/gf/xgnp Nanocomposites. Mech. Compos. Mater. Struct. 2017, 53(1), 131–138. DOI: 10.1007/s11029-017-9647-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.