966
Views
0
CrossRef citations to date
0
Altmetric
Review

An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites

, &
Pages 327-358 | Received 09 Feb 2022, Accepted 12 Aug 2022, Published online: 11 Sep 2022

References

  • Chan, D. S.; Fnais, N.; Ibrahim, I.; Daniel, S.; Manoukian, J. Exploring Polycaprolactone in Tracheal Surgery: A Scoping Review of in-Vivo Studies. Int. J. Pediatr. Otorhinolaryngol. 2019, 123April, 38–42. DOI:10.1016/j.ijporl.2019.04.039.
  • Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotra, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofacial Res. 2020, 10(1), 381–388. DOI: 10.1016/j.jobcr.2019.10.003.
  • Janmohammadi, M.; Nourbakhsh, M. S. Electrospun Polycaprolactone Scaffolds for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2019, 68(9), 527–539. DOI: 10.1080/00914037.2018.1466139.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer - Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35(10), 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L. Polycaprolactone: Synthesis. Prop. Appl. 2017. DOI: 10.1002/0471440264.pst658.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38(12), 3484–3504. DOI: 10.1039/b820162p.
  • Mandal, P.; Shunmugam, R. Polycaprolactone: A Biodegradable Polymer with Its Application in the Field of Self-Assembly Study. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 58(2), 111–129. DOI: 10.1080/10601325.2020.1831392.
  • Dabbaghi, A.; Ramazani, A.; Farshchi, N.; Rezaei, A.; Bodaghi, A.; Rezayati, S. S. Synthesis, Physical and Mechanical Properties of Amphiphilic Hydrogels Based on Polycaprolactone and Polyethylene Glycol for Bioapplications: A Review. journal of Industrial and Engineering Chemistry. 2021, 101, 307–323. DOI: 10.1080/00222348.2013.860304.
  • Raina, N.; Pahwa, R.; Khosla, J. K.; Gupta, P. N.; Gupta, M. Polycaprolactone-Based Materials in Wound Healing Applications. Polym. Bull. 2021, online. DOI: 10.1007/s00289-021-03865-w.
  • Mahmoud Salehi, A. O.; Heidari Keshel, S.; Sefat, F.; Tayebi, L. Use of Polycaprolactone in Corneal Tissue Engineering: A Review. Mater. Today Commun. 2021, 27(May), 102402. DOI: 10.1016/j.mtcomm.2021.102402.
  • Ilyas, R. A.; Zuhri, M. Y. M.; Nor, M.; Misenan, M. S. M.; Jenol, M.; Samsudin, S. A.; Nurazzi, N. M.; Asyraf, M. R. M.; Supian, A. B. M.; Bangar, S. P., et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers (Basel). 2022, 14(1), 182–211. DOI: 10.3390/polym14010182.
  • Mondal, D. Griffith, M.; Venkatraman, S. S. Polycaprolactone-Based Biomaterials for Tissue Engineering and Drug Delivery: Current Scenario and Challenges. Int. J. Polym. Mater. Polym. Biomater. 2016, 65(5), 255–265. DOI: 10.1080/00914037.2015.1103241.
  • Suwantong, O. Biomedical Applications of Electrospun Polycaprolactone Fiber Mats. Polym. Adv. Technol. 2016, 27(10), 1264–1273. DOI: 10.1002/pat.3876.
  • Hajiali, F.; Tajbakhsh, S.; Shojaei, A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018, 58(1), 164–207. DOI: 10.1080/15583724.2017.1332640.
  • Prasad, A.; Kandasubramanian, B. Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applications. Polym. Technol. Mater. 2019, 58(13), 1365–1398. DOI: 10.1080/25740881.2018.1563117.
  • Abrisham, M.; Noroozi, M.; Panahi-Sarmad, M.; Arjmand, M.; Goodarzi, V.; Shakeri, Y.; Golbaten-Mofrad, H.; Dehghan, P.; Seyfi Sahzabi, A.; Sadri, M., et al. The Role of Polycaprolactone-Triol (PCL-T) in Biomedical Applications: A State-of-the-Art Review. Eur. Polym. J. 2020, 131, 109701. DOI: 10.1016/j.eurpolymj.2020.109701.
  • Dodero, A.; Alloisio, M.; Castellano, M.; Vicini, S. Multilayer Alginate-Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS Appl. Mater. Interfaces. 2020, 12(28), 31162–31171. DOI: 10.1021/acsami.0c07352.
  • Bartnikowski, M.; Dargaville, T. R.; Ivanovski, S.; Hutmacher, D. W. Degradation Mechanisms of Polycaprolactone in the Context of Chemistry, Geometry and Environment. Prog. Polym. Sci. 2019, 96, 1–20. DOI: 10.1016/j.progpolymsci.2019.05.004.
  • Tran, J.; Pesenti, T.; Cressonnier, J.; Lefay, C.; Gigmes, D.; Guillaneuf, Y.; Nicolas, J. Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules. 2019, 20(1), 305–317. DOI: 10.1021/acs.biomac.8b01500.
  • Liu, C.; Qin, H.; Mather, P. T. Review of Progress in Shape-Memory Polymers. J. Mater. Chem. Chem. 2007, 1716, 1543–1558 10.1039/b615954k November 2006
  • Han, W.; Liao, X.; Yang, Q.; Li, G.; He, B.; Zhu, W.; Hao, Z. Crystallization and Morphological Transition of Poly(l-Lactide)-Poly(ϵ-Caprolactone) Diblock Copolymers with Different Block Length Ratios. RSC Adv. 2017, 7(36), 22515–22523. DOI: 10.1039/c7ra03496b.
  • Dakshinamoorthy, D.; Peruch, F. Block and Random Copolymerization of μ-Caprolactone, L-, and Rac-Lactide Using Titanium Complex Derived from Aminodiol Ligand. J. Polym. Sci. Part A Polym. Chem. 2012, 50(11), 2161–2171. DOI: 10.1002/pola.25983.
  • Schoener, C. A.; Weyand, C. B.; Murthy, R.; Grunlan, M. A. Shape Memory Polymers with Silicon-Containing Segments. J. Mater. Chem. 2010, 20(9), 1787–1793. DOI: 10.1039/b924032b.
  • Yang, J.; Zhou, Q.; Shen, K.; Song, N.; Ni, L. Controlling Nanodomain Morphology of Epoxy Thermosets Templated by Poly(Caprolactone)-: Block -poly(dimethylsiloxane)- Block -poly(caprolactone) ABA Triblock Copolymer. RSC Adv. 2018, 8(7), 3705–3715. DOI: 10.1039/c7ra12826f.
  • Qindeel, M.; Ahmed, N.; Shah, K. U.; Ullah, N.; Asim.ur, R. New, Environment Friendly Approach for Synthesis of Amphiphilic PCL–PEG–PCL Triblock Copolymer: An Efficient Carrier for Fabrication of Nanomicelles. J. Polym. Environ. 2020, 28(4), 1237–1251. DOI: 10.1007/s10924-020-01683-1.
  • Rani, S.; Gupta, U. S. Synthesis, Morphology, and Rheological Evaluation of HPMA (N −2-hydroxypropyl Methacrylamide)-PCL (Polycaprolactone) Conjugates. ACS Omega. 2021, 6(44), 29788–29803. DOI: 10.1021/acsomega.1c04243.
  • Li, J.; Xu, H.; Hu, N.; Shi, D.; Dong, W.; Wu, C.; Chen, M. Studies on Photoreactive and Biodegradable Copolymers Composed of Poly(-Caprolactone) and 4-Hydroxycinnamic Acid. Polym. J. 2012, 44(11), 1123–1130. DOI: 10.1038/pj.2012.85.
  • Liu, M. J.; Chen, S. C.; Yang, K. K.; Wang, Y. Z. Biodegradable Polylactide Based Materials with Improved Crystallinity, Mechanical Properties and Rheological Behaviour by Introducing a Long-Chain Branched Copolymer. RSC Adv. 2015, 5(52), 42162–42173. DOI: 10.1039/c5ra04742k.
  • Jiao, M.; Yang, K.; Cao, J.; Liu, H.; Pan, W.; Gao, P. Designing and Characterization of Poly(L-Lactide)/Poly(ε-Caprolactone) Multiblock Copolymers. J. Macromol. Sci. Part B Phys. 2014, 53(2), 191–204. DOI: 10.1080/00222348.2013.810058.
  • Polo Fonseca, L.; Bergamo Trinca, R.; Isabel Felisberti, M. Thermo-Responsive Polyurethane Hydrogels Based on Poly(Ethylene Glycol) and Poly(Caprolactone): Physico-Chemical and Mechanical Properties. J. Appl. Polym. Sci. 2016, 133(25), 1–10. DOI: 10.1002/app.43573.
  • Fuoco, T.; Finne-Wistrand, A. Enhancing the Properties of Poly(ϵ-Caprolactone) by Simple and Effective Random Copolymerization of ϵ-caprolactone with p-Dioxanone. Biomacromolecules. 2019, 20(8), 3171–3180. DOI: 10.1021/acs.biomac.9b00745.
  • Yang, L. Q.; Meng, S.; Liu, D. H.; Li, M.; Yang, D.; Guan, Y. M.; Li, J. X. Potential Biodegradable Implants from ε-Caprolactone and D, L-Lactide Copolymers: Synthesis, Properties, and in Vivo Degradation. Int. J. Polym. Anal. Charact. 2014, 19(5), 422–440. DOI: 10.1080/1023666X.2014.920069.
  • Saatchi, M.; Behl, M.; Nöchel, U.; Lendlein, A. Copolymer Networks from Oligo(ε -caprolactone) and N -butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature. Macromol. Rapid Commun. 2015, 36(10), 880–884. DOI: 10.1002/marc.201400729.
  • Bellani, C. F.; Pollet, E.; Hebraud, A.; Pereira, F. V.; Schlatter, G.; Avérous, L.; Bretas, R. E. S.; Branciforti, M. C. M. Thermal, and Mechanical Properties of Poly(ε-Caprolactone)/Poly(ε-Caprolactone)-Grafted-Cellulose Nanocrystals Mats Produced by Electrospinning. J. Appl. Polym. Sci. 2016, 133(21), 4–11. DOI: 10.1002/app.43445.
  • Ninago, M. D.; De Freitas, A. G. O.; Hanazumi, V.; Muraro, P. I. R.; Schmidt, V.; Giacomelli, C.; Ciolino, A. E.; Villar, M. A. Synthesis of Grafted Block Copolymers Based on ε-Caprolactone: Influence of Branches on Their Thermal Behavior. Macromol. Chem. Phys. 2015, 216(24), 2331–2343. DOI: 10.1002/macp.201500248.
  • Moura, I.; Nogueira, R.; Bounor-Legare, V.; Machado, A. V. Effect of PCL and EVA Molar Mass on the Development of Sustainable Polymers. Soft Mater. 2014, 12(1), 88–97. DOI: 10.1080/1539445X.2012.756818.
  • Hedir, G. G.; Bell, C. A.; O’Reilly, R. K.; Dove, A. P. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules. 2015, 16(7), 2049–2058. DOI: 10.1021/acs.biomac.5b00476.
  • Dai, G.; Xie, Q.; Chen, S.; Ma, C.; Zhang, G. Biodegradable Poly(Ester)-Poly(Methyl Methacrylate) Copolymer for Marine Anti-Biofouling. Prog. Org. Coatings. 2018, 124(August), 55–60. DOI: 10.1016/j.porgcoat.2018.08.003.
  • Komatsu, S.; Asoh, T. A.; Ishihara, R.; Kikuchi, A. Facile Preparation of Degradable Thermoresponsive Polymers as Biomaterials: Thermoresponsive Polymers Prepared by Radical Polymerization Degrade to Water-Soluble Oligomers. Polymer (Guildf.). 2017, 130, 68–73. DOI: 10.1016/j.polymer.2017.09.073.
  • Shi, Y.; Schmalz, H.; Agarwal, S. Designed Enzymatically Degradable Amphiphilic Conetworks by Radical Ring-Opening Polymerization. Polym. Chem. 2015, 6(35), 6409–6415. DOI: 10.1039/c5py00962f.
  • Undin, J.; Finne-Wistrand, A.; Albertsson, A. C. Adjustable Degradation Properties and Biocompatibility of Amorphous and Functional Poly(Ester-Acrylate)-Based Materials. Biomacromolecules. 2014, 15(7), 2800–2807. DOI: 10.1021/bm500689g.
  • Undin, J.; Finne-Wistrand, A.; Albertsson, A. C. Copolymerization of 2-Methylene-1,3-Dioxepane and Glycidyl Methacrylate, a Well-Defined and Efficient Process for Achieving Functionalized Polyesters for Covalent Binding of Bioactive Molecules. Biomacromolecules. 2013, 14(6), 2095–2102. DOI: 10.1021/bm4004783.
  • Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q. Tailoring Impact Toughness of Poly(L-Lactide)/Poly(ε-Caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Appl. Mater. Interfaces. 2012, 4(2), 897–905. DOI: 10.1021/am201564f.
  • Hu, M.; Deng, C.; Gu, X.; Fu, Q.; Zhang, J. Manipulating the Strength-Toughness Balance of Poly(l-Lactide) (PLLA) via Introducing Ductile Poly(ϵ-Caprolactone) (PCL) and Strong Shear Flow. Ind. Eng. Chem. Res. 2020, 59(2), 1000–1009. DOI: 10.1021/acs.iecr.9b05380.
  • Lv, Q.; Wu, D.; Xie, H.; Peng, S.; Chen, Y.; Xu, C. Crystallization of Poly(ϵ-Caprolactone) in Its Immiscible Blend with Polylactide: Insight into the Role of Annealing Histories. RSC Adv. 2016, 6(44), 37721–37730. DOI: 10.1039/c6ra07752h.
  • Ostafinska, A.; Fortelny, I.; Nevoralova, M.; Hodan, J.; Kredatusova, J.; Slouf, M. Synergistic Effects in Mechanical Properties of PLA/PCL Blends with Optimized Composition, Processing, and Morphology. RSC Adv. 2015, 5(120), 98971–98982. DOI: 10.1039/c5ra21178f.
  • Wachirahuttapong, S.; Thongpin, C.; Sombatsompop, N. Effect of PCL and Compatibility Contents on the Morphology, Crystallization and Mechanical Properties of PLA/PCL Blends. Energy Procedia. 2016, 89, 198–206. DOI: 10.1016/j.egypro.2016.05.026.
  • Chang, R.; Rohindra, D.; Lata, R.; Kuboyama, K.; Ougizawa, T. Development of Poly(ε-Caprolactone)/Pine Resin Blends: Study of Thermal, Mechanical, and Antimicrobial Properties. Polym. Eng. Sci. 2019, 59(s2), E32–E41. DOI: 10.1002/pen.24950.
  • Bou-Francis, A.; Piercey, M.; Al-Qatami, O.; Mazzanti, G.; Khattab, R.; Ghanem, A. Polycaprolactone Blends for Fracture Fixation in Low Load-Bearing Applications. J. Appl. Polym. Sci. 2020, 137(32), 48940. DOI: 10.1002/app.48940.
  • Wang, F.; Yang, X.; Zou, Y. Effect of the Maleation of Lignosulfonate on the Mechanical and Thermal Properties of Lignosulfonate/Poly(ε-Caprolactone) Blends. J. Appl. Polym. Sci. 2016, 133(5), 1–7. DOI: 10.1002/app.42925.
  • Zeng, A.; Wang, Y.; Li, D.; Guo, J.; Chen, Q. Preparation and Antibacterial Properties of Polycaprolactone/Quaternized Chitosan Blends. Chin. J. Chem. Eng. 2021, 32, 462–471. DOI: 10.1016/j.cjche.2020.10.001.
  • Vergara-Porras, B.; Gracida-Rodríguez, J. N.; Pérez-Guevara, F. Thermal Processing Influence on Mechanical, Thermal, and Biodegradation Behavior in Poly(β-Hydroxybutyrate)/Poly(ϵ-Caprolactone) Blends: A Descriptive Model. J. Appl. Polym. Sci. 2016, 133(27), 1–12. DOI: 10.1002/app.43569.
  • Przybysz, M.; Marć, M.; Klein, M.; Saeb, M. R.; Formela, K. S. Mechanical and Thermal Behavior Assessments of PCL/PHB Blends Reactively Compatibilized with Organic Peroxides. Polym. Test. 2018, 67, 513–521. DOI: 10.1016/j.polymertesting.2018.03.014.
  • Woodard, L. N.; Grunlan, M. A. Hydrolytic Degradation of PCL-PLLA Semi-IPNs Exhibiting Rapid, Tunable Degradation. ACS Biomater. Sci. Eng. 2019, 5(2), 498–508. DOI: 10.1021/acsbiomaterials.8b01135.
  • Díaz, E.; Puerto, I.; Sandonis, I.; Ibañez, I. Morphology and Mechanical Properties of PLLA and PCL Scaffolds. Polym. - Plast. Technol. Eng. 2014, 53(2), 150–155. DOI: 10.1080/03602559.2013.843699.
  • Noroozi, N.; Schafer, L. L.; Savvas, G. H. Thermorheological Properties of Poly (e-Caprolactone)/ Polylactide Blends. Polym. Eng. Sci. 2012, 52(11), 2348–2359. DOI: 10.1002/pen.
  • Sharma, D.; Satapathy, B. K. Performance Evaluation of Electrospun Nanofibrous Mats of Polylactic Acid (Pla)/poly (e-Caprolactone) (PCL) Blends. Mater. Today Proc. 2019, 19(xxxx), 188–195. DOI: 10.1016/j.matpr.2019.06.698.
  • Keridou, I.; Franco, L.; Turon, P.; Del Valle, L. J.; Puiggalí, J. Scaffolds with Tunable Properties Constituted by Electrospun Nanofibers of Polyglycolide and Poly(ε-Caprolactone). Macromol. Mater. Eng. 2018, 303(7), 1–14. DOI: 10.1002/mame.201800100.
  • Katsumata, K.; Saito, T.; Yu, F.; Nakamura, N.; Inoue, Y. The Toughening Effect of a Small Amount of Poly(ε-Caprolactone) on the Mechanical Properties of the Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate)/PCL Blend. Polym. J. 2011, 43(5), 484–492. DOI: 10.1038/pj.2011.12.
  • Rohindra, D.; Lata, R.; Kuboyama, K.; Ougizawa, T. Crystallization Behavior in Miscible Blends of Poly(ε‐caprolactone) and Poly(Hexylene Adipate) with Similar Thermal Properties Studied by Time‐resolved Fourier Transform Infrared Spectroscopy. Polym. Cryst. 2019, 2(1), 1–8. DOI: 10.1002/pcr2.10037.
  • Abdelrazek, E. M.; Hezma, A. M.; El-khodary, A.; Elzayat, A. M. Spectroscopic Studies and Thermal Properties of PCL/PMMA Biopolymer Blend. Egypt. J. Basic Appl. Sci. 2016, 3(1), 10–15. DOI: 10.1016/j.ejbas.2015.06.001.
  • Sousa, J. C.; Costa, A. R. M.; Lima, J. C.; Arruda, S. A.; Almeida, Y. M. B.; Canedo, E. L. Polycaprolactone (Pcl)/alumina and PCL/Niobium Pentoxide Composites: Rheology, Crystallization, and Mechanical Properties. Polym. Compos. 2020, 41(4), 1265–1276. DOI: 10.1002/pc.25452.
  • Pötschke, P.; Villmow, T.; Krause, B. Melt Mixed PCL/MWCNT Composites Prepared at Different Rotation Speeds: Characterization of Rheological, Thermal, and Electrical Properties, Molecular Weight, MWCNT Macrodispersion, and MWCNT Length Distribution. Polymer (Guildf.). 2013, 54(12), 3071–3078. DOI: 10.1016/j.polymer.2013.04.012.
  • Dhakal, H.; Bourmaud, A.; Berzin, F.; Almansour, F.; Zhang, Z.; Shah, D. U.; Beaugrand, J. Mechanical Properties of Leaf Sheath Date Palm Fibre Waste Biomass Reinforced Polycaprolactone (PCL) Biocomposites. Ind. Crop Prod. 2018, 126(October), 394–402. DOI: 10.1016/j.indcrop.2018.10.044.
  • Leung, L. H.; Naguib, H. E. Viscoelastic Properties of Poly(ε-Caprolactone) - Hydroxyapatite Micro- and Nano-Composites. Polym. Adv. Technol. 2013, 24(2), 144–150. DOI: 10.1002/pat.3061.
  • Mdletshe, T. S.; Mishra, S. B.; Mishra, A. K. Studies on the Effect of Silicon Carbide Nanoparticles on the Thermal, Mechanical, and Biodegradation Properties of Poly(Caprolactone). J. Appl. Polym. Sci. 2015, 132(26), 1–9. DOI: 10.1002/app.42145.
  • Wu, Q.; Ma, N.; Liu, T.; Koranteng, E. Properties of Compatible Soy Protein Isolate/Polycaprolactone Composite with Special Interface Structure. Polym. Compos. 2019, 40(S1), E383–E391. DOI: 10.1002/pc.24694.
  • Lee, K. S.; Chang, Y. W. T. Mechanical, and Rheological Properties of Poly(ε- Caprolactone)/Halloysite Nanotube Nanocomposites. J. Appl. Polym. Sci. 2013, 128(5), 2807–2816. DOI: 10.1002/app.38457.
  • Reul, L. T. A.; Pereira, C. A. B.; Sousa, F. M.; Santos, R. M.; Carvalho, L. H.; Canedo, E. L. Polycaprolactone/Babassu Compounds: Rheological, Thermal, and Morphological Characteristics. Polym. Compos. 2019, 40(S1), E540–E549. DOI: 10.1002/pc.24861.
  • Wu, C. S.; Liao, H. T. Polycaprolactone-Based Green Renewable Ecocomposites Made from Rice Straw Fiber: Characterization and Assessment of Mechanical and Thermal Properties. Ind. Eng. Chem. Res. 2012, 51(8), 3329–3337. DOI: 10.1021/ie202002p.
  • Weng, F.; Zhang, P.; Koranteng, E.; Zhang, Y.; Wu, Q.; Zeng, G. Effects of Shell Powder Size and Content on the Properties of Polycaprolactone Composites. J. Appl. Polym. Sci. 2021, 138(43), 1–11. DOI: 10.1002/app.51264.
  • Liu, J.; Roque, R.; Barbosa, G. F.; Malavolta, A. T. Compression Stiffness Evaluation of Polycaprolactone-Amorphous Calcium Phosphate 3D-Designed Scaffolds Oriented by Finite Element Analysis. J. Appl. Polym. Sci. 2021, 138(42), 1–9. DOI: 10.1002/app.51245.
  • Ludueña, L. N.; Vázquez, A.; Alvarez, V. A. Effect of the Type of Clay Organo-Modifier on the Morphology, Thermal/Mechanical/Impact/Barrier Properties and Biodegradation in Soil of Polycaprolactone/Clay Nanocomposites. J. Appl. Polym. Sci. 2013, 128(5), 2648–2657. DOI: 10.1002/app.38425.
  • Merino, D.; Alvarez, V. A. Thermal Degradation of Poly (ε-Caprolactone) Nanocomposites with Soy Lecithin-Modified Bentonite Fillers. Thermochim. Acta. 2020, 689, 178638. DOI: 10.1016/j.addma.2020.101070.
  • Rešček, A.; Ščetar, M.; Hrnjak-Murgić, Z.; Dimitrov, N.; Galić, K. Polyethylene/Polycaprolactone Nanocomposite Films for Food Packaging Modified with Magnetite and Casein: Oxygen Barrier, Mechanical, and Thermal Properties. Polym. - Plast. Technol. Eng. 2016, 55(14), 1450–1459. DOI: 10.1080/03602559.2016.1163606.
  • Jafari, H.; Shahrousvand, M.; Kaffashi, B. Preparation and Characterization of Reinforced Poly (ε-Caprolactone) Nanocomposites by Cellulose Nanowhiskers. Polym. Compos. 2020, 41(2), 624–632. DOI: 10.1002/pc.25393.
  • Saravanamoorthy, S.; Chandra Bose, A.; Velmathi, S. Facile Fabrication of Polycaprolactone/h-MoO3 Nanocomposites and Their Structural, Optical and Electrical Properties. RSC Adv. 2015, 5(120), 99074–99083. DOI: 10.1039/c5ra17733b.
  • Bicy, K.; Geethamma, V. G.; Kalarikkal, N.; Rouxel, D.; Thomas, S. Poly(ɛ-Caprolactone)/Functionalized-Carbon Nanotube Electrospun Nanocomposites: Crystallization and Thermal Properties. Macromol. Symp. 2018, 381(1), 1–6. DOI: 10.1002/masy.201800140.
  • Xie, M. M.; Wang, B. B.; Zhang, P. The Effect of Crystallization Behavior on High Conductivity, Enhanced Mechanism and Thermal Stability of Poly(ε-Caprolactone)/Multi-Walled Carbon Nanotube Composites. J. Dispers. Sci. Technol. 2019, 40(1), 94–102. DOI: 10.1080/01932691.2018.1464470.
  • Singh, J.; Pandey, P. M.; Kaur, T.; Singh, N. A Comparative Analysis of Solvent Cast 3D Printed Carbonyl Iron Powder Reinforced Polycaprolactone Polymeric Stents for Intravascular Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109(9), 1344–1359. DOI: 10.1002/jbm.b.34795.
  • Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of Nanofibrillated Chitosan into Electrospun PCL Nanofibers Makes Scaffolds with Enhanced Mechanical and Biological Properties. Carbohydr. Polym. 2018, 199, 628–640. DOI: 10.1016/j.carbpol.2018.07.061.
  • El-Naggar, M. E.; Shalaby, E. S.; Abd-Al-Aleem, A. H.; Abu-Saied, M. A.; Youssef, A. M. Synthesis of Environmentally Benign Antimicrobial Dressing Nanofibers Based on Polycaprolactone Blended with Gold Nanoparticles and Spearmint Oil Nanoemulsion. J. Mater. Res. Technol. 2021, 15, 3447–3460. DOI: 10.1016/j.jmrt.2021.09.136.
  • Victor, H, A.-C. S.; Go´ mez-Salazar Martin, R.; Soto, V.; Luna-Ba´rcenas, G.; Katime, I.; Sergio, M. N.-D. Comparative Study of the Thermal and Mechanical Properties of Nanocomposites Prepared by in Situ Polymerization of E-Caprolactone and Functionalized Carbon Nanotubes. Polym. Compos. 2012, 33(4), 5563–5572. DOI: 10.1002/pc.
  • Wang, Y.; Li, T.; Ma, P.; Zhang, S.; Du, M.; Dong, W.; Xie, Y.; Chen, M. Graphene-Assisted Fabrication of Poly(ϵ-Caprolactone)-Based Nanocomposites with High Mechanical Properties and Self-Healing Functionality. New J. Chem. 2018, 42(12), 10348–10356. DOI: 10.1039/c8nj01278d.
  • Cheng, Z.; Xiuwen, W.; Guopu, C.; Feng, W.; Jianan, R. AuNPs-PCL Nanocomposite Accelerated Abdominal Wound Healing through Photothermal Effect and Improving Cell Adhesion. J. Biomater. Sci. Polym. Educ. 2018, 29, 2035–2049.
  • Inukai, S.; Kurokawa, N.; Hotta, A. Mechanical Properties of Poly(ε-Caprolactone) Composites with Electrospun Cellulose Nanofibers Surface Modified by 3-Aminopropyltriethoxysilane. J. Appl. Polym. Sci. 2020, 137(17), 1–10. DOI: 10.1002/app.48599.
  • Zaman, H. U.; Beg, M. D. H. Improvement of Physico-Mechanical, Thermomechanical, Thermal and Degradation Properties of PCL/Gelatin Biocomposites: Effect of Gamma Radiation. Radiat. Phys. Chem. 2015, 109, 73–82. DOI: 10.1016/j.radphyschem.2014.12.011.
  • Lozano-Sánchez, L. M.; Bagudanch, I.; Sustaita, A. O.; Iturbe-Ek, J.; Elizalde, L. E.; Garcia-Romeu, M. L.; Elías-Zúñiga, A. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties. Polymers (Basel). 2018, 10, 4. DOI: 10.3390/polym10040391.
  • Iroh, J. O.;. Polymer Data Handbook; ed. J. E. ACS publication, J Am Chem Soc. 1999.DOI: 10.1021/ja907879q
  • Wurm, A.; Zhuravlev, E.; Eckstein, K.; Jehnichen, D.; Pospiech, D.; Androsch, R.; Wunderlich, B.; Schick, C. Crystallization and Homogeneous Nucleation Kinetics of Poly(ε- Caprolactone) (PCL) with Different Molar Masses. Macromolecules. 2012, 45(9), 3816–3828. DOI: 10.1021/ma300363b.
  • Jiang, Y.; Fang, L.; Kratz, K.; Lendlein, A. Crystallization Behavior of Copolyesterurethanes Containing Different Weight Contents of Crystallizable Poly(ε-Caprolactone) Segments. Macromol. Symp. 2014, 345(1), 59–65. DOI: 10.1002/masy.201400138.
  • Shen, H.; Quintard, G.; Chen, J.; Taha, M. Synthesis and Thermomechanical Properties of Allyl-Functionalized Polycaprolactone Urethane-Co-2-Hydroxylethyl Methacrylate Networks. J. Appl. Polym. Sci. 2015, 132(3), 1–10. DOI: 10.1002/APP.41295.
  • Shen, H.; Chen, J.; Taha, M. Cross-Linking and Damping Properties of Poly(Caprolactone-Co-Glycidyl Methacrylate). Polym. J. 2014, 46(9), 598–608. DOI: 10.1038/pj.2014.29.
  • Abdolmohammadi, S.; Siyamak, S.; Ibrahim, N. A.; Wan Yunus, W. M. Z.; Ab Rahman, M. Z.; Azizi, S.; Fatehi, A. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles. Int. J. Mol. Sci. 2012, 13(4), 4508–4522. DOI: 10.3390/ijms13044508.
  • Bing, Z.; Zai-Zai, T.; Jie, H.; Jun-Ting, X.; Zhi-Qiang, F. Isothermal Crystallization Kinetics of Multi-Walled Carbon Nanotubes-Graft-Poly(e-Caprolactone) with High Grafting Degrees. CrystEngComm. 2013, 15(38), 7824–7832. DOI: 10.1039/c3ce40606g.
  • Liu, L.; Zhang, Y.; Li, C.; Cao, J.; He, E.; Wu, X.; Wang, F.; Wang, L. Facile Preparation PCL/ Modified Nano ZnO Organic-Inorganic Composite and Its Application in Antibacterial Materials. J. Polym. Res. 2020, 27(3), 78. DOI: 10.1007/s10965-020-02046-z.
  • Kumar, D.; Babu, G.; Krishnan, S. Study on Mechanical & Thermal Properties of PCL Blended Graphene Biocomposites. Polimeros. 2019, 29(2), 1–9. DOI: 10.1590/0104-1428.05318.
  • Seyrek, M. E.; Okur, M.; Saraçoğlu, N. Improvement of Mechanical, Thermal and Antimicrobial Properties of Organically Modified Montmorillonite Loaded Polycaprolactone for Food Packaging. J. Vinyl Addit. Technol. 2021, 27(4), 894–908. DOI: 10.1002/vnl.21860.
  • Schäfer, H.; Reul, L. T. A.; Souza, F. M.; Wellen, R. M. R.; Carvalho, L. H.; Koschek, K.; Canedo, E. L. Crystallization Behavior of Polycaprolactone/Babassu Compounds. J. Therm. Anal. Calorim. 2021, 143(4), 2963–2972. DOI: 10.1007/s10973-020-09433-0.
  • Rizzuto, M.; Mugica, A.; Zubitur, M.; Caretti, D.; Müller, A. J. Plasticization and Anti-Plasticization Effects Caused by Poly(Lactide-Ran-Caprolactone) Addition to Double Crystalline Poly(l-Lactide)/Poly(ε-Caprolactone) Blends. CrystEngComm. 2016, 18(11), 2014–2023. DOI: 10.1039/c5ce02559a.
  • Lanfranconi, M.; Alvarez, V. A.; Ludueña, L. N. Isothermal Crystallization of Polycaprolactone/Modified Clay Biodegradable Nanocomposites. J. Therm. Anal. Calorim. 2016, 126(3), 1273–1280. DOI: 10.1007/s10973-016-5734-x.
  • Wu, C.-M.; Huang, C.-W. Melting and Crystallization Behavior of Copolymer from Cyclic Butylene Terephthalate and Polycaprolactone. Polym. Eng. Sci. 2011, 51(5), 1004–1013. DOI: 10.1002/pen.
  • Palacios, J. K.; Mugica, A.; Zubitur, M.; Iturrospe, A.; Arbe, A.; Liu, G.; Wang, D.; Zhao, J.; Hadjichristidis, N.; Müller, A. J. Sequential Crystallization and Morphology of Triple Crystalline Biodegradable PEO-b-PCL-b-PLLA Triblock Terpolymers. RSC Adv. 2016, 6(6), 4739–4750. DOI: 10.1039/c5ra25812j.
  • Cesur, S.; Alp, B.; Küçükgöksel, Y.; Kahraman, T.; Balköse, D. Crystallization Kinetics and Affecting Parameters on Polycaprolactone Composites with Inorganic and Organic Additives. J. Vinyl Addit. Technol. 2015, 21(3), 174–182. DOI: 10.1002/vnl.21399.
  • Alp, B.; Cesur, S. Isothermal Crystallization Kinetics and Mechanical Properties of Polycaprolactone Composites with Zinc Oxide, Oleic Acid, and Glycerol Monooleate. J. Appl. Polym. Sci. 2013, 130(2), 1259–1275. DOI: 10.1002/app.39217.
  • Mahalakshmi, S.; Parthasarathy, V.; Tung, K. L.; Anbarasan, R.; Alagesan, T. Non-Isothermal Crystallization and Degradation Kinetics of Fe 3 O 4 –thymolblue Functionalized Poly(ε-Caprolactone). J. Polym. Environ. 2019, 0, 0. DOI: 10.1007/s10924-019-01401-6.
  • Kratochvíl, J.; Rotrekl, J.; Kaprálková, L.; Hromádková, J.; Kelnar, I. Epoxy/Poly(ε-Caprolactone) Nanocomposites: Effect of Transformations of Structure on Crystallization. J. Appl. Polym. Sci. 2013, 130(5), 3197–3204. DOI: 10.1002/app.39536.
  • Liang, J. Z.; Zhou, L.; Tang, C. Y.; Tsui, C. P. Crystallization Properties of Polycaprolactone Composites Filled with Nanometer Calcium Carbonate. J. Appl. Polym. Sci. 2013, 128(5), 2940–2944. DOI: 10.1002/app.38359.
  • Yang, B.; Zhang, X.; Wang, C.; Liu, R.; Fan, B.; Zhang, H.; Sun, H. Effect of Polyvinyl Acetals on Non-Isothermal Crystallization Behaviour and Mechanical Properties of Poly(ϵ-Caprolactone). RSC Adv. 2019, 9(63), 36815–36824. DOI: 10.1039/c9ra08133j.
  • Harmansyah, F.; Woo, E. M.; Lee, L. T.; Chien, H. R. Distorted Ring-Banded Spherulites in Poly(l-Lactic Acid)/Poly(ε-Caprolactone) Blends. RSC Adv. 2014, 4(90), 49006–49015. DOI: 10.1039/c4ra08658a.
  • Ninago, M. D.; Redondo, F. L.; De Freites, A. G. O.; Giacomelli, C.; Ciolino, E.; Villar, M. A. Effects of Branches on the Isothermal Crystallization of Copolymers Based on Poly (E -caprolactone). Macromol. Symp. 2019, 383(1), 1700082. DOI: 10.1002/masy.201700082.
  • Zhang, D.; Giese, M. L.; Prukop, S. L.; Grunlan, M. A. Poly (ε-Caprolactone) -based Shape Memory Polymers with Variable Polydimethylsiloxane Soft Segment Lengths. J. Polym. Sci. Part A Polym. Chem. 2011, 49(3), 754–761. DOI: 10.1002/pola.24488.
  • Bai, Y.; Zhang, X.; Wang, Q.; Wang, T. Shape Memory Property of Microcrystalline Cellulose – Poly (e-Caprolactone) Polymer Network with Broad Transition Temperature. J. Mater. Sci. 2014, 49(5), 2252–2262. DOI: 10.1007/s10853-013-7920-6.
  • Raana, S.; Mahyar, -A.-A.; Massoumi, B.; Younes, B.-K.; Samira, A. Conductive and Biodegradable Scaffolds Based on a five-arm and Functionalized star-like polyaniline–polycaprolactone Copolymer with a D -glucose Core. New J. Chem. 2017, 41(14), 6371–6384. DOI: 10.1039/C7NJ01063J.
  • Yin, G.; Chen, G.; Zhou, Z.; Li, Q. Modification of PEG-b-PCL Block Copolymer with High Melting Temperature by the Enhancement of POSS Crystal and Ordered Phase Structure. RSC Adv. 2015, 5(42), 33356–33363. DOI: 10.1039/c5ra01971k.
  • Luo, S.; Peng, X.; Chen, Y.; Su, T.; Cao, J.; Li, S.; He, B. S. Characterization, and Crystallization of Biodegradable Poly(ε-Caprolactone)-Poly(L-Lactide) Diblock Copolymers. E-Polymers. 2015, 15(1), 15–23. DOI: 10.1515/epoly-2014-0155.
  • Yilgör, E.; Isik, M.; Söz, C. K.; Yilgör, I. Synthesis and Structure-Property Behavior of Polycaprolactone-Polydimethylsiloxane-Polycaprolactone Triblock Copolymers. Polymer (Guildf.). 2016, 83, 138–153. DOI: 10.1016/j.polymer.2015.12.024.
  • Jing, X.; Mi, H. Y.; Huang, H. X.; Turng, L. S. Shape Memory Thermoplastic Polyurethane (TPU)/Poly(ε-Caprolactone) (PCL) Blends as Self-Knotting Sutures. J. Mech. Behav. Biomed. Mater. 2016, 64, 94–103. DOI: 10.1016/j.jmbbm.2016.07.023.
  • Kotula, A. P.; Migler, K. B. Evaluating Models for Polycaprolactone Crystallization via Simultaneous Rheology and Raman Spectroscopy. J. Rheol. (N. Y. N. Y). 2018, 62(1), 343–356. DOI: 10.1122/1.5008381.
  • Chae, D. W.; Nam, Y.; An, S. G.; Cho, C. G.; Lee, E. J.; Kim, B. C. Effects of Molecular Architecture on the Rheological and Physical Properties of Polycaprolactone. Korea Aust. Rheol. J. 2017, 29(2), 129–135. DOI: 10.1007/s13367-017-0014-2.
  • Kelly, C. A.; Murphy, S. H.; Leeke, G. A.; Howdle, S. M.; Shakesheff, K. M.; Jenkins, M. J. Rheological Studies of Polycaprolactone in Supercritical CO2. Eur. Polym. J. 2013, 49(2), 464–470. DOI: 10.1016/j.eurpolymj.2012.11.021.
  • Sethuraman, V.; Makornkaewkeyoon, K.; Khalf, A.; Madihally, S. V. Influence of Scaffold Forming Techniques on Stress Relaxation Behavior of Polycaprolactone Scaffolds. J. Appl. Polym. Sci. 2013, 130(6), 4237–4244. DOI: 10.1002/app.39599.
  • Bouakaz, B. S.; Habi, A.; Grohens, Y.; Pillin, I. Effect of Combinations of Nanofillers on Rheology-Structure Relations in Biodegradable Poly(ε-Caprolactone) Nanocomposites. Appl. Clay Sci. 2018, 161(April), 35–47. DOI: 10.1016/j.clay.2018.04.006.
  • Nie, Y.; Zhan, H.; Kou, L.; Gu, Y. Atomistic Insights on the Rheological Property of Polycaprolactone Composites with the Addition of Graphene. Adv. Mater. Technol. 2021, 2100507, 1–9. DOI: 10.1002/admt.202100507.
  • Wang, Y.; Xu, C.; Wu, D.; Xie, W.; Wang, K.; Xia, Q.; Yang, H. Rheology of the Cellulose Nanocrystals Filled Poly(ε-Caprolactone) Biocomposites. Polymer (Guildf.). 2018, 140, 167–178. DOI: 10.1016/j.polymer.2018.02.050.
  • Tian, G.; Zhu, G.; Ren, T.; Liu, Y.; Wei, K.; Liu, Y. X. The Effects of PCL Diol Molecular Weight on Properties of Shape Memory Poly(ε-Caprolactone) Networks. J. Appl. Polym. Sci. 2019, 136(6), 1–8. DOI: 10.1002/app.47055.
  • Liang, J. Z.; Duan, D. R.; Tang, C. Y.; Tsui, C. P.; Chen, D. Z. Flexural Properties of Poly-L-Lactide and Polycaprolactone Shape Memory Composites Filled with Nanometer Calcium Carbonate. J. Macromol. Sci. Part B Phys. 2013, 52(7), 964–972. DOI: 10.1080/00222348.2012.746572.
  • Jahangiri, M.; Kalajahi, A. E.; Rezaei, M.; Bagheri, M. Shape Memory Hydroxypropyl Cellulose-g-Poly (ε-Caprolactone) Networks with Controlled Drug Release Capabilities. J. Polym. Res. 2019, 26(6), 6. DOI: 10.1007/s10965-019-1798-1.
  • Bai, Y.; Jiang, C.; Wang, Q.; Wang, T. Multi-Shape-Memory Property Study of Novel Poly (ε-Caprolactone)/ Ethyl Cellulose Polymer Networks. Macromol. Chem. Phys. 2013, 214(21), 2465–2472. DOI: 10.1002/macp.201300389.
  • Zhou, Y.; Zhou, D.; Cao, P.; Zhang, X.; Wang, Q.; Wang, T.; Li, Z.; He, W.; Ju, J.; Zhang, Y. 4D Printing of Shape Memory Vascular Stent Based on ΒCD-g-Polycaprolactone. Macromol. Rapid Commun. 2021, 42(14), 1–9. DOI: 10.1002/marc.202100176.
  • Iregui, Á.; Otaegi, I.; Arandia, I.; Martin, M. D.; Müller, A. J.; Irusta, L.; González, A. Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules. 2020, 53(4), 1368–1379. DOI: 10.1021/acs.macromol.9b02474.
  • Liu, W.; Zhang, R.; Huang, M.; Dong, X.; Xu, W.; Ray, N.; Zhu, J. Design and Structural Study of a Triple-Shape Memory PCL/PVC Blend. Polymer (Guildf.). 2016, 104, 115–122. DOI: 10.1016/j.polymer.2016.09.079.
  • Lai, S.; Wang, X. Shape Memory Properties of Olefin Block Copolymer (OBC)/ Poly (E -caprolactone) (PCL) Blends. J. Appl. Polym. Sci. 2017, 134(44), 45475. DOI: 10.1002/app.45475.
  • Chen, W. C.; Lai, S. M.; Chang, M. Y.; Liao, Z. C. Preparation and Properties of Natural Rubber (Nr)/polycaprolactone (PCL) Bio-Based Shape Memory Polymer Blends. J. Macromol. Sci. Part B Phys. 2014, 53(4), 645–661. DOI: 10.1080/00222348.2013.860304.
  • Tian, G.; Zhu, G.; Xu, S.; Ren, T. A Novel Shape Memory Poly(ɛ-Caprolactone)/Hydroxyapatite Nanoparticle Networks for Potential Biomedical Applications. J. Solid State Chem. 2019, 272(January), 78–86. DOI: 10.1016/j.jssc.2019.01.029.
  • Ishii, S.; Uto, K.; Niiyama, E.; Ebara, M.; Nagao, T. Hybridizing Poly(ε -caprolactone) and Plasmonic Titanium Nitride Nanoparticles for Broadband Photoresponsive Shape Memory Films. Appl. Mater. Interfaces. 2016, 8(8), 5634–5640. DOI: 10.1021/acsami.5b12658.
  • Wang, W.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lv, J.; Zhou, S. The Improvement of the Shape Memory Function of Poly(ϵ-Caprolactone)/Nano-Crystalline Cellulose Nanocomposites via Recrystallization under a High-Pressure Environment. J. Mater. Chem. A. 2016, 4(16), 5984–5992. DOI: 10.1039/c6ta00930a.
  • Lu, H.; Gou, J. Fabrication and Electroactive Responsive Behavior of Shape-Memory Nanocomposite Incorporated with Self-Assembled Multiwalled Carbon Nanotube Nanopaper. Polym. Adv. Technol. 2012, 23(12), 1529–1535. DOI: 10.1002/pat.2074.
  • Yang, P.; Zhu, G.; Shen, X.; Yan, X.; Nie, J. Poly(e-Caprolactone)-Based Shape Memory Polymers Crosslinked by Polyhedral Oligomeric Silsesquioxane. RSC Adv. 2016, 6(93), 90212–90219. DOI: 10.1039/C6RA20431G.
  • Qu, M.; Wang, H.; Chen, Q.; Wu, L.; Tang, P.; Fan, M.; Guo, Y.; Fan, H.; Bin, Y. A Thermally-Electrically Double-Responsive Polycaprolactone – Thermoplastic Polyurethane/Multi-Walled Carbon Nanotube Fiber Assisted with Highly Effective Shape Memory and Strain Sensing Performance. Chem. Eng. J. 2022, 427, 131648. DOI: 10.1016/j.cej.2021.131648.
  • Banerjee, A.; Chatterjee, K.; Madras, G. Enzymatic Degradation of Polycaprolactone-Gelatin Blend. Mater. Res. Express. 2015, 2(4), 45303. DOI: 10.1088/2053-1591/2/4/045303.
  • Feng, S.; Yue, Y.; Chen, J.; Zhou, J.; Li, Y.; Zhang, Q. Biodegradation Mechanism of Polycaprolactone by A Novel Esterase MGS0156: A QM/MM Approach. Environ. Sci. Process. Impact. 2020, 22(12), 2332–2344. DOI: 10.1039/d0em00340a.
  • Almeida, B. C.; Figueiredo, P.; Carvalho, A. T. P. Polycaprolactone Enzymatic Hydrolysis: A Mechanistic Study. ACS Omega. 2019, 4(4), 6769–6774. DOI: 10.1021/acsomega.9b00345.
  • Woodard, L. N.; Page, V. M.; Kmetz, K. T.; Grunlan, M. A. PCL–PLLA Semi-IPN Shape Memory Polymers (Smps): Degradation and Mechanical Properties. Macromol. Rapid Commun. 2016, 37(23), 1972–1977. DOI: 10.1002/marc.201600414.
  • Yang, Y.; Michalczyk, C.; Singer, F.; Virtanen, S.; Boccaccini, A. R. In Vitro Study of Polycaprolactone/Bioactive Glass Composite Coatings on Corrosion and Bioactivity of Pure Mg. Appl. Surf. Sci. 2015, 355, 832–841. DOI: 10.1016/j.apsusc.2015.07.053.
  • Tsujimoto, T.; Takayama, T.; Uyama, H. Biodegradable Shape Memory Polymeric Material from Epoxidized Soybean Oil and Polycaprolactone. Polymers (Basel). 2015, 7(October), 2165–2174. DOI: 10.3390/polym7101506.
  • Kim, J. J.; Singh, R. K.; Seo, S. J.; Kim, T. H.; Kim, J. H.; Lee, E. J.; Kim, H. W. Magnetic Scaffolds of Polycaprolactone with Functionalized Magnetite Nanoparticles: Physicochemical, Mechanical, and Biological Properties Effective for Bone Regeneration. RSC Adv. 2014, 4(33), 17325–17336. DOI: 10.1039/c4ra00040d.
  • Badrossamay, M. R.; McIlwee, H. A.; Goss, J. A.; Parker, K. K. Nanofiber Assembly by Rotary Jet-Spinning. Nano Lett. 2010, 10(6), 2257–2261. DOI: 10.1021/nl101355x.
  • Sadeghianmaryan, A.; Yazdanpanah, Z.; Soltani, Y. A.; Sardroud, H. A.; Nasirtabrizi, M. H.; Chen, X. Curcumin‐loaded Electrospun Polycaprolactone/Montmorillonite Nanocomposite: Wound Dressing Application with Anti‐bacterial and Low Cell Toxicity Properties. J. Biomater. Sci. Polym. Educ. 2020, 31(2), 169–187. DOI: 10.1080/09205063.2019.1680928.
  • Mi, H. Y.; Jing, X.; Napiwocki, B. N.; Hagerty, B. S.; Chen, G.; Turng, L. S. B. Degradable Thermoplastic Polyurethane Based on Polycaprolactone-Block -polytetrahydrofuran- Block -polycaprolactone Copolymers for Soft Tissue Engineering. J. Mater. Chem. B. 2017, 5(22), 4137–4151. DOI: 10.1039/c7tb00419b.
  • Zhao, N.; Lv, Z.; Ma, J.; Zhu, C.; Li, Q. Fabrication of Hydrophilic Small Diameter Vascular Foam Scaffolds of Poly(ε-Caprolactone)/Polylactic Blend by Sodium Hydroxide Solution. Eur. Polym. J. 2019, 110, 31–40. DOI: 10.1016/j.eurpolymj.2018.11.011.
  • Świętek, M.; Brož, A.; Tarasiuk, J.; Wroński, S.; Tokarz, W.; Kozieł, A.; Błażewicz, M.; Bačáková, L. Carbon Nanotube/Iron Oxide Hybrid Particles and Their PCL-Based 3D Composites for Potential Bone Regeneration. Mater. Sci. Eng. C. 2019, 104, 109913. DOI: 10.1016/j.msec.2019.109913.
  • Collignon, A.; Granel, H.; Rochefort, G. Y.; Granel, H.; Rochefort, G. Y.; Dentaire, F. D. C.; Pathologies, L.; Descartes, P.; Dentaire, F. D. C.; Pathologies, L., et al. Bioactive Glass/Polycaprolactone Hybrid with a Dual Cortical/Trabecular Structure for Bone Regeneration. ACS Appl. Bio Mater. 2019, 2(8), 3473–3483. DOI: 10.1021/acsabm.9b00407.
  • Choi, E.; Jin, S.; Shim, J.; Yun, W.; Park, K.-H.; Choi, S.; Choi, E.; Jin, S.; Shim, J.-H.; Yun, W.-S. Fabrication and Characterization of 3D – Printed Biocomposite Scaffolds Based on PCL and Silanated Silica Particles for Bone Tissue Regeneration. Chem. Eng. J. 2019, 360, 519–530. DOI: 10.1016/j.cej.2018.11.176.
  • Siqueira, I. A. W. B.; Koba, N.; Moura, D.; Paulo, J.; Machado, D. B.; Henrique, E.; Roberto, F.; De Sousa, E. Porous Membranes of the Polycaprolactone (PCL) Containing Calcium Silicate Fibers for Guided Bone Regeneration. Mater. Lett. 2017, 206, 210–213. DOI: 10.1016/j.matlet.2017.07.011.
  • Fereshteh, Z.; Fathi, M.; Bagri, A.; Boccaccini, A. R. Preparation and Characterization of Aligned Porous PCL/Zein Scaffolds as Drug Delivery Systems via Improved Unidirectional Freeze-Drying Method. Mater. Sci. Eng. C. 2016, 68, 613–622. DOI: 10.1016/j.msec.2016.06.009.
  • Dash, T. K.; Konkimalla, V. B. Polymeric Modification and Its Implication in Drug Delivery: Poly-ε- Caprolactone (PCL) as a Model Polymer. Mol. Pharm. 2012, 9(9), 2365–2379. DOI: 10.1021/mp3001952.
  • Chandrasiri, I.; Abebe, D. G.; Loku Yaddehige, M.; Williams, J. S. D.; Zia, M. F.; Dorris, A.; Barker, A.; Simms, B. L.; Parker, A.; Vinjamuri, B. P., et al. Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (Ldbcs) for Bioimaging and Phototherapeutic Applications. ACS Appl. Bio Mater. 2020, 3(9), 5664–5677. DOI: 10.1021/acsabm.0c00432.
  • Yeroslavsky, G.; Umezawa, M.; Okubo, K.; Nigoghossian, K.; Thi Kim Dung, D.; Miyata, K.; Kamimura, M.; Soga, K. Stabilization of Indocyanine Green Dye in Polymeric Micelles for NIR-II Fluorescence Imaging and Cancer Treatment. Biomater. Sci. 2020, 8(8), 2245–2254. DOI: 10.1039/c9bm02010a.
  • Wu, S.; Su, F.; Magee, H. Y.; Meldrum, D. R.; Tian, Y. CRGD Functionalized 2,1,3-Benzothiadiazole (Btd)-containing Two-Photon Absorbing Red-Emitter-Conjugated Amphiphilic Poly(Ethylene Glycol)-: Block -poly(ϵ-caprolactone) for Targeted Bioimaging. RSC Adv. 2019, 9(59), 34235–34243. DOI: 10.1039/c9ra06694b.
  • Molina, B. G.; Cianga, L.; Bendrea, A. D.; Cianga, I.; Alemán, C.; Armelin, E. A. A. Heterografted Polythiophene Copolymer Containing Biocompatible/Biodegradable Side Chains for Use as an (Electro)active Surface in Biomedical Applications. Polym. Chem. 2019, 10(36), 5010–5022. DOI: 10.1039/c9py00926d.
  • Dong, X.; Wei, C.; Lu, L.; Liu, T.; Lv, F. Fluorescent Nanogel Based on Four-Arm PEG-PCL Copolymer with Porphyrin Core for Bioimaging. Mater. Sci. Eng. C. 2016, 61, 214–219. DOI: 10.1016/j.msec.2015.12.037.
  • Huang, S.; Liu, S.; Wang, K.; Yang, C.; Luo, Y.; Zhang, Y.; Cao, B.; Kang, Y.; Wang, M. Highly Fluorescent and Bioresorbable Polymeric Nanoparticles with Enhanced Photostability for Cell Imaging. Nanoscale. 2015, 7(3), 889–895. DOI: 10.1039/c4nr05576d.
  • Yang, C.; Huang, S.; Wang, X.; Wang, M. Theranostic Unimolecular Micelles of Highly Fluorescent Conjugated Polymer Bottlebrushes for Far Red/near Infrared Bioimaging and Efficient Anticancer Drug Delivery. Polym. Chem. 2016, 7(48), 7455–7468. DOI: 10.1039/c6py01838f.
  • Ruan, Z.; Liu, L.; Fu, L.; Xing, T.; Yan, L. An Amphiphilic Block Copolymer Conjugated with Carborane and a NIR Fluorescent Probe for Potential Imaging-Guided BNCT Therapy. Polym. Chem. 2016, 7(26), 4411–4418. DOI: 10.1039/c6py00799f.
  • Tabesh, E.; Kharaziha, M.; Mahmoudi, M.; Shahnam, E.; Rozbahani, M. Biological and Corrosion Evaluation of Laponite®: Poly(Caprolactone) Nanocomposite Coating for Biomedical Applications. Colloids Surfaces A Physicochem. Eng. Asp. June 2019, 583, 123945. DOI: 10.1016/j.colsurfa.2019.123945.
  • Jokar, M.; Darvishi, S.; Torkaman, R.; Kharaziha, M.; Karbasi, M. Corrosion and Bioactivity Evaluation of Nanocomposite PCL-Forsterite Coating Applied on 316L Stainless Steel. Surf. Coatings Technol. 2016, 307, 324–331. DOI: 10.1016/j.surfcoat.2016.08.094.
  • Mojarad Shafiee, B.; Torkaman, R.; Mahmoudi, M.; Emadi, R.; Karamian, E. An Improvement in Corrosion Resistance of 316L AISI Coated Using PCL-Gelatin Composite by Dip-Coating Method. Prog. Org. Coatings. 2019, 130(January), 200–205. DOI: 10.1016/j.porgcoat.2019.01.057.
  • Capellato, P.; Silva, G.; Popat, K.; Simon‐Walker, R.; Alves Claro, A. P.; Zavaglia, C. Cell Investigation into the Biocompatibility of Adult Human Dermal Fibroblasts with PCL nanofibers/TiO 2 Nanotubes on the Surface of Ti–30Ta Alloy for Biomedical applications. Artif. Organs. 2020, 44(8), 877–882. Early view. DOI: 10.1111/aor.13713.
  • Bakhsheshi‐Rad, H. R.; Hamzah, E.; Shuang, C. P.; Berto, F. Preparation of Poly(ε‐caprolactone)‐hydroxyapatite Composite Coating for Improvement of Corrosion Performance of Biodegradable Magnesium. Mater. Des. Process. Commun. 2020, 2(4), early view. DOI: 10.1002/mdp2.170.
  • Palanisamy, M. S.; Kulandaivelu, R.; Nellaiappan, S. N. T. S. Improving the Corrosion Resistance and Bioactivity of Magnesium by a Carbonate Conversion-Polycaprolactone Duplex Coating Approach. New J. Chem. 2020, 44(12), 4772–4785. DOI: 10.1039/c9nj06030h.
  • Kim, J.; Mousa, H. M.; Park, C. H.; Kim, C. S. Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy Using PCL/ZnO NPs via Electrospinning. Appl. Surf. Sci. 2017, 396, 249–258. DOI: 10.1016/j.apsusc.2016.10.092.
  • Bakhsheshi-Rad, H. R.; Ismail, A. F.; Aziz, M.; Hadisi, Z.; Omidi, M.; Chen, X. Antibacterial Activity and Corrosion Resistance of Ta 2 O 5 Thin Film and Electrospun PCL/MgO-Ag Nanofiber Coatings on Biodegradable Mg Alloy Implants. Ceram. Int. 2019, 45(9), 11883–11892. DOI: 10.1016/j.ceramint.2019.03.071.
  • Huang, W.; Mei, D.; Zhang, J.; Chen, D.; Li, J.; Wang, L.; Zhou, Y.; Zhu, S.; Guan, S. Improved Corrosion Resistance and Cytocompatibility of Mg–Zn–Y–Nd Alloy by the Electrografted Polycaprolactone Coating. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 629(June), 127471. DOI: 10.1016/j.colsurfa.2021.127471.
  • Sangroniz, A.; Sangroniz, L.; Hamzehlou, S.; Del Río, J.; Santamaria, A.; Sarasua, J. R.; Iriarte, M.; Leiza, J. R.; Etxeberria, A. Lactide-Caprolactone Copolymers with Tuneable Barrier Properties for Packaging Applications. Polymer (Guildf.). 2020, 202, 122681. DOI: 10.1016/j.polymer.2020.122681.
  • Ahmed, J.; Mulla, M.; Jacob, H.; Luciano, G.; T.b, B.; Almusallam, A. Polylactide/Poly(ε-Caprolactone)/Zinc Oxide/Clove Essential Oil Composite Antimicrobial Films for Scrambled Egg Packaging. Food Packag. Shelf Life. 2019, 21, 100355. DOI: 10.1016/j.fpsl.2019.100355.
  • Milovanovic, S.; Hollermann, G.; Errenst, C.; Pajnik, J.; Frerich, S.; Kroll, S.; Rezwan, K.; Ivanovic, J. Supercritical CO2 Impregnation of PLA/PCL Films with Natural Substances for Bacterial Growth Control in Food Packaging. Food Res. Int. 2018, 107, 486–495. DOI: 10.1016/j.foodres.2018.02.065.
  • Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/Cinnamaldehyde Antimicrobial Packaging on Physicochemical and Microbial Quality of Button Mushroom (Agaricus Bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. DOI: 10.1016/j.postharvbio.2014.07.018.
  • Correa, J. P.; Molina, V.; Sanchez, M.; Kainz, C.; Eisenberg, P.; Massani, M. B. Improving Ham Shelf Life with a Polyhydroxybutyrate/Polycaprolactone Biodegradable Film Activated with Nisin. Food Packag. Shelf Life. 2017, 11, 31–39. DOI: 10.1016/j.fpsl.2016.11.004.
  • Hadj-Hamou, A. S.; Yahiaoui, F. Performances of PCL/PVC/Organoclay Nanobioblends Films for Packaging Applications. Macromol. Symp. 2019, 386(1), 1–8. DOI: 10.1002/masy.201800239.
  • Alix, S.; Mahieu, A.; Terrie, C.; Soulestin, J.; Gerault, E.; Feuilloley, M. G. J.; Gattin, R.; Edon, V.; Ait-Younes, T.; Leblanc, N. Active Pseudo-Multilayered Films from Polycaprolactone and Starch Based Matrix for Food-Packaging Applications. Eur. Polym. J. 2013, 49(6), 1234–1242. DOI: 10.1016/j.eurpolymj.2013.03.016.
  • Ortega-Toro, R.; Contreras, J.; Talens, P.; Chiralt, A. Physical and Structural Properties and Thermal Behaviour of Starch-Poly(E{open}-Caprolactone) Blend Films for Food Packaging. Food Packag. Shelf Life. 2015, 5, 10–20. DOI: 10.1016/j.fpsl.2015.04.001.
  • Khalid, S.; Yu, L.; Feng, M.; Meng, L.; Bai, Y.; Ali, A.; Liu, H.; Chen, L. Development and Characterization of Biodegradable Antimicrobial Packaging Films Based on Polycaprolactone, Starch and Pomegranate Rind Hybrids. Food Packag. Shelf Life. 2018, 18, 71–79. DOI: 10.1016/j.fpsl.2018.08.008.
  • Wang, K.; Lim, P. N.; Tong, S. Y.; Thian, E. S. Development of Grapefruit Seed Extract-Loaded Poly(ε-Caprolactone)/Chitosan Films for Antimicrobial Food Packaging. Food Packag. Shelf Life. 2019, 22, 100396. DOI: 10.1016/j.fpsl.2019.100396.
  • Jeong, S.; Lee, H. G.; Cho, C. H.; Yoo, S. R. Characterization of Multi-Functional, Biodegradable Sodium Metabisulfite-Incorporated Films Based on Polycarprolactone for Active Food Packaging Applications. Food Packag. Shelf Life. 2020, 25(April), 100512. DOI: 10.1016/j.fpsl.2020.100512.
  • Benhacine, F.; Ouargli, A.; Hadj-Hamou, A. S. Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/Ag-Kaolinite Nanocomposites with Controlled Release Properties. Polym. Technol. Mater. 2019, 58(3), 328–340. DOI: 10.1080/03602559.2018.1471714.
  • Xie, J.; Hung, Y. C. UV-A Activated TiO2 Embedded Biodegradable Polymer Film for Antimicrobial Food Packaging Application. LWT-Food Sci. Technol. 2018, 96, 307–314. DOI: 10.1016/j.lwt.2018.05.050.
  • Cai, Y.; Guan, J.; Wang, W.; Wang, L.; Su, J.; Fang, L. PH and Light-Responsive Polycaprolactone/Curcumin@zif-8 Composite Films with Enhanced Antibacterial Activity. J. Food Sci. 2021, 86(8), 3550–3562. DOI: 10.1111/1750-3841.15839.
  • Angelica, D.; Alberto, J.; Costa, V.; Greque, M.; Morais, D. A Novel Nanocomposite for Food Packaging Developed by Electrospinning and Electrospraying. Food Packag. Shelf Life. 2019, 20, 100314. DOI: 10.1016/j.fpsl.2019.100314.
  • Hasanpour Ardekani-Zadeh, A.; Hosseini, S. F. Electrospun Essential Oil-Doped Chitosan/Poly(ε-Caprolactone) Hybrid Nanofibrous Mats for Antimicrobial Food Biopackaging Exploits. Carbohydr. Polym. 2019, 223, 115108. DOI: 10.1016/j.carbpol.2019.115108.
  • Mathiazhagan, S.; Periasamy, V.; Vadivel, A. Ecofriendly Antimicrobial Acalypha Indica Leaf Extract Immobilized Polycaprolactone Nanofibrous Mat for Food Package Applications. J. Food Process. Preserv. 2021, 45(4), 1–12. DOI: 10.1111/jfpp.15302.
  • Lin, W.; Ni, Y.; Pang, J. Size Effect-Inspired Fabrication of Konjac Glucomannan/ Polycaprolactone Fiber Films for Antibacterial Food Packaging. Int. J. Biol. Macromol. 2020, 149, 853–860. DOI: 10.1016/j.ijbiomac.2020.01.242.
  • Sugane, K.; Yoshioka, Y.; Shimasaki, T.; Teramoto, N.; Shibata, M. Self-Healing 8-Armed Star-Shaped Ɛ-caprolactone Oligomers Dually Crosslinked by the Diels-Alder and Urethanization Reactions. Polymer (Guildf.). 2018, 144, 92–102. DOI: 10.1016/j.polymer.2018.04.045.
  • Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/Network Poly (ε -caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH). ACS Appl. Mater. Interfaces. 2011, 3(2), 152–161. DOI: 10.1021/am101012c.
  • Lai, S. M.; Liu, J. L.; Huang, Y. H. Preparation of Self-Healing Natural Rubber/Polycaprolactone (NR/PCL) Blends. J. Macromol. Sci. Part B Phys. 2020, 59(9), 587–607. DOI: 10.1080/00222348.2020.1757218.
  • Xu, X.; Fan, P.; Ren, J.; Cheng, Y.; Ren, J.; Zhao, J.; Song, R. Self-Healing Thermoplastic Polyurethane (Tpu)/polycaprolactone (PCL) /Multi-Wall Carbon Nanotubes (Mwcnts) Blend as Shape-Memory Composites. Compos. Sci. Technol. 2018, 168, 255–262. DOI: 10.1016/j.compscitech.2018.10.003.
  • Lutz, A.; Van Den Berg, O.; Damme Van, J.; Verheyen, K.; Bauters, E.; De Graeve, I.; Du Prez, F. E.; Terryn, H. A Shape-Recovery Polymer Coating for the Corrosion Protection of Metallic Surfaces. ACS Appl. Mater. Interfaces. 2015, 7, 175–183. DOI: 10.1021/am505621x.
  • Huang, Y.; Deng, L.; Ju, P.; Huang, L.; Qian, H.; Zhang, D.; Li, X.; Terryn, H. A.; Mol, J. M. C. Applications of Polymer, Composite, and Coating Materials Triple-Action Self-Healing Protective Coatings Based on Shape Memory Polymer (SMP) Containing Dual-Function Microspheres Triple-Action Self-Healing Protective Coatings Based on Shape Memory Pol. ACS Appl. Mater. Interfaces. 2018, 10(27), 23369–23379. DOI: 10.1021/acsami.8b06985.
  • Rajitha, K.; Mohana, K. N. Application of Modified Graphene Oxide – Polycaprolactone Nanocomposite Coating for Corrosion Control of Mild Steel in Saline Medium. Mater. Chem. Phys. 2020, 241, 122050. DOI: 10.1016/j.matchemphys.2019.122050.
  • Ai, X.; Xie, Q.; Ma, C.; Zhang, G. Fouling Release Coating Consisting of Hyperbranched Poly(ε-Caprolactone)/Siloxane Elastomer. ACS Appl. Polym. Mater. 2020, 2(4), 1429–1437. DOI: 10.1021/acsapm.9b01056.
  • Ding, Z.; Li, J.; Xin, W.; Zhang, G.; Luo, Y. Progress in Organic Coatings Low Gloss Waterborne Polyurethane Coatings with Anti-Dripping and Flame Retardancy via Montmorillonite Nanosheets. Prog. Org. Coatings. 2019, 136, 105273. DOI: 10.1016/j.porgcoat.2019.105273.
  • Arya, R. K.; Kaur, J.; Chandra, A.; Ahuja, S.; Rawat, M.; Sharma, J. Designing of Biodegradable Polycaprolactone: Binary and Ternary Coatings to Minimize the Defects and Cost of Solvent(S). J. Appl. Polym. Sci. 2021, 138(35), 1–15. DOI: 10.1002/app.50888.
  • Akat, H.; Erdem Yayayürük, A.; Yayayürük, O.; Akat, H. Thiol – Ended Polycaprolactone : Synthesis, Preparation and Use in Pb (II) and Cd (II) Removal from Water Samples. Mater. Today Commun. 2021, 29, 102908. DOI: 10.1016/j.mtcomm.2021.102908.
  • Reshmi, C. R.; Sundaran, S. P.; Juraij, A.; Athiyanathil, S. RSC Advances Fabrication of Superhydrophobic Polycaprolactone/Beeswax Electrospun Separation †. RSC Adv. 2016, 7, 2092–2102. DOI: 10.1039/C6RA26123J.
  • He, N.; Li, L.; Chen, J.; Zhang, J.; Liang, C. Extraordinary Superhydrophobic Polycaprolactone-Based Composite Membrane with an Alternated Micro-Nano Hierarchical Structure as an Eco-Friendly Oil/Water Separator. ACS Appl. Mater. Interfaces. 2021, 13(20), 24117–24129. DOI: 10.1021/acsami.1c03019.
  • Zhang, X.; Zhao, J.; Ma, L.; Shi, X.; Li, L. Biomimetic Preparation of a Polycaprolactone Membrane with a Hierarchical Structure as a Highly E Ffi Cient Oil – Water Separator. J. Mater. Chem. A. 2019, 7, 24532–24542. DOI: 10.1039/c9ta08660a.
  • Eksiler, K.; Andou, Y.; Nakayama, N.; Yoshinaga, K.; Shirai, Y. Design of Biodegradable PCL/PI Films as a Joining Tape for Grafting Plant. Environ. Technol. (United Kingdom). 2017, 38(18), 2362–2372. DOI: 10.1080/09593330.2016.1261186.
  • Chen, F.; Xu, L.; Tian, Y.; Caratenuto, A.; Liu, X.; Zheng, Y. Electrospun Polycaprolactone Nano Fi Ber Composites with Embedded Carbon Nanotubes/Nanoparticles for Photothermal Absorption. ACS Appl. Nano Mater. 2021, 4(5), 5230–5239. DOI: 10.1021/acsanm.1c00623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.