571
Views
0
CrossRef citations to date
0
Altmetric
Review

Supramolecular Gel, Its classification, preparation, properties, and applications: A review

, &
Pages 306-326 | Received 05 May 2022, Accepted 12 Aug 2022, Published online: 28 Aug 2022

References

  • Jones, C.; Steed, J. Gels with Sense: Supramolecular Materials that Respond to Heat, Light and Sound. Chem. Soc. Rev. 2016, 45(23), 6546–6596. DOI: 10.1039/c6cs00435k.
  • Ailincai, D.; Tartau, L.; Marin, L. Citryl-imine-PEG-ylated Chitosan Hydrogels  Promising Materials for Drug Delivery Applications. Int. J. Biol Macromol. 2020, 162, 1323–1337. DOI: 10.1016/j.ijbiomac.2020.06.218.
  • Singh, B.; Singh, B. Graft Copolymerization of Polyvinylpyrollidone onto Azadirachta Indica Gum Polysaccharide in the Presence of Crosslinker to Develop Hydrogels for Drug Delivery Applications. Int. J. Biol. Macromol. 2020, 159, 264–275. DOI: 10.1016/j.ijbiomac.2020.05.091.
  • Jafari, Z.; Rad, A.; Baharfar, R.; Asghari, S.; Esfahani, M. Synthesis and Application of chitosan/tripolyphosphate/graphene Oxide Hydrogel as a New Drug Delivery System for Sumatriptan Succinate. J. Mol Liq. 2020, 315, 113835. DOI: 10.1016/j.molliq.2020.113835.
  • Fu, G.; Zhang, S.; Chen, G.; Hao, X.; Bian, J.; Peng, F. Xylan-based Hydrogels for Potential Skin Care Application. Int. J. Biol. Macromol. 2020, 158, 244–250. DOI: 10.1016/j.ijbiomac.2020.04.235.
  • Cho, C.; Kobayashi, T. Advanced Cellulose Cosmetic Facial Masks Prepared from Myanmar Thanaka Heartwood. Curr Opin Green Sustain. 2020, 27, 100413. DOI: 10.1016/j.cogsc.2020.100413.
  • Wan, H.; Lin, C.; Kaper, H.; Sharma, P. A Polyethylene Glycol Functionalized Hyaluronic Acid Coating for Cardiovascular Catheter Lubrication. Mater. Des. 2020, 196, 109080. DOI: 10.1016/j.matdes.2020.109080.
  • Si, R.; Gao, C.; Guo, R.; Lin, C.; Li, J.; Guo, W. Human Mesenchymal Stem Cells encapsulated-coacervated Photoluminescent Nanodots Layered Bioactive chitosan/collagen Hydrogel Matrices to Indorse Cardiac Healing after Acute Myocardial Infarction. J. Photochem. Photobiol. Biol B. 2020, 206, 111789. DOI: 10.1016/j.jphotobiol.2020.111789.
  • Zhang, C.; Hsieh, M.; Wu, S.; Li, S.; Wu, J.; Liu, S.; Wei, H.; Weisel, R.; Sung, H.; Li, H. A self-doping Conductive Polymer Hydrogel that Can Restore Electrical Impulse Propagation at Myocardial Infarct to Prevent Cardiac Arrhythmia and Preserve Ventricular Function. Biomaterials. 2020, 231, 119672. DOI: 10.1016/j.biomaterials.2019.119672.
  • Matsumura, Y.; Zhu, Y.; Jiang, H.; D’Amore, A.; Luketich, S.; Harwat, V.; Yoshizumi, T.; Sato, T.; Yang, B.; Uchibori, T., et al. Intramyocardial Injection of a Fully Synthetic Hydrogel Attenuates Left Ventricular Remodeling Post Myocardial Infarction. Biomaterials. 2019, 217, 119289. DOI: 10.1016/j.biomaterials.2019.119289.
  • Wei, Q.; Xu, M.; Liao, C.; Wu, Q.; Liu, M.; Zhang, Y.; Wu, C.; Cheng, L.; Wang, Q. Printable Hybrid Hydrogel by Dual Enzymatic Polymerization with Superactivity. Chem. Sci. 2016, 7(4), 2748–2752. DOI: 10.1039/C5SC02234G.
  • Ma, C.; Wang, Y.; Jiang, Z.; Cao, Z.; Yu, H.; Huang, G.; Wu, Q.; Ling, F.; Zhuang, F.; Wang, H., et al. Wide-range Linear Viscoelastic Hydrogels with High Mechanical Properties and Their Applications in Quantifiable stress-strain Sensors. Chem. Eng. Sci. 2020, 399, 125697. DOI: 10.1016/j.cej.2020.125697.
  • Tsai, M.; Cheng, H.; Ho, H.; Lin, P.; Liou, D.; Fang, T.; Li, C.; Kwan, K.; Chen, Y.; Huang, C., et al. Hydrogel-based Zinc Ion Sensor on Optical Fiber with High Resolution and Application to Neural Cells. Biosens. Bioelectron. 2020, 162, 112230. DOI: 10.1016/j.bios.2020.112230.
  • Ding, J.; Qiao, Z.; Zhang, Y.; Wei, D.; Chen, S.; Tang, J.; Chen, L.; Wei, D.; Sun, J., and Fan, H. NIR-responsive multi-healing HMPAM/dextran/AgNWs Hydrogel Sensor with Recoverable Mechanics and Conductivity for human-machine Interaction. Carbohydr. Polym. 2020, 247, 116686. https://doi.org/10.1016/j.carbpol.2020.116686.
  • Nuthanakanti, A.; Srivatsan, S. G. Hierarchical self-assembly of Switchable Nucleolipid Supramolecular Gels Based on environmentally-sensitive Fluorescent Nucleoside Analogs. Nanoscale. 2016, 8(6), 3607–3619. DOI: 10.1039/C5NR07490H.
  • Kotova, O.; Daly, R.; Santos, C.; Boese, M.; Kruger, P.; Boland, J.; Gunnlaugsson, T. Europium-Directed Self-Assembly of a Luminescent Supramolecular Gel from a Tripodal Terpyridine-Based Ligand. Angew. Chem. Int. Ed. 2012, 51(29), 7208–7212. DOI: 10.1002/anie.201201506.
  • Xu, X.; Qu, L.; Song, J.; Wu, D.; Zhou, X.; Xiang, H. A Simple and Visual Approach for Enantioselective Recognition through Supramolecular Gels with Specific Selectivity. Chem. Commun. 2019, 55(66), 9873–9876. DOI: 10.1039/C9CC04895B.
  • Vacher, R.; Woignier, T.; Pelous, J.; Courtens, E. Structure and self-similarity of Silica Aerogels. Phys. Rev. B. 1988, 37(11), 6500–6503. DOI: 10.1103/PhysRevB.37.6500.
  • Bourret, A. Low-density Silica Aerogels Observed by high-resolution Electron Microscopy. Europhys. Lett. 1988, 6(8), 731–737. DOI: 10.1209/0295-5075/6/8/011.
  • Ruben, G.; Hrubesh, L.; Tillotson, T. High Resolution Transmission Electron Microscopy Nanostructure of condensed-silica Aerogels. J. Non-Cryst. Solids. 1995, 186, 209–218. DOI: 10.1016/0022-3093(95)00083-6.
  • Flory, P. Principles of Polymer Chemistry. Cornell Univ Press Ithaca; 1953
  • Tanaka, T. Gels. Sci. Am. 2017, 244, 124–138. DOI: 10.1038/scientificamerican0181-124.
  • Brinker, C., and Scherer, G. Sol-Gel Science: The Physics and Chemistry of sol-gel Process. Academic Press; 2013.
  • Chemseddine, A.; Babonneau, F.; Livage, J. Anisotropic WO3•nH2O Layers Deposited from Gels. J. Non-Cryst. Solids. 1987, 91(2), 271–278. DOI: 10.1016/S0022-3093(87)80311-3.
  • Scherer, G. Structure and Properties of Gels. Cem. Concr. Res. 1999, 29(8), 1149–1157. DOI: 10.1016/S0008-8846(99)00003-4.
  • Zeng, X.; Chen, H.; Chen, L.; Zheng, B. Insights into the Relationship between Structure and Rheological Properties of Starch Gels in hot-extrusion 3D Printing. Food Chem. 2020, 342, 128362. DOI: 10.1016/j.foodchem.2020.128362.
  • Dumitriu, R.; Mitchell, G.; Vasile, C. Multi-responsive Hydrogels Based on N-isopropylacrylamide and Sodium Alginate. Polym. Int. 2011, 60(2), 222–232. DOI: 10.1002/pi.2929.
  • Kulawardana, E.; Kuruwita‐Mudiyanselage, T.; Neckers, D. Dual Responsive Poly (N‐isopropylacrylamide) Hydrogels Having Spironaphthoxazines as Pendant Groups. J. Polym. Sci. Part A Polym. Chem. 2009, 47(13), 3318–3325. DOI: 10.1002/pola.23397.
  • Brassinne, J.; Fustin, C., and Gohy, J. Thermo-responsive metallo-supramolecular Gels Based on Terpyridine end-functionalized Amphiphilic Diblock Copolymer. Mater Res Soc. 2013, 210, 1499. https://doi.org/10.1557/opl.2013.496.
  • Lerouge, S.; Fardin, M. A.; Argentina, M.; Grégoire, G.; Cardoso, O. Interface Dynamics in shear-banding Flow of Giant Micelles. Soft Matter. 2008, 4(9), 1808–1819. DOI: 10.1039/b804915g.
  • Terech, P.; Pasquier, D.; Bordas, V.; Rossat, C. Rheological Properties and Structural Correlations in Molecular Organogels. Langmuir. 2000, 16(10), 4485–4494. DOI: 10.1021/la991545d.
  • Dastidar, P. Supramolecular Gelling Agents: Can They Be Designed? Chem. Soc. Rev. 2008, 37(12), 2699–2715. DOI: 10.1039/b807346e.
  • Fages, F. Metal Coordination To Assist Molecular Gelation. Angew. Chem. Int. Ed. 2006, 45(11), 1680–1682. DOI: 10.1002/anie.200503704.
  • Zhang, S.; Yang, S.; Lan, J.; Yang, S.; You, J. Helical Nonracemic Tubular Coordination Polymer Gelators from Simple Achiral Molecules. Chem. Commun. 2008, 46, 6170–6172. DOI: 10.1039/b813375a.
  • Hui, J.; Yu, Z.; MacLachlan, M. Supramolecular Assembly of Zinc Salphen Complexes: Access to Metal‐Containing Gels and Nanofibers. Angew. Chem. Int. Ed. 2007, 46(42), 7980–7983. DOI: 10.1002/anie.200702680.
  • Beck, J.; Ineman, J.; Rowan, S. Metal/Ligand-Induced Formation of Metallo-Supramolecular Polymers. Macromolecules. 2005, 38(12), 5060–5068. DOI: 10.1021/ma050369e.
  • Zhao, Y.; Beck, J.; Rowan, S.; Jamieson, A. Rheological Behavior of shear-responsive metallo-supramolecular Gels. Macromolecule. 2004, 37(10), 3529–3531. DOI: 10.1021/ma0497005.
  • Rowan, S.; Beck, J. Metal–ligand Induced Supramolecular Polymerization: A Route to Responsive Materials. Faraday Discuss. 2005, 128, 43–53. DOI: 10.1039/B403135K.
  • Weng, W.; Beck, J.; Jamieson, A.; Rowan, S. Understanding the Mechanism of Gelation and Stimuli-Responsive Nature of a Class of Metallo-Supramolecular Gels. J. Am. Chem. Soc. 2006, 128(35), 11663–11672. DOI: 10.1021/ja063408q.
  • Weng, W.; Jamieson, A.; Rowan, S. Structural Origin of the Thixotropic Behavior of a Class of Metallosupramolecular Gels. Tetrahedron. 2007, 63, 7419–7431. DOI: 10.1016/j.tet.2007.03.119.
  • Peng, F.; Li, G.; Liu, X.; Wu, S.; Tong, Z. Redox-Responsive Gel−Sol/Sol−Gel Transition in Poly(acrylic Acid) Aqueous Solution Containing Fe(III) Ions Switched by Light. Journal of the American Chemical Society. 2008, 130(48), 16166–16167. DOI: 10.1021/ja807087z.
  • Kawano, S.; Fujita, N.; Shinkai, S. A Coordination Gelator that Shows A Reversible Chromatic Change and Sol−Gel Phase-Transition Behavior upon Oxidative/Reductive Stimuli. J. Am. Chem. Soc. 2004, 126(28), 8592–8593.
  • Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang, Y. An Organometallic Super-Gelator with Multiple-Stimulus Responsive Properties. Adv. Mater. 2008, 20(13), 2508–2511. DOI: 10.1002/adma.200703195.
  • Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M. Control of Viscoelasticity Using Redox Reaction. J. Am. Chem. Soc. 2004, 126(39), 12282–12283. DOI: 10.1021/ja0467162.
  • Paulusse, J.; Sijbesma, R. Molecule-Based Rheology Switching. Angew. Chem. Int. Ed. 2006, 45(15), 2334–2337. DOI: 10.1002/anie.200503191.
  • Paulusse, J.; Beek, D.; Sibesma, R. Reversible Switching of the Sol− Gel Transition with Ultrasound in Rhodium (I) and Iridium (I) Coordination Networks. Chem. Soc. 2007, 129(8), 2392–2397. DOI: 10.1021/ja067523c.
  • Camerel, F.; Ziessel, R.; Donniob, B.; Guillonb, D. Engineering of an iron–terpyridine Complex with Supramolecular Gels and Mesomorphic Properties. New J. Chem. 2005, 30(2), 135–139. DOI: 10.1039/B515186D.
  • Gasnier, A.; Bucher, C.; Moutet, J.; Royal, G.; Aman, E.; Terech, P. Redox-Responsive Metallo-Supramolecular Polymers and Gels Containing bis-Terpyridine Appended Cyclam Ligand. Macromol. Symp. 2011, 304(1), 87–92. DOI: 10.1002/masy.201150612.
  • Saha, E.; Kannimuthu, K.; Kundu, S.; Mitra, J. Electrocatalytic Oxygen Evolution in Acidic and Alkaline Media by a Multistimuli- Responsive Cobalt(II) Organogel. ACS Sustain. Chem. Eng. 2019, 7(19), 16094–16102. DOI: 10.1021/acssuschemeng.9b02858.
  • Bo, S.; Liu, X.; Zhen, Z. Preparation and Luminescence Properties of Hybrid Materials Containing Lanthanide Complexes Covalently Bonded to a terpyridine-functionalized Silica Matrix. J. Lumin. 2008, 128(10), 1725–1730. DOI: 10.1016/j.jlumin.2008.03.020.
  • Hu, C.; Lu, W.; Sun, C.; Zhao, Y.; Zhang, Y.; Fang, Y. Gelation Behavior and Mechanism of Alginate with Calcium: Dependence on Monovalent Counterions. Carbohydr. Polym. 2022, 294, 119788. DOI: 10.1016/j.carbpol.2022.119788.
  • Ju, Q.; Wu, C.; Yuan, Y.; Hu, Y.; Zhou, S.; Luan, G. Insights into the Mechanism on Glucono-delta-lactone Induced Gelation of Soybean Protein at Subunit Level. Food Hydrocoll. 2022, 125, 107402. DOI: 10.1016/j.foodhyd.2021.107402.
  • Zhang, T.; Yuan, Y.; Chai, J.; Wu, X.; Saini, R.; Liu, J.; Shang, X. How Does Dextran Sulfate Promote the Egg White Protein to Form Transparent Hydrogel?the Gelation Mechanism and Molecular Force Changes. Food Hydrocoll. 2022, 133, 107901. DOI: 10.1016/j.foodhyd.2022.107901.
  • Hiromitsu, M. Anion-Responsive Supramolecular Gels. National Library of Medicine. 2008, 14(36), 11274–11282.
  • Gareth, L.; Jonathan, S. Anion-tuning of Supramolecular Gel Properties. Nat. Chem. 2009, 1(6), 437–442. DOI: 10.1038/nchem.283.
  • Banerjee, S.; Das, R.; Maitra, U. Supramolecular Gels ‘In Action.’ J. Mater. Chem. 2009, 19(37), 6649–6687. DOI: 10.1039/b819218a.
  • Steed, J. Anion-tuned Supramolecular Gels: A Natural Evolution from Urea Supramolecular Chemistry. Chem. Soc. Rev. 2010, 39(10), 3686–3699. DOI: 10.1039/b926219a.
  • Estroff, L.; Hamilton, A. Water Gelation by Small Organic Molecules. Chem. Rev. 2004, 104(3), 1201–1218. DOI: 10.1021/cr0302049.
  • Zhao, Z.; Sun, J.; Liu, F.; Bai, Y.; Wang, R. A Laboratory Study of self-healing Hydrophobic Association Gels Used as Lost Circulation Material. Colloids Surf. A. 2022, 646, 128964. DOI: 10.1016/j.colsurfa.2022.128964.
  • Chen, S.; Fan, Y.; Song, J.; Xue, B. The Remarkable Role of Hydrogen Bond, Halogen, and Solvent Effect on self-healing Supramolecular Gel. Mater. Today Chem. 2022, 23, 100719. DOI: 10.1016/j.mtchem.2021.100719.
  • Maurya, C.; Sarkar, C. Characterization of Highly Stable water-based Magnetorheological Gel Using OPTIGEL-WX as an Additive: The Study of magneto-induced Rheological and Viscoelastic Properties. J. Ind. Eng. Chem. 2022, 110, 137–149. DOI: 10.1016/j.jiec.2022.02.043.
  • Bercea, M.; Constantin, M.; Plugariu, I.; Daraba, M.; Ichim, D. Thermosensitive Gels of Pullulan and Poloxamer 407 as Potential Injectable Biomaterials. J. Mol. Liq. 2022, 362, 119717. DOI: 10.1016/j.molliq.2022.119717.
  • Fang, Z.; Qiao, K.; Wang, Y.; Zheng, Y.; He, W.; Xie, Y.; Yang, H. Injectable and Biodegradable double-network Nanocomposite Hydrogel with Regulable sol-gel Transition Process and Mechanical Properties. Polym. Test. 2022, 106, 107452. DOI: 10.1016/j.polymertesting.2021.107452.
  • Flory, P. Introductory Lecture Faraday Discussions of the Chemical Society. R. Soc. Chem. 1974, 57, 7–18.
  • Carretti, E.; Bonini, M.; Dei, L.; Berrie, B.; Angelova, L.; Baglioni, P.; Weiss, R. New Frontiers in Materials Science for Art Conservation: Responsive Gels and Beyond. Acc. Chem. 2010, 43, 751–760. DOI: 10.1021/ar900282h.
  • Yu, G.; Yan, X.; Han, C.; Huang, F. Characterization of Supramolecular Gels. Chem. Soc. Rev. 2013, 42(16), 6697–6722. DOI: 10.1039/c3cs60080g.
  • Hirst, A.; Escuder, B.; Miravet, J.; Smith, D. High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. National Library of Medicine. 2008, 47(42), 8002–8018.
  • Foster, J.; Piepenbrock, M.; Lloyd, G.; Clarke, N.; Howard, J.; Steed, J. Anion-switchable Supramolecular Gels for Controlling Pharmaceutical Crystal Growth. Nat. Chem. 2010, 2(12), 1037–1043. DOI: 10.1038/nchem.859.
  • Sangeetha, N.; Maitra, U. Supramolecular Gels: Functions and Uses. Chem. Soc. Rev. 2005, 34(10), 821–836. DOI: 10.1039/b417081b.
  • Yang, Z.; Liang, G.; Xu, B. Enzymatic Hydrogelation of Small Molecules. Acc. Chem. Res. 2008, 41(2), 315–326. DOI: 10.1021/ar7001914.
  • Yang, Y.; Liang, Y.; Chen, J.; Duan, X.; Guo, B. Mussel-inspired Adhesive Antioxidant Antibacterial Hemostatic Composite Hydrogel Wound Dressing via photo-polymerization for Infected Skin Wound Healing . Bioact. Mater. 2022, 8, 341–354. DOI: 10.1016/j.bioactmat.2021.06.014.
  • Peng, F.; Liu, J.; Zhang, Y.; Fan, J.; Gong, D.; He, L.; Zhang, W.; Qiu, F. Designer self-assembling Peptide Nanofibers Induce Biomineralization of Lidocaine for slow-release and Prolonged Analgesia. Acta Biometa. 2022, 146, 66–79. DOI: 10.1016/j.actbio.2022.05.002.
  • Huang, Y.; Bai, L.; Yang, Y.; Yin, Z.; Guo, B. Biodegradable gelatin/silver Nanoparticle Composite Cryogel with Excellent Antibacterial and Antibiofilm Activity and Hemostasis for Pseudomonas aeruginosa-infected Burn Wound Healing. J. Coll. Interface Sci. 2022, 608(Pt 3), 2278–2289. DOI: 10.1016/j.jcis.2021.10.131.
  • Venkatesh, M.; Kumar, T.; Venkatesh, D. Targeted Drug Delivery of Methotrexate in Situ Gels for the Treatment of Rheumatoid Arthritis. Saudi Pharm. J. 2020, 28(12), 1548–1557. DOI: 10.1016/j.jsps.2020.10.003.
  • Zhi, K.; Wang, J.; Zhao, H.; Yang, X. Self-assembled Small Molecule Natural Product Gel for Drug Delivery: A Breakthrough in New Application of Small Molecule Natural Products. Acta Pharm. Sin. B. 2019, 10(5), 913–927. DOI: 10.1016/j.apsb.2019.09.009.
  • Noreen, S.; Ghumman, S.; Batool, F.; Ijaz, B.; Basharat, M.; Noureen, S.; Kausar, T.; Iqbal, S. Terminalia Arjuna Gum/ Alginate in Situ Gel System with Prolonged Retention Time for Ophthalmic Drug Delivery. Int. J. Biol. Macromol. 2019, 152, 1056–1067. DOI: 10.1016/j.ijbiomac.2019.10.193.
  • Das, T.; Venkatesh, M.; Kumar, T., and Koland, M. SLN Based Alendronate in Situ Gel as an Implantable Drug Delivery System – A Full Factorial Design Approach. J. Drug Delivery Sci. Technol. 2019, 55, 101415. https://doi.org/10.1016/j.jddst.2019.101415.
  • Soliman, K.; Ullah, K.; Shah, A.; Jones, D.; Thakur, R. Poloxamer-based in Situ Gelling Thermoresponsive Systems for Ocular Drug Delivery Applications. Drug Discov. 2019, 24, 1575–1586.
  • Kim, C.; Jeong, D.; Kim, S.; Kim, Y.; Jung, S. Cyclodextrin Functionalized Agarose Gel with Low Gelling Temperature for Controlled Drug Delivery Systems. Carbohydr. Polym. 2019, 222, 115011. DOI: 10.1016/j.carbpol.2019.115011.
  • Prasannan, A.; Tsai, H.; Hsiue, G. Formulation and Evaluation of epinephrine-loaded Poly (Acrylic Acid- Co - N -isopropylacrylamide) Gel for Sustained Ophthalmic Drug Delivery. React. Funct. Polym. 2018, 124, 40–47. DOI: 10.1016/j.reactfunctpolym.2018.01.001.
  • Guo, M.; Yang, L.; Jiang, Z.; Peng, Z.; Li, Y. Al-based metal-organic Gels for Selective Fluorescence Recognition of Hydroxyl Nitro Aromatic Compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 187, 43–48. DOI: 10.1016/j.saa.2017.05.057.
  • Yuan, D.; Zhang, D.; Jiang, Z.; Peng, Z.; Huang, C.; Li, Y. Tb-Containing Metal-Organic Gel with High Stability for Visual Sensing of Nitrite. Mater. Lett. 2017, 211, 157–160. DOI: 10.1016/j.matlet.2017.10.004.
  • Adliene, D.; Urbonavicius, B.; Laurikaitiene, J., and Puiso, J. New Application of Polymer Gels in Medical Radiation Dosimetry. Plasmonic sensors.Radiation Physics and Chemistry 2019, 168, 108609. https://doi.org/10.1016/j.radphyschem.2019.108609
  • Dai, J.; Zhao, H.; Lin, X.; Liu, X.; Fei, T., and Zhang, T. Design Strategy for Ultrafast-Response Humidity Sensors Based on Gel Polymer Electrolytes and Application for Detecting Respiration. Sens. Actuators B Chem. 2019, 304, 127270. https://doi.org/10.1016/j.snb.2019.127270
  • Hammad, A.; Elnahrawy, A.; Youssef, A. Sol Gel Synthesis of Hybrid chitosan/calcium Aluminosilicate Nanocomposite Membranes and Its Application as Support for CO2 Sensor. Int. J. Biol. Macromol. 2019, 125, 503–509. DOI: 10.1016/j.ijbiomac.2018.12.077.
  • Nguyena, D.; Bachb, Q.; Kimc, B.; Leec, H.; Kanga, C.; Kima, I. Synthesis of Cr-doped Al2O3 by Pechini sol-gel Method and Its Application for Reversible Thermochromic Sensors. Mater. Chem. Phys. 2019, 223, 708–714. DOI: 10.1016/j.matchemphys.2018.11.070.
  • Mahapatra, T.; Singh, H.; Maity, A.; Dey, A.; Pramanik, S.; Suresha, E., and Das, A. White-Light-Emitting Lanthanide and Lanthanide-Iridium Doped Supramolecular Gels: Modular Luminescence and Stimuli-Responsive Behaviour. J. Mater. Chem. C. 2018, 6, 9756–9766. https://doi.org/10.1039/C8TC03487G
  • Mehwish, N.; Dou, X.; Zhao, Y., and Feng, C. Supramolecular Fluorescent Hydrogelators as Bio-Imaging Probes. Mater. Horiz. 2019. 6. 14–44. doi:10.1039/C8MH01130C
  • Rahman, J.; Shiblee, M.; Ahmed, K.; Khosla, A.; Kawakami, M.; Furukawa, H. Rheological and Mechanical Properties of Edible Gel Materials for 3D Food Printing Technology. Heliyon. 2020, 6, 5859. DOI: 10.1016/j.heliyon.2020.e05859.
  • Segovia, G.; Alcaraz, G.; Parisi, B.; Monzó, M. 3D Printing of Gels Based on xanthan/konjac Gums. Innovative Food Sci. Emerg. Technol. 2020, 64, 102343. DOI: 10.1016/j.ifset.2020.102343.
  • Caroline, M.; Raquel, S.; Oliveira, F.; Grazielle, O.; Daltoã, M.; Leite, M.; Lucia, M. Full Physicochemical Characterization of Malic Acid: Emphasis in the Potential as Food Ingredient and Application in Pectin Gels. Arab. J. Chem. 2020, 13(12), 9118–9129. DOI: 10.1016/j.arabjc.2020.10.036.
  • Amane, D.; Ananthanarayan, L. Application of two-dimensional Gel Electrophoresis Technique for Protein Profiling of Indian Black Gram Varieties and Detection of Adulteration in Black gram-based Food Products Using Comparative Proteomics. Food Chem. 2019, 3, 100051.
  • Séverin, I.; Lionti, K.; Dahbi, L.; Loriot, C.; Toury, B.; Chagnon, M. In Vitro Toxicity Assessment of Extracts Derived. National Lib. Medicine. 2016, 93, 51–57.
  • Liu, J.; Xu, B. A Comparative Study on Texture, Gelatinisation, Retrogradation and Potential Food Application of Binary Gels Made from Selected Starches and Edible Gums. Food Chem. 2019, 296, 100–108. DOI: 10.1016/j.foodchem.2019.05.193.
  • Gamboa, D.; Gutierrez, C.; Andez, E.; Guevara, S.; Mora, M.; Pampillo, J.; Lopez, M.; Rojas, E.; E, C. Expanding the Application Scope of on-farm Biopurification Systems: Effect and Removal of Oxytetracycline in a Biomixture. J. Hazard. Mater. 2018, 342, 553–560. DOI: 10.1016/j.jhazmat.2017.08.059.
  • Kocabas, D.; Guder, S.; Ozben, N. Purification Strategies and Properties of a low-molecular Weight Xylanase Its Application in Agricultural Waste Biomass Hydrolysis. J. Mol. Catal. 2015, 115, 66–75. DOI: 10.1016/j.molcatb.2015.01.012.
  • Wang, Y.; Huang, G.; Zheng, J. Mechanochemistry Modified Waste Rubber Powder and Its Application in Hydrogel. J. Polym. Res. 2016, 23(12), 12. DOI: 10.1007/s10965-016-1159-2.
  • Jeong, D.; Cha, J.; Ryu, B. Study on the Synthesis of Fe2O3-, MgO-cored Glass by sol-gel Method and Their Application in Agricultural Chemistry. J Solgel Sci Technol. 2018, 87(3), 593–599. DOI: 10.1007/s10971-018-4757-0.
  • Zhang, Y.; Mason, S.; McNeill, A.; McLaughlin, M. Application of the Diffusive Gradients in Thin Films Technique for Available Potassium Measurement in Agricultural Soils: Effects of Competing Cations on Potassium Uptake by the Resin Gel. Anal. Chim. Acta. 2014, 842, 27–34. DOI: 10.1016/j.aca.2014.07.023.
  • Mazilu, A.; Sarosi, C.; Moldovan, M.; Miuta, F.; Prodan, D.; Antoniac, A.; Prejmerean, C.; Silaghi, D.; Popescu, V.; Raici, D., et al. Preparation and Characterization of Natural Bleaching Gels Used in Cosmetic Dentistry. Mater. 2019, 12(13), 2106. DOI: 10.3390/ma12132106.
  • Burey, P.; Bhandari, B.; Howes, T.; Gidley, M. Hydrocolloid Gel Particles: Formation, Characterization, and Application. Crit. Rev. Food Sci. Nutr. 2008, 48(5), 361–377. DOI: 10.1080/10408390701347801.
  • Draelos, Z. The Ability of Onion Extract Gel to Improve the Cosmetic Appearance of Postsurgical Scars. J. Cosmet. Dermatol. 2008, 7(2), 101–104. DOI: 10.1111/j.1473-2165.2008.00371.x.
  • Zhang, L.; Lu, H.; Yu, J.; McSporran, E.; Khan, A.; Fan, Y.; Yang, Y.; Wang, Z.; Ni, Y. Preparation of high-strength Sustainable Lignocellulose Gels and Their Applications for anti-ultraviolet Weathering and Dye Removal. ACS Sustain. Chem. Eng. 2019, 7(3), 2998–3009. DOI: 10.1021/acssuschemeng.8b04413.
  • Peng, Y.; Glattauer, V.; Werkmeister, J.; Ramshaw, J. Evaluation for Collagen Products for Cosmetic Application. Int. J. Cosmet. Sci. 2004, 26(6), 313. DOI: 10.1111/j.1467-2494.2004.00245_2.x.
  • El-Sherbiny, I. M., and Yacoub, M. H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob Cardiol Sci. 2013, 2013(3) , 38. https://doi.org/10.5339/gcsp.2013.38
  • Chaudhary, S.; Chakraborty, E. Hydrogel Based Tissue Engineering and Its Future Applications in Personalized Disease Modeling and Regenerative Therapy. ACS Sustain. Chem. Eng. 2022, 11(1), 1–15.
  • Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. pH/glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and self-healing via dual-dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS nano. 2022, 16(2), 3194–3207. DOI: 10.1021/acsnano.1c11040.
  • Maleki, A.; He, J.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS nano. 2021, 15(12), 18895–18930. DOI: 10.1021/acsnano.1c08334.
  • Yu, R.; Yang, Y.; He, J.; Li, M., and Guo, B. Novel Supramolecular self-healing Silk fibroin-based Hydrogel via host–guest Interaction as Wound Dressing to Enhance Wound Healing. Chem. Eng. J. 2021, 417, 128278. https://doi.org/10.1016/j.cej.2020.128278
  • Shirehjini, L.; Sharifi, F.; ShivaIrani, S. Poly-caprolactone Nanofibrous Coated with sol-gel Alginate/ Mesenchymal Stem Cells for Cartilage Tissue Engineering. J. Drug Deliv. Sci. Techno. 2022, 74, 103488. DOI: 10.1016/j.jddst.2022.103488.
  • Budi, H.; Ansari, M.; Jasim, S.; Abdelbasset, W.; Bokov, D.; Mustafa, Y.; Najm, M.; Kazemnejadi, M. Preparation of Antibacterial Gel/PCL Nanofibers Reinforced by Dicalcium phosphate-modified Graphene Oxide with Control Release of Clindamycin for Possible Application in Bone Tissue Engineering. Inorg. Chem. Commun. 2022, 139, 109336. DOI: 10.1016/j.inoche.2022.109336.
  • Schiavi, A.; Cuccaro, R.; Troia, A. Functional Mechanical Attributes of Natural and Synthetic gel-based Scaffolds in Tissue Engineering: Strain-stiffening Effects on Apparent Elastic Modulus and Compressive Toughness. J. Mech. Behav. Biomed. Mater. 2022, 126, 105066. DOI: 10.1016/j.jmbbm.2021.105066.
  • Monavari, M.; Homaeigohar, S.; Fuentes-Chandía, M.; Nawaz, Q.; Monavari, M.; Venkatraman, A.; Boccaccin, A. 3D Printing of Alginate dialdehyde-gelatin (ADA-GEL) Hydrogels Incorporating Phytotherapeutic Icariin Loaded Mesoporous SiO2- CaO Nanoparticles for Bone Tissue Engineering. Mater. Sci. Eng. 2021, 131, 1124. DOI: 10.1016/j.msec.2021.112470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.