314
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in metal oxide/polylactic acid nanocomposites and their applications

, &
Pages 231-245 | Received 11 Apr 2022, Accepted 11 Jul 2022, Published online: 25 Jul 2022

References

  • Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Fredrick, W. J., Jr.; Hallett, J. P.; Leak, D. J.; Liotta, C. L., et al. The Path Forward for Biofuels and Biomaterials. Science. 2006, 311(5760), 484–489. DOI: 10.1126/science.1114736.
  • Shah, A. A.; Fariha, H.; Abdul, H.; Safia, A. Biological Degradation of Plastics: A Comprehensive Review. Biotech. Adv 2008, 26(3), 246–265. DOI: 10.1016/j.biotechadv.2007.12.005.
  • Avérous, L.; Pollet, E. Environmental Silicate Nano-Biocomposites; springer-verlang publishing ltd.: London, 2012.
  • Kronenthal, R. L. Biodegradable Polymers in Medicine and Surgery. In Polymers in Medicine and Surgery. Polymer Science and Technology, Kronenthal, R. L., Oser, Z., Martin, E., Eds.; Springer: Boston, MA, 1975; Vol. 8, pp 119–138.
  • Vert, M. Aliphatic Polyesters: Great Degradable Polymers that Cannot Do Everything. Biomacromol. 2005, 6(2), 538–546. DOI: 10.1021/bm0494702.
  • Nampoothiri, K. M.; Nair, N. R.; John, R. P. An Overview of the Recent Developments in Polylactide (PLA) Research. Biores. Tech 2010, 101(22), 8493–8501. DOI: 10.1016/j.biortech.2010.05.092.
  • Lasprilla, A. J.; Martinez, G. A.; Lunelli, B. H.; Jardini, A. L.; Filho, R. M. Poly-lactic Acid Synthesis for Application in Biomedical devices—a Review. Biotech. Adv 2012, 30(1), 321–328. DOI: 10.1016/j.biotechadv.2011.06.019.
  • Pawar, R. P.; Tekale, S. U.; Shisodia, S. U.; Totre, J. T.; Domb, A. J. Biomedical Applications of Poly(lactic Acid). Recent Pat. Regen. Med. 2014, 4, 40–51.
  • Vert, M.; Schwarch, G.; Coudane, J. Present and Future of PLA Polymers. J. Macromol. Sci.-Pure Appl. Chem 1995, 32(4), 787–796. DOI: 10.1080/10601329508010289.
  • Chokshi, R.; Zia, H. Hot-Melt Extrusion Technique: A Review. Iran. J. Pharm. Res 2004, 3, 3–16.
  • Harris, A. M.; Lee, E. C. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity. J. Appl. Polym. Sci 2008, 107(4), 2246–2255. DOI: 10.1002/app.27261.
  • Ouchiar, S.; Stoclet, G.; Cabaret, C.; Georges, E.; Smith, A.; Martias, C.; Addad, A.; Gloaguen, V. Comparison of the Influence of Talc and Kaolinite as Inorganic Fillers on Morphology, Structure and Thermomechanical Properties of Polylactide Based Composites. Appl. Clay. Sci. 2015, 116, 231–240. DOI: 10.1016/j.clay.2015.03.020.
  • Petchwattana, N.; Covavisaruch, S.; Petthai, S. Influence of Talc Particle Size and Content on Crystallization Behavior, Mechanical Properties and Morphology of Poly(lactic Acid). Polym. Bull 2014, 71(8), 1947–1959. DOI: 10.1007/s00289-014-1165-7.
  • Shakoor, A.; Thomas, N. Talc as a Nucleating Agent and Reinforcing Filler in Poly (Lactic Acid) Composites. Polym. Eng. Sci. 2014, 54(1), 64–70. DOI: 10.1002/pen.23543.
  • Murariu, M.; Laoutid, F.; Dubois, P.; Fontaine, G.; Bourbigot, S.; Devaux, E.; Campagne, C.; Ferreira, M.; Solarski, S. Pathways to Biodegradable Flame Retardant Polymer Nanocomposites. In Polymer Green Flame Retardants; Papaspyrides, C. D., Kiliaris, P., Eds.; Elsevier: Amsterdam, 2014; pp 709–773.
  • Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (Pla)-based Nanocomposites. Prog. Polym. Sci 2013, 38, 1504–1542.
  • Brzeziński, M.; Biela, T. Polylactide Nanocomposites with Functionalized Carbon Nanotubes and Their Stereocomplexes: A Focused Review. Mater. Lett 2014, 121, 244–250. DOI: 10.1016/j.matlet.2014.01.159.
  • Tsuji, H.; Kawashima, Y.; Takikawa, H.; Tanaka, S. Poly(L-lactide)/nano-structured Carbon Composites: Conductivity, Thermal Properties, Crystallization, and Biodegradation. Polymer. 2007, 48(14), 4213–4225. DOI: 10.1016/j.polymer.2007.05.040.
  • Xu, Z.; Niu, Y.; Wang, Z.; Li, H.; Yang, L.; Qiu, J.; Wang, H. Enhanced Nucleation Rate of Polylactide in Composites Assisted by Surface Acid Oxidized Carbon Nanotubes of Different Aspect Ratios. ACS Appl. Mater. Interfaces. 2011, 3(9), 3744–3753. DOI: 10.1021/am200932q.
  • Hapuarachchi, T. D.; Peijs, T. Multiwalled Carbon Nanotubes and Sepiolite Nanoclays as Flame Retardants for Polylactide and Its Natural Fibre Reinforced Composites. Compos. A: Appl. Sci. Manuf 2010, 41(8), 954–963. DOI: 10.1016/j.compositesa.2010.03.004.
  • Wu, D.; Lv, Q.; Feng, S.; Chen, J.; Chen, Y.; Qiu, Y.; Yao, X. Polylactide Composite Foams Containing Carbon Nanotubes and Carbon Black: Synergistic Effect of Filler on Electrical Conductivity. Carbon. 2015, 95, 380–387. DOI: 10.1016/j.carbon.2015.08.062.
  • Kim, I. H.; Jeong, Y. G. Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity. J. Polym. Sci. B Polym. Phys. 2010, 48(8), 850–858. DOI: 10.1002/polb.21956.
  • Fukushima, K. M.; Murariu, M.; Camino, G.; Dubois, P. Effect of Expanded Graphite/ layered-silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic Acid). Polym. Degrad. Stab. 2010, 95(6), 1063–1076. DOI: 10.1016/j.polymdegradstab.2010.02.029.
  • Murariu, M.; Dechief, A. L.; Bonnaud, L.; Paint, Y.; Gallos, A.; Fontaine, G.; Bourbigot, S.; Dubois, P. The Production and Properties of Polylactide Composites Filled with Expanded Graphite. Polym. Degrad. Stab. 2010, 95(5), 889–900. DOI: 10.1016/j.polymdegradstab.2009.12.019.
  • Ray, S. S.; Okamoto, M. Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites. Macromol. Rapid. Commun 2003, 24(14), 815–840. DOI: 10.1002/marc.200300008.
  • Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. New polylactide/layered Silicate Nanocomposites: Role of Organoclays. Chem. Mater. 2002, 14(11), 4654–4661. DOI: 10.1021/cm020391b.
  • Murariu, M.; Bonnaud, L.; Yoann, P.; Fontaine, G.; Bourbigot, S.; Dubois, P. New Trends in Polylactide (Pla)-based Materials: “Green” PLA–calcium Sulfate (Nano) Composites Tailored with Flame Retardant Properties. Polym. Degrad. Stab. 2010, 95(3), 374–381. DOI: 10.1016/j.polymdegradstab.2009.11.032.
  • Kiliaris, P.; Papaspyrides, C. D. Polymer/layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy. Prog. Polym. Sci 2010, 35(7), 902–958. DOI: 10.1016/j.progpolymsci.2010.03.001.
  • Cheng, K. C.; Yu, C. B.; Guo, W.; Wang, S. F.; Chuang, T. H.; Lin, Y. H. Thermal Properties and Flammability of Polylactide Nanocomposites with Aluminum Trihydrate and Organoclay. Carbohydr. Polym 2012, 87(2), 1119–1123. DOI: 10.1016/j.carbpol.2011.08.065.
  • Gültekin, N.; Tihminlioǧlu, F.; Çiftçioǧlu, R.; Çiftçioǧlu, M.; Harsa, S. Preparation and Characterization of polyLactide-hydroxyapatite Biocomposites. Key Eng. Mater 2004, 264-268, 1953–1956. https://doi.org/10.4028/www.scientific.net/KEM.264-268.1953
  • Zhang, S. M.; Liu, J.; Zhou, W.; Cheng, L.; Guo, X. D. Interfacial Fabrication and Property of hydroxyapatite/polylactide Resorbable Bone Fixation Composites. Curr. Appl. Phys. 2005, 5(5), 516–518. DOI: 10.1016/j.cap.2005.01.023.
  • Shen, L.; Yang, H.; Ying, J.; Qiao, F.; Peng, M. Preparation and Mechanical Properties of Carbon Fiber Reinforced hydroxyapatite/polylactide Biocomposites. J. Mater. Sci. Mater. Med 2009, 20(11), 2259–2265. DOI: 10.1007/s10856-009-3785-2.
  • Kim, H. S.; Park, B. H.; Choi, J. H.; Yoon, J. S. Mechanical Properties and Thermal Stability of poly(L-lactide)/calcium Carbonate Composites. J. Appl. Polym. Sci 2008, 109(5), 3087–3092. DOI: 10.1002/app.28229.
  • Garlotta, D. A Literature Review of Poly (Lactic Acid). J. Polym. Environ 2001, 9(2), 63–84. DOI: 10.1023/A:1020200822435.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci 2004, 4(9), 835–864. DOI: 10.1002/mabi.200400043.
  • Zahran, M.; Marei, A. H. Innovative Natural Polymer Metal Nanocomposites and Their Antimicrobial Activity. Int. J. Biol. Macromol 2019, 136, 586–596. DOI: 10.1016/j.ijbiomac.2019.06.114.
  • Sodergard, A.; Stolt, M. Properties of Lactic acid-based Polymers and Their Correlation with Composition. Prog. Polym. Sci 2002, 27, 1123–1163.
  • Höglund, A.; Hakkarainen, M.; Edlund, U.; Albertsson, A. C. Surface Modification Changes the Degradation Process and Degradation Product Pattern of Polylactide. Langmuir. 2009, 26(1), 378–383. DOI: 10.1021/la902166j.
  • Kumar, A. P.; Depan, D.; Tomer, N. S.; Singh, R. P. Nanoscale Particles for Polymer Degradation and stabilization—trends and Future Perspectives. Prog. Polym. Sci 2009, 34, 479–515.
  • Fan, Y.; Nishida, H.; Mori, T.; Shirai, Y.; Endo, T. Thermal Degradation of Poly (L-lactide): Effect of Alkali Earth Metal Oxides for Selective L, L-lactide Formation. Polymer. 2004, 45(4), 1197–1205. DOI: 10.1016/j.polymer.2003.12.058.
  • Carothers, W. H.; Dorough, G. L.; van Natta, F. J. Studies of Polymerization and Ring Formation. X. The Reversible Polymerization of six-membered Cyclic Esters. J. Am. Chem. Soc 1932, 54(2), 761–772. DOI: 10.1021/ja01341a046.
  • Sosnowski, S.; Gadzinowski, M.; Slowkowski, S. Poly(l, l -lactide) Microspheres by Ring-Opening Polymerization. Macromol. 1996, 29(13), 4556–4564. DOI: 10.1021/ma951542h.
  • Achilleos, D. S.; Vamvakaki, M. End-Grafted Polymer Chains onto Inorganic Nano-Objects. Materials. 2010, 3(3), 1981–2026. DOI: 10.3390/ma3031981.
  • Hvam, J. M. Optical Gain and Induced Absorption from Excitonic Molecules in ZnO. Solid State Commun 1978, 26(12), 987–990. DOI: 10.1016/0038-1098(78)91268-1.
  • Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y. J.; Xie, P. H.; Zhang, B. W.; Cheng, H. M. A Highly Efficient Solar Cell Made from A Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode. Chem. Mater. 2001, 13(2), 678–682. DOI: 10.1021/cm000230c.
  • Lin, H. M.; Tzeng, S. J.; Hsiau, P. J.; Tsai, W. L. Electrode Effects on Gas Sensing Properties of Nanocrystalline Zinc Oxide. Nanostruct. Mater 1998, 10(3), 465–477. DOI: 10.1016/S0965-9773(98)00087-7.
  • Xu, J. Q.; Pan, Q. Y.; Shun, Y. A.; Tian, Z. Z. Grain Size Control and Gas Sensing Properties of ZnO Gas Sensor. Sens. Actuators B. Chem 2000, 66(1–3), 277–279. DOI: 10.1016/S0925-4005(00)00381-6.
  • Wu, J.; Xie, C. S.; Bai, Z. K.; Zhu, B. L.; Huang, K. J.; Wu, R. Preparation of ZnO-glass Varistor from Tetrapod ZnO Nanopowders. Mater Sci. Eng. B Solid-State Mater. Adv. Technol 2002, 95(2), 157–161. DOI: 10.1016/S0921-5107(02)00227-1.
  • Singhal, M.; Chhabra, V.; Kang, P.; Shah, D. O. Synthesis of ZnO Nanoparticles for Varistors Application Using Zn-substituted Aerosol of Microemulsion. Mater Res. Bull 1997, 32(2), 239–247. DOI: 10.1016/S0025-5408(96)00175-4.
  • Kamat, V. P.; Huehn, R.; Nicolaescu, R. A“sense and Shoot” Approach for Photocatalytic Degradation of Organic Contaminants in Water. J. Phys. Chem. B. 2002, 106(4), 788–794. DOI: 10.1021/jp013602t.
  • Park, S. B.; Kang, Y. C. Photocatalytic Activity of Nanometer Size ZnO Particles Prepared by Spray Pyrolysis. J. Aerosol. Sci 1997, 28, S473–S474. Suppl DOI: 10.1016/S0021-8502(97)85236-6.
  • Zheng, M. J.; Zhang, L. D.; Li, G. H.; Shen, W. Z. Fabrication and Optical Properties of large-scale Uniform Zinc Oxide Nanowire Arrays by one-step Electrochemical Deposition Technique. Chem. Phys. Lett 2002, 363(1–2), 123–128. DOI: 10.1016/S0009-2614(02)01106-5.
  • Wu, R.; Xie, C. S. Formation of Tetrapod ZnO Nanowhiskers and Its Optical Properties. Mater. Res. Bull 2004, 39(4–5), 637–645. DOI: 10.1016/j.materresbull.2003.12.009.
  • Kitano, M.; Shiojiri, M. Benard Convection ZnO/resin Lacquer Coating —a New Approach to Electrostatic Dissipative Coating. Powder Technol 1997, 93(3), 267–273. DOI: 10.1016/S0032-5910(97)03283-X.
  • Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. J. Bioinorg. Chem. Appl. 2018, 1062562, 18.
  • Wang, L.; Muhammed, M. Synthesis of Zinc Oxide Nanoparticles with Controlled Morphology. J. Mater. Chem 1999, 9(11), 2871–2878. DOI: 10.1039/a907098b.
  • Padilla-Gainza, V.; Rodríguez-Tobías, H.; Morales, G.; Ledezma-Pérez, A.; Alvarado-Canché, C.; Loera-Valencia, R.; Rodríguez, C.; Gilkerson, R.; Trevino De Leo, C.; Lozanod, K. Development of Zinc oxide/hydroxyapatite/poly(D,L-lactic Acid) Fibrous Scaffold for Tissue Engineering Applications. Biomaterials. 2022, 133, 112594.
  • Feldmann, C. Polyol-mediated Synthesis of Nanoscale Functional Materials. Adv. Funct. Mater 2003, 13(2), 101–107. DOI: 10.1002/adfm.200390014.
  • Kim, J. H.; Choi, W. C.; Kim, H. Y.; Kang, Y.; Park, Y. K. Preparation of mono-dispersed Mixed Metal Oxide Micro Hollow Spheres by Homogeneous Precipitation in a Micro Precipitator. Powder Technol 2005, 153(3), 166–175. DOI: 10.1016/j.powtec.2005.03.004.
  • Damonte, L. C.; Mendoza Zelis, L. A.; Soucase, B. M.; Hernandez Fenollos, M. A Nanoparticles of ZnO Obtained by Mechanical Milling. Powder Technol 2004, 148(1), 15–19. DOI: 10.1016/j.powtec.2004.09.014.
  • Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S. Polylactic acid/zinc Oxide Biocomposite Films for Food Packaging Application. Int. J. Biol. Macromol 2016, 88, 254–262. DOI: 10.1016/j.ijbiomac.2016.03.039.
  • Ding, L. B.; Rui, J.; Li, J. T. Preparation and Properties of PLA/nano ZnO Composite. Appl. Mech. Mater. 2013, V(392), 41–45. https://doi.org/10.4028/www.scientific.net/AMM.392.41
  • Zheng, H. J.; Zhao, Z. W.; Liu, Y. L.; Zhao, X. F.; Xi, K. H. Preparation of PLA /nano-ZnO Composites. Adv. Mater. Res. 2012, 476-478, 1901–1904. https://doi.org/10.4028/www.scientific.net/AMR.476-478.1901
  • Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA–ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific end-use Characteristics. Eur. Polym. J 2013, 49(11), 3471–3482. DOI: 10.1016/j.eurpolymj.2013.08.005.
  • Jayaramudu, J.; Das, K.; Sonakshi, M.; Reddy, G. S. M.; Aderibigbea, B.; Sadiku, R.; Ray, S. S. Structure and Properties of Highly Toughened Biodegradable polylactide/ZnO Biocomposite Films. Int. J. Biol. Macromol 2014, 64, 428–443. DOI: 10.1016/j.ijbiomac.2013.12.034.
  • Benali, S.; Aouadi, S.; Dechief, A.; Murariu, M.; Dubois, P. Key Factors for Tuning Hydrolytic Degradation of polylactide/zinc Oxide Nanocomposites. Nanocomposites. 2015, 1(1), 51–60. DOI: 10.1179/2055033214Y.0000000007.
  • Chu, Z.; Zhao, T.; Li, L.; Fan, J.; Qin, Y. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles. Materials. 2017, 10(6), 659–672. DOI: 10.3390/ma10060659.
  • Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomat. 2017, 7(8), 207–227. DOI: 10.3390/nano7080207.
  • Qu, M.; Tu, H.; Amarante, M.; Song, Y.; Zhu, S. S. Zinc Oxide Nanoparticles Catalyze Rapid Hydrolysis of Poly (Lactic Acid) at Low Temperatures. J. Appl. Polym. Sci 2014, 131(11), 40287–40294. DOI: 10.1002/app.40287.
  • Zhang, H.; Hortal, M.; Lorente, I.; Jorda-Beneyto, M.; Rosa, E.; Lara-Lledo, M. ZnO-PLA Nanocomposite Coated Paper for Antimicrobial Packaging Application. LWT Food Sci. Technol 2017, 78, 250–257. DOI: 10.1016/j.lwt.2016.12.024.
  • Kaur, H.; Rathore, A.; Raju, S. A Study on ZnO Nanoparticles Catalyzed Ring Opening Polymerization of L-lactide. J. Polym. Res 2014, 21(9), 537–547. DOI: 10.1007/s10965-014-0537-x.
  • Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A. L.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-performance polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special end-use Properties. Biomacromolecules. 2011, 12(5), 1762–1771. DOI: 10.1021/bm2001445.
  • Lizundia, E.; Ruiz-Rubio, L.; Vilas, J. L.; Leon, L. M. Poly(l -lactide)/zno Nanocomposites as Efficient UV-shielding Coatings for Packaging Applications. J. Appl. Polym. Sci 2016, 133(2), 42426–42433. DOI: 10.1002/app.42426.
  • Murariu, M.; Paint, Y.; Murariu, O.; Raquez, J.; Bonnaud, L.; Dubois, P. Current Progress in the Production of PLA–ZnO Nanocomposites: Beneficial Effects of Chain Extender Addition on Key Properties. J. Appl. Polym. Sci 2015, 132, 42480–42491.
  • Therias, S.; Bussiere, P.; Larche, J.; Gardette, J.; Bussiere, P.; Gardette, J. Photochemical Behavior of Polylactide/ZnO Nanocomposite Films. Biomacromol. 2012, 13(10), 3283–3291. DOI: 10.1021/bm301071w.
  • Vasile, C.; Râpa, M.; Ștefan, M.; Stan, M.; Macavei, S.; Darie-Nița, R. N.; Barbu-Tudoran, L.; Vodnar, D. C.; Popa, E. E.; Ștefan, R., et al. New PLA/ZnO: Cu/Ag Bionanocomposites for Food Packaging. Express Polym. Lett 2017, 11(7), 531–544. DOI: 10.3144/expresspolymlett.2017.51.
  • Doumbia, A. S.; Vezin, H.; Ferreira, M.; Campagne, C.; Devaux, E. Studies of polylactide/zinc Oxide Nanocomposites: Influence of Surface Treatment on Zinc Oxide Antibacterial Activities in Textile Nanocomposites. J. Appl. Polym. Sci 2015, 132(17), 41776–41786. DOI: 10.1002/app.41776.
  • Rodríguez-Tobías, H.; Morales, G.; Olivas, A.; Grande, D. One-Pot Formation of ZnO- Graft -poly(D, L -lactide) Hybrid Systems via Microwave-Assisted Polymerization of D, L -lactide in the Presence of ZnO Nanoparticles. Macromol. Chem. Phys 2015, 216(15), 1629–1637. DOI: 10.1002/macp.201500171.
  • Rodríguez-Tobías, H.; Morales, G.; Maldonado-Textle, H.; Grande, D. Photo-degradation of Electrospun Composite Mats Based on Poly (D,llactide) Submicron Fibers and Zinc Oxide Nanoparticles. Polym. Degrad. Stab. 2018, 152, 95–104. DOI: 10.1016/j.polymdegradstab.2018.04.002.
  • Rodriguez-Tobias, H.; Morales, G.; Morales, G.; Romero, J.; Grande, D. Novel Antibacterial Electrospun Mats Based on Poly (D,L-lactide) Nanofibers and Zinc Oxide Nanoparticles. J. Mater. Sci 2014, 49(24), 8373–8385. DOI: 10.1007/s10853-014-8547-y.
  • Rodriguez-Tobias, H.; Morales, G.; Enriquez-Medrano, F. J.; Grande, D. Performance of Zinc Oxide Nanoparticles as Polymerization Initiating Systems in the Microwave-Assisted Synthesis of Poly(d, l -lactide)/zno Nanocomposites. Macromol. Symp. 2017, 374(1), 1600102–1600107. DOI: 10.1002/masy.201600102.
  • Xu, X.; Lv, P.; Wu, B.; Ma, P.; Dong, W.; Chen, M.; Du, M.; Ming, W. Smart Design of Rapid Crystallizing and Nonleaching Antibacterial Poly(lactide) Nanocomposites by Sustainable Aminolysis Grafting and in Situ Interfacial Stereocomplexation. ACS Sus. Chem. Eng 2018, 10(10), 13367–13377. DOI: 10.1021/acssuschemeng.8b03131.
  • Sun, X.; Xue, B.; Yang, S.; Huo, K.; Liao, X.; Li, X.; Xie, L.; Qin, S.; Zheng, Q. Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separatio, App. Surf. Sci 2020, 517, 146135. DOI: 10.1016/j.apsusc.2020.146135.
  • Goncharova, D. A.; Bolbasov, E. N.; Nemoykina, A. L.; Aljulaih, A. A.; Tverdokhlebova, T. S.; Kulinich, S. A.; Svetlichnyi, V. A. Structure and Properties of Biodegradable PLLA/ZnO Composite Membrane Produced via Electrospinning. Materials. 2021, 14(1), 2. DOI: 10.3390/ma14010002.
  • Yurdakal, S. ;.; Augugliaro, V. ;.; Sanz, J. ;.; Soria, J. ;.; Sobrados, I., . ;.; Torralvo, M. J. ;. The Influence of the Anatase Nanoparticles Boundaries on the Titania Activity Performance. J. Catal 2014, 309, 97–104. DOI: 10.1016/j.jcat.2013.09.006.
  • Wang, W.; Liu, Y.; Qu, J.; Chen, Y.; Tade, M. O.; Shao, Z. Synthesis of Hierarchical TiO2–C3N4 Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. Chem. Photo Chem 2017, 1, 35–45.
  • Pena, J.; Vallet-Regi, M.; Roman, J. S. TiO2</sub>-polymer Composites for Biomedical Applications. J. Biomed. Mater. Res. 1997, 35(1), 129–134. DOI: 10.1002/(SICI)1097-4636(199704)35:1<129::AID-JBM13>3.0.CO;2-E.
  • Mehranpour, H.; Askari, M.; Ghamsari, M. S.; Farzalibeik, H. Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO2 Nanoparticles. J. Nanomater. 2010, 626978, 5.
  • Rabiei, K. T., and Asghar, A. K.; (2017) Preparation of modified-TiO2/PLA Nanocomposite Films: Micromorphology, photo-degradability and Antibacterial Studies. AIP Conference Proceedings, 25–29 July 2016, Lyon, France, 1914, 0700091–0700095.
  • Shaikh, T.; Rathore, A.; Kaur, H. Poly (Lactic Acid) Grafting of TiO2 Nanoparticles: A Shift in Dye Degradation Performance of TiO2 from UV to Solar Light. Chem. Select 2017, 2, 6901–6908.
  • Shaikh, T.; Kaur, H. Synthesis and Characterization of Nanosized Polylactic acid/TiO2 Particle Brushes by Azeotropic Dehydration Polycondensation of Lactic Acid. J. Polym. Res 2018, 25(1), 22–31. DOI: 10.1007/s10965-017-1412-3.
  • Luyt, A. S.; Gasmi, S. Influence of TiO2 Nanoparticles on the Crystallization Behaviour and Tensile Properties of Biodegradable PLA and PCL Nanocomposites. J. Polym. Environ 2017, 26(6), 2410–2423. DOI: 10.1007/s10924-017-1142-y.
  • Xiu, H.; Qi, X.; Bai, H.; Zhang, Q.; Fu, Q. Simultaneously Improving Toughness and UV-resistance of polylactide/titanium Dioxide Nanocomposites by Adding Poly(ether)urethane Polym. Degrad. Stab 2017, 143, 136–144. DOI: 10.1016/j.polymdegradstab.2017.07.002.
  • Antonella, M.; Clara, S.; Aleksandra Porjazoska, K.; Dragica, C.; Donatella, D. Preparation and Characterization of Nanocomposites Based on PLA and TiO2 Nanoparticles Functionalized with Fluorocarbons. Polym. Bull 2017, 74(8), 3027–3041. DOI: 10.1007/s00289-016-1881-2.
  • Luo, Y.; Wang, X.; Xu, D.; Wang, Y. Preparation and Characterization of poly(lactic Acid)-grafted TiO2 Nanoparticles with Improved Dispersions. App. Surf. Sci 2009, 255(15), 6795–6801. DOI: 10.1016/j.apsusc.2009.02.074.
  • Rodrigo, G. F. C.; Glaucia, S. B.; Caue, R.; Luiz, H. C. M. Nanocomposite Fibers of Poly(lactic Acid)/titanium Dioxide Prepared by Solution Blow Spinning. Polym. Bull 2016, 73(11), 2973–2985. DOI: 10.1007/s00289-016-1635-1.
  • Naerin, B.; Susan, D.; Young, K.; Joseph, M.; Sean, O. Development and Characterization of Functionalized TiO2/polylactic Acid Nanocomposite Films for Food Packaging Applications Abstracts of Papers, 251st ACS National Meeting & Exposition, San Diego, CA, United States, March 13-17 2016.
  • Zhu, Y.; Buonocore, G. G.; Lavorgna, M.; Ambrosio, L. Poly(lactic acid)/Titanium Dioxide Nanocomposite Films: Influence of Processing Procedure on Dispersion of Titanium Dioxide and Photocatalytic Activity. Polym. Comp 2011, 32(4), 519–528. DOI: 10.1002/pc.21068.
  • Chaisri, T.; Kowit, S.; Jittiporn, K.; Torpong, K. Removal of VOCs by Photocatalytic Oxidation Using nano-TiO2/PLA Biocomposite. J. Environ. Biol. 2015, 36, 617–621.
  • Aleksandra, B.; Chiara, G.; Annapaola, P.; Mariastella, S. Effect of TiO2 Nanoparticle Loading on Poly(L-lactic Acid) Porous Scaffolds Fabricated by TIPS. Compos. B: Eng 2015, 81, 189–195. DOI: 10.1016/j.compositesb.2015.07.016.
  • Lu, X.; Lv, X.; Sun, Z.; Zheng, Y. Nanocomposites of poly(l-lactide) and surface-grafted TiO2 Nanoparticles: Synthesis and Characterization. Eur. Polym. J 2008, 44(8), 2476–2481. DOI: 10.1016/j.eurpolymj.2008.06.002.
  • Aysin, D.; Hakan, E. H.; Gulay, O.; Mikael, S. Anatase Titanium Dioxide Loaded Polylactide Membranous Films: Preparation, Characterization, and Antibacterial Activity Assessment. J. Text. I 2015, 106, 571–576.
  • Nikiwe, M.; Suprakas, S. R. Characterisation and Thermal Properties of Titanium Dioxide nanoparticles-containing Biodegradable Polylactide Composites Synthesized by sol-gel Method. J. Nanosci. Nanotech 2014, 14(6), 4269–4277. DOI: 10.1166/jnn.2014.8271.
  • Zhu, Y.; Buonocore, G. G.; Lavorgna, M. Photocatalytic Activity of PLA/ TiO2 Nanocomposites and TiO2-active Multilayered Hybrid Coatings, Ital. J. Food Sci 2012, 24, 102–106.
  • Aleksandra, B. PLA Nanocomposites with Functionalized TiO 2 Nanoparticles. Polym. Plast. Technol. Eng 2013, 52(3), 280–286. DOI: 10.1080/03602559.2012.751411.
  • Aleksandra, B.; Anita, G. Biodegradable poly(L-lactic acid)/TiO2 Nanocomposites: Thermal Properties and Degradation. J. Appl. Polym. Sci 2012, 123(4), 2187–2193. DOI: 10.1002/app.34729.
  • Zhuang, W.; Liu, J.; Zhang, J. H.; Hu, B. X.; Shen, J. Preparation, Characterization, and Properties of TiO 2 /PLA Nanocomposites by in Situ Polymerization. Polym. Compos 2009, 30(8), 1074–1080. DOI: 10.1002/pc.20658.
  • Norio, N.; Toyoharu, H. Preparation and Characterization of poly(l-lactic acid)/TiO2 Nanoparticle Nanocomposite Films with High Transparency and Efficient Photodegradability. Polym. Degrad. Stab. 2007, 92(7), 1255–1264. DOI: 10.1016/j.polymdegradstab.2007.03.026.
  • Carmen, F.; Almudena, O.; Teresa, U. M.; Eduardo, A.; Daniel, C.; Paula, A. Z. Poly(lactic Acid)/ TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater Sci. Eng. C Mater Boil. Appl 2015, 57, 314–320. DOI: 10.1016/j.msec.2015.07.069.
  • Luo, Y.; Li, W.; Wang, X.; Xu, D.; Wang, Y. Preparation and Properties of Nanocomposites Based on poly(lactic Acid) and Functionalized TiO2. Acta Mater 2009, 57(11), 3182–3191. DOI: 10.1016/j.actamat.2009.03.022.
  • Zhang, H.; Huang, J.; Yang, L.; Chen, R.; Zou, W.; Lin, X.; Qu, J. Preparation, Characterization and Properties of PLA/TiO 2 Nanocomposites Based on a Novel Vane Extruder. RSC Adv 2015, 5(6), 4639–4647. DOI: 10.1039/C4RA14538K.
  • Chen, Y.; Lin, Y.; Peng, Z.; Lin, J. Transmission FT-IR Study on the Adsorption and Reactions of Lactic Acid and poly(lactic Acid) on TiO2. J. Phys. Chem. C. 2010, 114(41), 17720–17727. DOI: 10.1021/jp105581t.
  • Nanthini, S.; Liu-Tzea, T.; Kumar, S. Solar Photocatalytic Decolorization and Detoxification of Industrial Batik Dye Wastewater Using P (3HB)-TiO2 Nanocomposite Films. Clean: Soil, Air, Water. 2011, 39, 265–273.
  • Tang, Z.; Fan, F.; Fan, C.; Jiang, K.; Qin, Y. The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution. Polym. 2020, 12(2), 471. DOI: 10.3390/polym12020471.
  • Kaseem, M.; Hamad, K.; Rehman, Z. Review of Recent Advances in Polylactic Acid/TiO2 Composites. Materials. 2019, 12(22), 3659. DOI: 10.3390/ma12223659.
  • Cornell, R. M.; Schwertmann, U. the Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley: Weinheim, 2006.
  • Mu, B.; Liu, P.; Dong, Y.; Lu, C.; Wu, X. Superparamagnetic pH‐sensitive Multilayer Hybrid Hollow Microspheres for Targeted Controlled Release. J. Polym. Sci. A. 2010, 48(14), 3135–3144. DOI: 10.1002/pola.24095.
  • Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape Memory Effect of Poly (d,l-lactide)/Fe3O4 Nanocomposites by Inductive Heating of Magnetite Particles. Colloids Surf. B. 2009, 71(1), 67–72. DOI: 10.1016/j.colsurfb.2009.01.009.
  • Xiang, H.; Mu, Y.; Hu, C.; Luo, X. Biocompatibility and Toxicity of Polylactic Acid/Ferrosoferric Oxide Nanomagnetic Microsphere. J. Nanomat 2017, 5429063, 8.
  • Souz, G., Jr-F.; Ferreira, A. C.; Varela, A.; Oliveira, G. E.; Machado, F.; Pereira, E. D.; Fernandes, E.; Pinto, J. C.; Nele, M. Methodology for Determination of Magnetic Force of Polymeric Nanocomposites. Polym. Test. 2013, 32(8), 1466–1471. DOI: 10.1016/j.polymertesting.2013.09.018.
  • Taccola, S.; Desii, A.; Pensabene, V.; Fujie, T.; Saito, A.; Takeoka, S.; Dario, P.; Menciassi, A.; Mattoli, V. Free-Standing Poly(l -lactic Acid) Nanofilms Loaded with Superparamagnetic Nanoparticles. Langmuir. 2011, 27(9), 5589–5595. DOI: 10.1021/la2004134.
  • Lv, G.; He, F.; Zhang, G.; Wang, T.; Jiang, H.; Gao, F.; Wang, T.; Zhang, G.; Jiang, H.; Wang, T., et al. Novel Nanocomposite of Nano Fe3O4 and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells. Langmuir. 2008, 24(5), 2151–2156. DOI: 10.1021/la702845s.
  • Murariu, M.; Galluzzi, A.; Paint, Y.; Murariu, O.; Raquez, J.-M.; Polichetti, M.; Dubois, P. Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles. Materials. 2021, 14(18), 5154. DOI: 10.3390/ma14185154.
  • Han, C.; Cail, N.; Chan, V.; Liu, M.; Feng, X.; Yu, F. Enhanced Drug Delivery, Mechanical Properties and Antimicrobial Activities in Poly (Lactic Acid) Nanofiber with Mesoporous Fe3O4-COOH Nanoparticles. Colloids Surf. A. 2018, 559, 104–114. DOI: 10.1016/j.colsurfa.2018.09.012.
  • Yao, L.; Wang, Y.; Li, Y.; Qui, D.; Qiu, D. Controlled Preparation of Fe3O4/PLA Composites and Their Properties. Chem. Pap 2021, 75(12), 6399–6406. DOI: 10.1007/s11696-021-01809-2.
  • Sun, H.; Peng, S.; Wang, M.; Zhu, F.; Bhat, G.; Yu, B. Preparation and Characterization of Magnetic PLA/Fe3O4-g-PLLA Composite Melt Blown Nonwoven Fabric for Air Filtration. J. Eng. Fibers Fabr. 2020, 15, 1–13.
  • Oskam, G. Metal Oxide Nanoparticles: Synthesis, Characterization and Application J. Sol-Gel Sci. Techn 2006, 37(3), 161–164. DOI: 10.1007/s10971-005-6621-2.
  • Nikam, A. V.; Prasad, B. L. V.; Kulkarni, A. A. Wet Chemical Synthesis of Metal Oxide Nanoparticles: A Review. Cryst. Eng. Comm 2018, 20(35), 5091–5107. DOI: 10.1039/C8CE00487K.
  • Sanuja, S.; Agalya, A.; Umapathy, M. J. Studies on Magnesium Oxide Reinforced Chitosan Bionanocomposite Incorporated with Clove Oil for Active Food Packaging Application. Int. J. Polym. Mater Polym. Biomater 2013, 63(14), 733–740. DOI: 10.1080/00914037.2013.879445.
  • Yonghui, L.; Susan, S. X. Preparation and Characterization of Polymer−Inorganic Nanocomposites by in Situ Melt Polycondensation of l -Lactic Acid and Surface-Hydroxylated MgO. Biomacromol. 2010, 11(7), 1847–1855. DOI: 10.1021/bm100320q.
  • Swaroop, C.; Shukla, M. Nano-Magnesium Oxide Reinforced Polylactic Acid Biofilms for Food Packaging Applications. Int. J. Biol. Macromol 2017, 113, 729–736. DOI: 10.1016/j.ijbiomac.2018.02.156.
  • Swaroop, C.; Shukla, M. Development of Blown Polylactic acid-MgO Nanocomposite Films for Food Packaging. Compos. - A: Appl. Sci. Manuf 2019, 124, 105482. DOI: 10.1016/j.compositesa.2019.105482.
  • Liu, Z. Y.; Weng, Y. X.; Huang, Z. G.; Jin, Y. J.; Hu, J.; Chou, D.; Shao, S. X. Manufacture of a Hydrophobic CaO/polylactic Acid Composite. Mater. Manuf. Process 2019, 3(3), 303–311. DOI: 10.1080/10426914.2018.1512113.
  • Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. A Review of Porous Manganese Oxide Materials. Chem. Mater. 1998, 10(10), 2619–2628. DOI: 10.1021/cm980227h.
  • Bennewitz, M. F.; Lobo, T. L.; Nkansah, M. K.; Ulas, G.; Brudvig, G. W.; Shapiro, E. M. Biocompatible and pH-Sensitive PLGA Encapsulated MnO Nanocrystals for Molecular and Cellular MRI. ACS Nano. 2011, 5(5), 3438–3446. DOI: 10.1021/nn1019779.
  • Rathore, A.; Kaur, H.; Luque, R. Self-catalyzed Surface Grafting of Mn3O4 Nanoparticles with Polylactic and Its Magnetic Properties. J. Polym. Res 2018, 25(1), 1–9. DOI: 10.1007/s10965-017-1395-0.
  • Ahmad, A.; Othman, I.; Rambabu, K.; Bharath, G.; Taher, H.; Hasan, S. W.; Banat, F. Polymerization of Lactic Acid Produced from Food Waste by Metal oxide-assisted Dark Fermentation. Environ. Technol. Innov 2021, 24, 101862. DOI: 10.1016/j.eti.2021.101862.
  • Nilawer, S.; Chatterjee, K. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomol. 2022, 23(1), 226–239.
  • Yonghui, L.; Susan, S. X. Bionanocomposites from Poly(lactic Acid) and Hydroxylated Magnesium oxide 45th Midwest Regional Meeting of the American Chemical Society, Wichita, KS, United States, MWRM-190, October 27-30 2010.
  • Zhao, Y.; Liang, H.; Zhang, S.; Qu, S.; Jiang, Y.; Chen, M. Effects of Magnesium Oxide (Mgo) Shapes on in Vitro and in Vivo Degradation Behaviors of PLA/MgO Composites in Long Term. Polym. 2020, 12(5), 1074. DOI: 10.3390/polym12051074.
  • Shetty, D.; Shetty, N. Investigation of Mechanical Properties and Applications of Polylactic acids-a Review. Mater. Res. Express. 2019, 6(11), 112002. DOI: 10.1088/2053-1591/ab4648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.