288
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biopolymer blends based on poly(lactic acid) and polyamide for durable applications

, , & ORCID Icon
Pages 131-144 | Received 28 Feb 2022, Accepted 28 Jun 2022, Published online: 05 Jul 2022

References

  • Ikada, Y.; Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000, 21(3), 117–132. DOI: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
  • Pulapura, S.; Kohn, J. Trends in the Development of Bioresorbable Polymers for Medical Applications. J. Biomater. Appl. 1992, 6(3), 216–250. DOI: 10.1177/088532829200600303.
  • Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9(2), 63–84. DOI: 10.1023/A:1020200822435.
  • Maazouz, A.; Lamnawar, K.; Mallet, B. Compounding and Processing of Biodegradable Materials Based on PLA for Packaging Applications: In Greening the 21st Century Materials World. Frontiers in Science and Engineering (international journal. 2011, 1-2, 1–44.
  • Choudhary, P.; Mohanty, S.; Nayak, S. K.; Unnikrishnan, L. Poly(L -lactide)/polypropylene Blends: Evaluation of Mechanical, Thermal, and Morphological Characteristics. J. Appl. Polym. Sci. 2011, 121(6), 3223–3237. DOI: 10.1002/app.33866.
  • Thurber, C. M.; Xu, Y.; Myers, J. C.; Lodge, T. P.; Macosko, C. W. Accelerating Reactive Compatibilization of PE/PLA Blends by an Interfacially Localized Catalyst. ACS Macro Lett. 2015, 4(1), 30–33. DOI: 10.1021/mz500770y.
  • Hamad, K.; Deri, F.; Deri, F. Preparation and Characterization of Binary and Ternary Blends with Poly(Lactic Acid), Polystyrene, and Acrylonitrile-Butadiene-Styrene. J. Biomater. Nanobiotechnol. 2012, 3(3), 405–412. DOI: 10.4236/jbnb.2012.33040.
  • Choe, I.-J.; Lee, J. H.; Yu, J. H.; Yoon, J.-S. Mechanical Properties of acrylonitrile-butadiene-styrene copolymer/poly(L -lactic Acid) Blends and Their Composites. J. Appl. Polym. Sci. 2014, 131(11). DOI: 10.1002/app.40329.
  • Chen, Y.; Li, X.; Li, X.; Huang, Y.; Huang, Y. G. Preparation and Property Research of PC/PLA Composites Modified by ABS Blending. Appl. Mech. Mater. 2011, 66-68, 1902–1907. www.scientific.net
  • Arrieta, M. P.; López, J.; Hernández, A.; Rayón, E. Ternary PLA–PHB–Limonene Blends Intended for Biodegradable Food Packaging Applications. European Polymer Journal. 2014, 50, 255–270. DOI: 10.1016/j.eurpolymj.2013.11.009.
  • Arrieta, M. P.; López, J.; López, D.; Kenny, J. M.; Peponi, L. Development of Flexible Materials Based on Plasticized Electrospun PLA–PHB Blends: Structural, Thermal, Mechanical and Disintegration Properties. Eur. Polym. J. 2015, 73, 433–446. DOI: 10.1016/j.eurpolymj.2015.10.036.
  • Yokohara, T.; Yamaguchi, M. Structure and Properties for biomass-based Polyester Blends of PLA and PBS. Eur. Polym. J. 2008, 44(3), 677–685. DOI: 10.1016/j.eurpolymj.2008.01.008.
  • Zhang, X.; Zhang, Y. Reinforcement Effect of Poly(butylene Succinate) (Pbs)-grafted Cellulose Nanocrystal on Toughened PBS/polylactic Acid Blends. Carbohydr. Polym. 2016, 140, 374–382. DOI: 10.1016/j.carbpol.2015.12.073.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy. Polymer Degradation and Stability. 2012, 97(10), 1898–1914. DOI: 10.1016/j.polymdegradstab.2012.06.028.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A.; Billon, N.; Combeaud, C. Effect of the Simultaneous Biaxial Stretching on the Structural and Mechanical Properties of PLA, PBAT and Their Blends at Rubbery State. Eur. Polym. J. 2015, 68, 288–301. DOI: 10.1016/j.eurpolymj.2015.05.001.
  • Feng, F.; Ye, L. Structure and Property of Polylactide/Polyamide Blends. Journal of Macromolecular Science, Part B. 2010, 49(6), 1117–1127. DOI: 10.1080/00222341003609179.
  • Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, Thermal Behavior and Mechanical Properties of Binary Blends of Compatible Biosourced Polymers: Polylactide/polyamide11. Polymer. 2011, 52(6), 1417–1425. DOI: 10.1016/j.polymer.2011.02.002.
  • Gug, J.; Sobkowicz, M. J. Improvement of the Mechanical Behavior of Bioplastic Poly(lactic Acid)/polyamide Blends by Reactive Compatibilization. J. Appl. Polym. Sci. 2016, 133(45). DOI: 10.1002/app.43350.
  • Patel, R.; Ruehle, D. A.; Dorgan, J. R.; Halley, P.; Martin, D. Biorenewable Blends of Polyamide-11 and Polylactide. Polym. Eng. Sci. 2014, 54(7), 1523–1532. DOI: 10.1002/pen.23692.
  • Wang, Y.-L.; Hu, X.; Li, H.; Ji, X.; Li, Z.-M. Polyamide-6/Poly(lactic Acid) Blends Compatibilized by the Maleic Anhydride Grafted Polyethylene-Octene Elastomer. Polym.-Plast. Technol. Eng. 2010, 49(12), 1241–1246. DOI: 10.1080/03602559.2010.496418.
  • Pai, F.-C.; Lai, S.-M.; Chu, -H.-H. Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. J. Appl. Polym. Sci. 2013, 130(4), 2563–2571. DOI: 10.1002/app.39473.
  • Rashmi, B. J.; Prashantha, K.; Lacrampe, M.-F.; Krawczak, P. Toughening of Poly(lactic Acid) without Sacrificing Stiffness and Strength by melt-blending with Polyamide 11 and Selective Localization of Halloysite Nanotubes. Express Polym. Lett. 2015, 9(8), 721–735. DOI: 10.1063/1.4942284.
  • Walha, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. R. Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11. Polymers. 2016, 8(3), 61. DOI: 10.3390/polym8030061.
  • Imre, B.; Pukánszky, B. Compatibilization in bio-based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49(6), 1215–1233. DOI: 10.1016/j.eurpolymj.2013.01.019.
  • Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Effect of Chain Extenders on Thermal and Mechanical Properties of Poly(lactic Acid) at High Processing Temperatures: Potential Application in PLA/Polyamide 6 Blend. Polym. Degrad. Stab. 2014, 108, 232–240. DOI: 10.1016/j.polymdegradstab.2014.04.019.
  • Xu, Y.; Loi, J.; Delgado, P.; Topolkaraev, V.; McEneany, R. J.; Macosko, C. W.; Hillmyer, M. A. Reactive Compatibilization of Polylactide/Polypropylene Blends. Ind. Eng. Chem. Res. 2015, 54(23), 6108–6114. DOI: 10.1021/acs.iecr.5b00882.
  • LOTADER® AX8900, Technical Data Sheet. https://polymer-additives.specialchem.com/product/a-sk-functional-polymer-lotader-ax8900 (accessed Aug 13 2021).
  • Van Duin, M.; Aussems, M.; Borggreve, R. J. M. Graft Formation and Chain Scission in Blends of Polyamide-6 and −6.6 with Maleic Anhydride Containing Polymers. J. Polym. Sci., Part A: Polym. Chem. 1998, 36(1), 179–188. DOI: 10.1002/(SICI)1099-0518(19980115)36:1<179::AID-POLA22>3.0.CO;2-F.
  • Pan, J.; Wang, Y.; Qin, S.; Zhang, B.; Luo, Y. Grafting Reaction of poly(D,L)lactic Acid with Maleic Anhydride and Hexanediamine to Introduce More Reactive Groups in Its Bulk. J. Biomed. Mater. Res., Part B. 2005, 74B(1), 476–480. DOI: 10.1002/jbm.b.30208.
  • Girdthep, S.; Hanmeng, O.; Triamnak, N.; Chailek, N.; Wanichacheva, N. Theoretical Solvent Selection for Nanostructured Surface Fabrication of Reusable and Colourimetric visual-eye Sensor Strips with Rhodamine derivative-encapsulated Polymeric Membranes for Highly Sensitive and Selective Detection of Hg2+. Polym. Test. 2021, 97, 107151. DOI: 10.1016/j.polymertesting.2021.107151.
  • Wang, S.; Li, B.; Zhang, Y. Compatibilization of Poly(2,6-dimethyl-1,4-phenylene Oxide)/polyamide 6 Blends with styrene-maleic Anhydride Copolymer: Mechanical Properties, Morphology, Crystallization, and Melting Behavior. Journal of Applied Polymer Science. 2010, 118(6), 3545–3551. DOI: 10.1002/app.32730.
  • Grizzuti, N.; Buonocore, G.; Iorio, G. Viscous Behavior and Mixing Rules for an Immiscible Model Polymer Blend. J. Rheol. 2000, 441, 149–164. DOI:10.1122/1.551073.
  • Buxton, G. A.; Balazs, A. C. Predicting the Mechanical Properties of Binary Blends of Immiscible Polymers. Interface Sci. 2003, 11(2), 175–186. DOI: 10.1023/A:1022170627728.
  • Girdthep, S.; Worajittiphon, P.; Leejarkpai, T.; Molloy, R.; Punyodom, W. Effect of Silver-loaded Kaolinite on Real Ageing, Hydrolytic Degradation, and Biodegradation of Composite Blown Films Based on Poly(lactic Acid) and Poly(butylene adipate-co-terephthalate). Eur. Polym. J. 2016, 82. DOI: 10.1016/j.eurpolymj.2016.07.020.
  • Giita Silverajah, V. S.; Ibrahim, N. A.; Yunus, W. M.; Hassan, H. A.; Woei, C. B. A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic Acid)/epoxidized Palm Oil Blend. Int. J. Mol. Sci. 2012, 13(5), 5878–5898. DOI: 10.3390/ijms13055878.
  • Kaynak, C.; Dogu, B. Effects of Accelerated Weathering in Polylactide Biocomposites Reinforced with Microcrystalline Cellulose. Int. Polym. Process. 2016, 314, 410–422. DOI:10.3139/217.3197.
  • Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo-mechanical Cycles on the physico-chemical Properties of Poly(lactic Acid). Polym. Degrad. Stab. 2008, 93(2), 321–328. DOI: 10.1016/j.polymdegradstab.2007.12.005.
  • Latko, P.; Kolbuk, D.; Kozera, R.; Boczkowska, A. Microstructural Characterization and Mechanical Properties of PA11 Nanocomposite Fibers. J. Mater. Eng. Perform. 2016, 25(1), 68–75. DOI: 10.1007/s11665-015-1817-2.
  • Oulmou, F.; Benhamida, A.; Dorigato, A.; Sola, A.; Messori, M.; Pegoretti, A. Effect of Expandable and Expanded Graphites on the thermo-mechanical Properties of Polyamide 11. J. Elastomers. Plast. 2019, 51(2), 175–190. DOI: 10.1177/0095244318781956.
  • Lu, T.; Solis-Ramos, E.; Yi, Y.; Kumosa, M. UV Degradation Model for Polymers and Polymer Matrix Composites. Polym. Degrad. Stab. 2018, 154, 203–210. DOI: 10.1016/j.polymdegradstab.2018.06.004.
  • Gewert, B.; Plassmann, M. M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environ. Sci.: Processes Impacts. 2015, 17, 1513–1521. DOI: 10.1039/C5EM00207A.
  • Signor, A. W.; VanLandingham, M. R.; Chin, J. W. Effects of Ultraviolet Radiation Exposure on Vinyl Ester Resins: Characterization of Chemical, Physical and Mechanical Damage. Polym. Degrad. Stab. 2003, 79(2), 359–368. DOI: 10.1016/S0141-3910(02)00300-2.
  • Algaily, B.; Kaewsakul, W.; Sarkawi, S., and Kalkornsurapranee, E. Enabling Reprocessability of ENR-based Vulcanisates by Thermochemically Exchangeable Ester Crosslinks. Plast. Rubber Compos. 2021, 50 7, 1–14. DOI:10.1080/14658011.2021.1896093.
  • Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of Ultraviolet Light (315 Nm), Temperature and Relative Humidity on the Degradation of Polylactic Acid Plastic Films. Chemosphere. 2004, 55(5), 763–773. DOI: 10.1016/j.chemosphere.2003.11.038.
  • Kaci, M.; Dehouche, N.; Focke, W. W.; van der Merwe, E. M. A Degradation Study of Polyamide 11/vermiculite Nanocomposites under Accelerated UV Test. Polym. Eng. Sci. 2019, 59(12), 2449–2457. DOI: 10.1002/pen.25115.
  • Meyer, A.; Jones, N.; Lin, Y.; Kranbuehl, D. Characterizing and Modeling the Hydrolysis of Polyamide-11 in a pH 7 Water Environment. Macromolecules. 2002, 35(7), 2784–2798. DOI: 10.1021/ma010541o.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.