288
Views
2
CrossRef citations to date
0
Altmetric
Review

MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review

ORCID Icon
Pages 443-466 | Received 13 Jun 2022, Accepted 15 Aug 2022, Published online: 30 Aug 2022

References

  • Liu, L.; Zhu, M.; Ma, Z.; Xu, X.; Seraji, M.; Yu, B.; Song, P.; Wang, H.; Song, P. A Reactive copper-organophosphate-MXene Heterostructure Enabled Antibacterial, self-extinguishing and Mechanically Robust Polymer Nanocomposites. Chem. Eng. J. 2022, 430, 132712. DOI: 10.1016/j.cej.2021.132712.
  • Chi, Z.; Wang, C.; Dong, Y.; Zhou, Y.; Xu, H.; Islam, Z., and Fu, Y. MXene/epoxy-based Shape Memory Nanocomposites with Highly Stable thermal-mechanical Coupling Effect for Constructing an Effective Information Transmission Medium. Composites Science and Technology, 2022; pp 109505.
  • Zeng, Y.; Xiong, C.; Li, W.; Rao, S.; Du, G.; Fan, Z.; Chen, N. Significantly Improved Dielectric and Mechanical Performance of Ti3C2Tx MXene/silicone Rubber Nanocomposites. J. Alloys Compd. 2022, 905, 164172. DOI: 10.1016/j.jallcom.2022.164172.
  • Zeng, Y.; Rao, S.; Xiong, C.; Du, G.; Fan, Z.; Chen, N. Enhanced Dielectric and Mechanical Properties of CaCu3Ti4O12/Ti3C2Tx MXene/silicone Rubber Ternary Composites. Ceram. Int. 2022, 48(5), 6116–6123. DOI: 10.1016/j.ceramint.2021.11.150.
  • Habibpour, S.; Zarshenas, K.; Zhang, M.; Hamidinejad, M.; Ma, L.; Park, B.; Yu, A. Greatly Enhanced Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Polyaniline-Grafted Ti 3 C 2 T X MXene–PVDF Composites. ACS Appl. Mater. Interfaces. 2022, 14(18), 21521–21534. DOI: 10.1021/acsami.2c03121.
  • Liu, C.; Xu, K.; Shi, Y.; Wang, J.; Ma, S.; Feng, Y., and Song, P. Fire-safe, Mechanically Strong and Tough Thermoplastic polyurethane/MXene Nanocomposites with Exceptional Smoke Suppression. Materials Today Physics, 2022; pp 100607.
  • Lu, J.; Jia, P.; Liao, C.; Xu, Z.; Chu, F.; Zhou, M.; Song, L.; Wang, B.; Song, L. Leaf vein-inspired Engineering of MXene/ SrSn (OH) 6 Nanorods Towards super-tough Elastomer Nanocomposites with Outstanding Fire Safety. Compos. B Eng. 2022, 228, 109425. DOI: 10.1016/j.compositesb.2021.109425.
  • Ronchi, R.; Arantes, J.; Santos, S. Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives. Ceram. Int. 2019, 45, 18167–18188.
  • Zou, Y.; Fang, L.; Chen, T.; Sun, M.; Lu, C.; Xu, Z. Near-infrared Light and Solar Light Activated self-healing Epoxy Coating Having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers. 2018, 10, 474. DOI: 10.3390/polym10050474.
  • He, L.; Jiang, X.; Zhou, X.; Li, Z.; Chu, F.; Wang, X.; Hu, Y.; Song, L.; Hu, Y. Integration of Black Phosphorene and MXene to Improve Fire Safety and Mechanical Properties of Waterborne Polyurethane. Appl. Surf. Sci. 2022, 581, 152386. DOI: 10.1016/j.apsusc.2021.152386.
  • Jiang, Y.; Ru, X.; Che, W.; Jiang, Z.; Chen, H.; Hou, J.; Yu, Y. Flexible, Mechanically Robust and self-extinguishing MXene/wood Composite for Efficient Electromagnetic Interference Shielding. Compos. Part B: Eng. 2022, 229, 109460. DOI: 10.1016/j.compositesb.2021.109460.
  • Yin, Z.; Wang, B.; Tang, Q.; Lu, J.; Liao, C.; Jia, P.; Song, L.; Song, L. Inspired by Placoid Scale to Fabricate MXene Derivative Biomimetic Structure on the Improvement of Interfacial Compatibility, Mechanical Property, and Fire Safety of Epoxy Nanocomposites. Chem. Eng. J. 2022, 431, 133489. DOI: 10.1016/j.cej.2021.133489.
  • Chu, Q.; Lin, H.; Ma, M.; Chen, S.; Shi, Y.; He, H.; Wang, X. Cellulose nanofiber/graphene nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High in-plane Thermal Conductivity. Acs Appl. Nano Mater. 2022.
  • Zeng, H.; Wu, N.; Wei, J.; Yang, F.; Wu, T.; Li, B.; Zhao, Y. Porous and ultra-flexible Crosslinked MXene/polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Lett. 2022, 14, 1–16. DOI: 10.1007/s40820-022-00800-0.
  • Wang, J.; Ma, X.; Zhou, J.; Du, F.; Teng, C. Bioinspired, high-strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS nano. 2022, 16(4), 6700–6711. DOI: 10.1021/acsnano.2c01323.
  • Aakyiir, M.; Tanner, B.; Yap, L.; Rastin, H.; Tung, T.; Losic, D.; Ma, J. 3D Printing interface-modified PDMS/MXene Nanocomposites for Stretchable Conductors. J. Mater. Sci. Technol. 2022, 117, 174–182. DOI: 10.1016/j.jmst.2021.11.048.
  • Park, G. S.; Ho, H.; Lyu, B.; Jeon, S.; Ryu, Y.; Kim, W.; Cho, H.; Kim, S.; Song, Y. J.; Jo, S. B. Comb-type polymer-hybridized MXene Nanosheets Dispersible in Arbitrary Polar, Nonpolar, and Ionic Solvents. Science Advances. 2022, 8(13), eabl5299. DOI: 10.1126/sciadv.abl5299.
  • Natu, V.; Hart, L.; Sokol, M.; Chiang, H.; Taheri, L.; Barsoum, W. Edge Capping of 2D-MXene Sheets with Polyanionic Salts to Mitigate Oxidation in Aqueous Colloidal Suspensions. Angew. Chem. Int. Ed. 2019, 58, 12655–12660. DOI: 10.1002/anie.201906138.
  • Ling, Z.; Ren, E.; Zhao, Q.; Yang, J.; Giammarco, M.; Qiu, J.; Barsoum, W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA. 2014, 111, 16676–16681.
  • Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B. 2019, 171, 111–118. DOI: 10.1016/j.compositesb.2019.04.050.
  • Srivatsa, S.; Belthangadi, P.; Ekambaram, S.; Pai, M.; Sen, P.; Uhl, T.; Kumar, S.; Grabowski, K.; Nayak, M. Dynamic Response Study of Ti3C2-MXene Films to Shockwave and Impact Forces. RSC Adv. 2020, 10, 29147–29155. DOI: 10.1039/D0RA04879H.
  • Habib, T.; Zhao, X.; Shah, S. A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films. Npj 2D Mater. Appl. 2019, 3, 8.
  • Weng, M.; Li, J.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E., and Elimelech, M., et al. Layer-by-Layer Assembly of cross-functional semi-transparent MXene-carbon Nanotubes Composite Films for next-generation Electromagnetic Interference Shielding. Adv. Funct. Mater. 2018, 44, 28.
  • Lipton, J.; Weng, M.; Röhr, A.; Wang, H.; Taylor, A. D. Layer-by-Layer Assembly of two-dimensional Materials: Meticulous Control on the Nanoscale. Matter. 2020, 2, 1148–1165. DOI: 10.1016/j.matt.2020.03.012.
  • Runesson, K.; Larsson, F. Computational Homogenization and Multiscale Modeling; Chalmers University of Technology: Gothenburg; Sweden, 2011.
  • Pan, Y.; Iorga, L.; Pelegri, A. Numerical Generation of a Random Chopped Fiber Composite RVE and Its Elastic Properties. Compos. Sci. Technol. 2008, 68, 2792–2798. DOI: 10.1016/j.compscitech.2008.06.007.
  • Wang, C.; Lyu, D. Multiscale Cohesive Zone Modeling and Simulation of high-speed Impact, Penetration, and Fragmentation. J. Micromechanics Mol. Phys. 2018, 03, 1850003. DOI: 10.1142/S2424913018500030.
  • Kochmann, D. M.; Hopkins, J. B.; Valdevit, L. Multiscale Modeling and Optimization of the Mechanics of Hierarchical Metamaterials. MRS. Bull. 2019, 44, 773–781. DOI: 10.1557/mrs.2019.228.
  • Ren, X.; Seidel, G. D. Concurrent Multiscale Modeling of Coupling between Continuum Damage and Piezoresistivity in CNT-polymer Nanocomposites. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015; American Institute of Aeronautics and Astronautics: Reston, Virginia, 2015.
  • Borysiuk, N.; Mochalin, N.; Gogotsi, Y. Molecular Dynamic Study of the Mechanical Properties of two-dimensional Titanium Carbides Tin+1Cn(MXenes). Nanotechnology. 2015, 26, 1–10.
  • Borysiuk, N.; Mochalin, N.; Gogotsi, Y. Bending Rigidity of two-dimensional Titanium Carbide (Mxene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018, 143, 418–424.
  • Monastyreckis, G.; Mishnaevsky, L.; Hatter, B.; Aniskevich, A.; Gogotsi, Y.; Zeleniakiene, D. Micromechanical Modeling of MXene-polymer Composites. Carbon N. Y. 2020, 162, 402–409. DOI: 10.1016/j.carbon.2020.02.070.
  • Srivatsa, S.; Kumar, S.; Grabowski, K.; Jain, P.; Nayak, M.; Uhl, T.; Sen, P. Numerical and Experimental Investigations of Pure MXene (Ti3C2Tx) Film and MXene Nanocomposites for Structural Health Monitoring (Conference Presentation); SPIE: Bellingham, WA, USA, 2020; pp 99.
  • Srivatsa, S.; Pa´cko, P.; Mishnaevsky, L.,sJr.; Uhl, T.; Grabowski, K. Deformation of Bioinspired MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. Materials. 2020, 13, 5189.
  • Mishnaevsky, L.; Tsapatsis, M. Hierarchical Materials: Background and Perspectives. MRS. Bull. 2016, 41, 661–664. DOI: 10.1557/mrs.2016.189.
  • Luz, M.; Mano, F. Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre. Philos. Trans. Math. Phys. Eng. Sci. 2009, 367, 1587–1605.
  • Mishnaevsky, L.,sJr. Nanostructured Interfaces for Enhancing Mechanical Properties of Composites: Computational Micromechanical Studies. Compos. Part B Eng. 2015, 68, 75–84. DOI: 10.1016/j.compositesb.2014.08.029.
  • Smith, B. L.; Schäer, T. E.; Vlani, M.; Thompson, J. B.; Frederick, N. A.; Klndt, J.; Belcher, A.; Stucky, D.; Morse, E.; Hansma, K. Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites. Nature. 1999, 399, 761–763. DOI: 10.1038/21607.
  • Qi, J.; Bruet, F.; Palmer, S.; Ortiz, C.; Boyce, C. Micromechanics and Macromechanics of the Tensile Deformation of Nacre. In Mechanics of Biological Tissue; Holzapfel, G. A., Ogden, R. W., Eds.; Springer: Berlin/ Heidelberg,Germany, 2006; pp 189–203.
  • Lipton, J.; Weng, M.; Alhabeb, M.; Maleski, K.; Antonio, F.; Kong, J.; Gogotsi, Y.; Taylor, D. Mechanically Strong and Electrically Conductive Multilayer MXene Nanocomposites. Nanoscale. 2019, 11, 20295–20300. DOI: 10.1039/C9NR06015D.
  • Shi, X.; Wang, H.; Xie, X.; Xue, Q.; Zhang, J.; Kang, S.; Wang, C.; Liang, J.; Chen, Y. Bioinspired Ultrasensitive and Stretchable MXene-based Strain Sensor via nacre-mimetic Microscale “brick-and-Mortar” Architecture. ACS Nano. 2019, 13, 649–659. DOI: 10.1021/acsnano.8b07805.
  • Katti, K. S.; Katti, R.; Pradhan, M.; Bhosle, A. Platelet Interlocks are the Key to Toughness and Strength in Nacre. J. Mater. Res. 2005, 20, 1097–1100. DOI: 10.1557/JMR.2005.0171.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (Mxenes). Science. 2016, 353, 1137–1140. DOI: 10.1126/science.aag2421.
  • Plummer, G.; Anasori, B.; Gogotsi, Y.; Tucker, G. J. Nanoindentation of Monolayer Ti N+1 C N Tx MXenes via Atomistic Simulations: The Role of Composition and Defects on Strength. Comput. Mater. Sci. 2019, 157, 168–174. DOI: 10.1016/j.commatsci.2018.10.033.
  • Zhang, L.; Yu, J.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z. Janus Graphene from Asymmetric two-dimensional Chemistry. Nat. Commun. 2013, 4, 1443. DOI: 10.1038/ncomms2464.
  • Zha, X. H.; Yin, J.; Zhou, Y.; Huang, Q.; Luo, K.; Lang, J.; Francisco, S.; He, J.; Du, S. Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene. J. Phys. Chem. 2016, 120, 15082–15088.
  • Saharudin, S.; Che Nasir, A.; Hasbi, S. Tensile and Corrosion Resistance Studies of MXenes/Nanocomposites: A Review. Design in Maritime Eng. 2022, 189–198.
  • Zhou, K.; Gong, K.; Gao, F.; Yin, L. Facile Strategy to Synthesize MXene/ LDH Nanohybrids for Boosting the Flame Retardancy and Smoke Suppression Properties of Epoxy. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106912. DOI: 10.1016/j.compositesa.2022.106912.
  • Zhou, Y.; Chu, F.; Ding, L.; Yang, W.; Zhang, S.; Xu, Z.; Hu, W.; Hu, W. MOF-derived 3D petal-like CoNi-LDH Array Cooperates with MXene to Effectively Inhibit Fire and Toxic Smoke Hazards of FPUF. Chemosphere. 2022, 297, 134134. DOI: 10.1016/j.chemosphere.2022.134134.
  • Peng, Q.; De, S. Outstanding Mechanical Properties of Monolayer MoS2 and Its Application in Elastic Energy Storage. Phys. Chem. Chem. Phys. 2013, 15, 19427–19437. DOI: 10.1039/c3cp52879k.
  • Guo, Z.; Zhou, J.; Si, C.; Sun, Z. Flexible two-dimensional Ti N+1 Cn (N = 1, 2 and 3) and Their Functionalized MXenes Predicted by Density Functional Theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354. DOI: 10.1039/C5CP00775E.
  • Zhou, J.; Zha, X.; Chen, Y.; Ye, Q.; Eklund, P.; Du, S.; Huang, Q. A. Two-dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 2016, 55, 5008–5013. DOI: 10.1002/anie.201510432.
  • Bai, Y.; Zhou, K.; Srikanth, N.; Pang, L.; He, X.; Wang, R. Dependence of Elastic and Optical Properties on Surface Terminated Groups in two-dimensional MXene Monolayers: A first-principles Study. RSC Adv. 2016, 6, 35731–35739. DOI: 10.1039/C6RA03090D.
  • Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic Properties and Applications of MXenes: A Theoretical Review. J. Mater. Chem. C. 2017, 5, 2488–2503. DOI: 10.1039/C7TC00140A.
  • Çakir, D.; Peeters, F. M.; Sevik, C. Mechanical and Thermal Properties of H -MX2 (M = Cr, MO, W.; X = O, S, Se, Te) Monolayers: A Comparative Study. Appl. Phys. Lett. 2014, 41, 10891–10896.
  • Duerloo, N.; Ong, M. T.; Reed, E. J. Intrinsic Piezoelectricity in two-dimensional Materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876. DOI: 10.1021/jz3012436.
  • Liu, L.; Ying, G.; Sun, C.; Min, H.; Zhang, J.; Zhao, Y.; Wen, D.; Ji, Z.; Liu, X.; Zhang, C., et al. MXene (Ti3C2Tx) Functionalized Short Carbon Fibers as a Cross-Scale Mechanical Reinforcement for Epoxy Composites. Polymers. 2021, 13, 1825. DOI: 10.3390/polym13111825.
  • Feng, A.; Hou, T.; Jia, Z.; Zhang, Y.; Zhang, F.; Wu, G. Preparation and Characterization of Epoxy Resin Filled with Ti 3 C 2 T X MXene Nanosheets with Excellent Electric Conductivity. Nanomaterials. 2020, 10, 162. DOI: 10.3390/nano10010162.
  • Lee, S.; Kim, J. Incorporating MXene into Boron nitride/poly(vinyl Alcohol) Composite Films to Enhance Thermal and Mechanical Properties. Polymers. 2021, 13, 379. DOI: 10.3390/polym13030379.
  • Han, M.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano. 2020, 14, 5008–5016. DOI: 10.1021/acsnano.0c01312.
  • Borysiuk, V. N.; Mochalin, N.; Gogotsi, Y. Bending Rigidity of two-dimensional Titanium Carbide (Mxene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018, 143, 418–424.
  • Sobolciak, P.; Ali, A.; Hassan, K.; Helal, I.; Tanvir, A.; Popelka, A.; Al-Maadeed, A.; Krupa, I.; Mahmoud, K. A.; Mishra, Y. K. 2D Ti3C2 Tx (Mxene)-reinforced Polyvinyl Alcohol (PVA) Nanofibers with Enhanced Mechanical and Electrical Properties. PLoS ONE. 2017, 12, e0183705. DOI: 10.1371/journal.pone.0183705.
  • Wu, Y.; Zheng, W.; Xiao, Y.; Du, B.; Zhang, X.; Wen, M.; Lai, C.; Huang, Y.; Sheng, L. Multifunctional, Robust, and Porous PHBV —GO/MXene Composite Membranes with Good Hydrophilicity, Antibacterial Activity, and Platelet Adsorption Performance. Polymers. 2021, 13, 3748. DOI: 10.3390/polym13213748.
  • Cui, Z.; Gao, C.; Fan, Z.; Wang, J.; Cheng, Z.; Xie, Z.; Liu, Y., and Wang, Y. Lightweight MXene/cellulose Nanofiber Composite Film for Electromagnetic Interference Shielding. J. Electron. Mater. 50(4), 2101–2110. DOI: 10.1007/s11664-020-08718-2
  • Zeng, N.; Kummer, N.; Han, D.; Zenobi, R.; Nyström, G.; Nyström, G. Ultrafine Cellulose Nanofiber-Assisted Physical and Chemical Cross-Linking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods. 2021, 5, 2100889. DOI: 10.1002/smtd.202100889.
  • Wang, L.; Ma, Z.; Zhang, Y.; Qiu, H.; Ruan, K., and Gu, J. Mechanically Strong and Folding‐endurance Ti 3 C 2 T X MXene/PBO Nanofiber Films for Efficient Electromagnetic Interference Shielding and Thermal Management. Carbon Energy, 2022; pp 1‐11.
  • Miao, Z.; Chen, X.; Zhou, H.; Liu, P.; Fu, S.; Yang, J.; Gao, Y.; Ren, Y.; Rong, D. Interfacing MXene Flakes on a Magnetic Fiber Network as a Stretchable, Flexible, Electromagnetic Shielding Fabric. Nanomaterials. 2022, 12, 20. DOI: 10.3390/nano12010020.
  • Orangi, J.; Tetik, H.; Parandoush, P., et al. Conductive and Highly Compressible MXene Aerogels with Ordered Microstructures as high-capacity Electrodes for Li-ion Capacitors Materials Today Advances. 2021, 9, 100135.
  • Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based Composites: Synthesis, Properties and environment-related Applications. Nanoscale. Horiz. 2020, 5, 235–258. DOI: 10.1039/C9NH00571D.
  • Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti3C2Tx MXene Monolayers and Bilayers. Sci. Adv. 2018, 4, eaat0491.
  • Yorulmaz, U.; Özden, A.; Perkgöz, K.; Ay, F.; Sevik, C. Vibrational and Mechanical Properties of Single Layer MXene Structures: A first-principles Investigation. Nanotechnology. 2016, 27, 335702. DOI: 10.1088/0957-4484/27/33/335702.
  • Habib, T.; Zhao, X.; Shah, A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films. Npj 2D Mater. Appl. 2019, 3, 8. DOI: 10.1038/s41699-019-0089-3.
  • Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Molecular Dynamic Study of the Mechanical Properties of two-dimensional Titanium Carbides Tin+1Cn(MXenes). Nanotechnology. 2015, 26, 1–10. DOI: 10.1088/0957-4484/26/26/265705.
  • Fu, Z. H.; Zhang, Q. F.; Legut, D.; Si, C.; Germann, T. C.; Lookman, T.; Du, Y.; Francisco, J. S.; Zhang, R. F. Stabilization and Strengthening E Ects of Functional Groups in two-dimensional Titanium Carbide. Phys. Rev. B. 2016, 104103, 1–10.
  • Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W. First Principles Study of two-dimensional Early Transition Metal Carbides. MRS Commun. 2012, 2, 133–137. DOI: 10.1557/mrc.2012.25.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Jin, W.; Wu, S.; Wang, Z. Structural, Electronic and Mechanical Properties of two-dimensional Janus Transition Metal Carbides and Nitrides. Phys. E Low Dimens. Syst. Nanostruct. 2018, 103, 307–313. DOI: 10.1016/j.physe.2018.06.024.
  • Odegard, G. M.; Clancy, T. C.; Gates, T. S. Modeling of the Mechanical Properties of nanoparticle/polymer Composites. Polymer. 2005, 46, 553–562. DOI: 10.1016/j.polymer.2004.11.022.
  • Love, H. On the Small Free Vibrations and Deformations of Elastic Shells. Philos. Trans. 1888, 179, 491–549.
  • Maleski, K.; Ren, C. E.; Zhao, M. Q.; Anasori, B.; Gogotsi, Y. Size-dependent Physical and Electrochemical Properties of two-dimensional MXene Flakes. ACS Appl. Mater. Interfaces. 2018, 10, 24491–24498. DOI: 10.1021/acsami.8b04662.
  • Eshelby, J. D. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 1957, 241, 376–396.
  • Duan, L.; Wang, J.; Karihaloo, B. L. Theory of Elasticity at the Nanoscale. Adv. Appl. Mech. 2009, 42, 1–68.
  • Weinberger, C.; Cai, W.; Barnett, D. Stanford University ME340B Lecture Notes—Elasticity of Microscopic Structures. Available online. http://micro.stanford.edu/~{}caiwei/me340b/content/me340b-notes_v01.pdf (accessed on 16 May 2022).
  • Kouznetsova, V.; Brekelmans, M.; Baaijens, T. An Approach to micro-macro Modeling of Heterogeneous Materials. Comput. Mech. 2001, 27, 37–48. DOI: 10.1007/s004660000212.
  • Krzysztof Grabowski. Design and Development of the Sensors for Structural Health Monitoring (SHM) Based on the Carbon Nanomaterials. AGH University of Science and Technology: Krakow, Poland, 2017.
  • Dai, G.; Mishnaevsky, L. Graphene Reinforced Nanocomposites: 3D Simulation of Damage and Fracture. Comput. Mater. Sci. 2014, 95, 684–692. DOI: 10.1016/j.commatsci.2014.08.011.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, W. Two-dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Ronchi, M.; Arantes, T.; Santos, S. F. Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives. Ceram. Int. 2019, 45, 18167–18188.
  • Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (Mxenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 1609. DOI: 10.1038/natrevmats.2016.98.
  • Ghidiu, M.; Lukatskaya, M.; Zhao, M.; Gogotsi, Y.; Barsoum, M. Conductive two-dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature. 2015, 516, 78–81. DOI: 10.1038/nature13970.
  • Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti3C2Tx MXene Monolayers and Bilayers. Sci. Adv. 2018, 4, 1–7. DOI: 10.1126/sciadv.aat0491.
  • Zeleniakiene, D.; Monastyreckis, G.; Aniskevich, A.; Griskevicius, P. Deformation and Failure of MXene Nanosheets. Materials. 2020, 13, 1253. DOI: 10.3390/ma13051253.
  • Ling, Z.; Ren, C.; Zhao, Q.; Yang, J.; Giammarco, M.; Qiu, J.; Barsoum, W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA. 2014, 111, 16676–16681. DOI: 10.1073/pnas.1414215111.
  • Kilikevicius, S.; Kvietkaite, S.; Mishnaevsky, L.; Omastová, M.; Aniskevich, A.; Zeleniakiene, D. Novel Hybrid Polymer Composites with Graphene and MXene Nanoreinforcements: Computational Analysis. Polymers. 2021, 13, 1013. DOI: 10.3390/polym13071013.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Cryogel Nanostructures and Biomedical Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022; pp 1–21.
  • Idumah, C. I. Emerging Advancements in MXene Polysaccharide Bionanoarchitectures and Biomedical Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022; pp 1–22.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and Mxene Nanocomposites. Polymer-Plastics Technology and Materials, 2022; pp 1–35.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Adekoya, G. J.; Odera, R. S. Recently Emerging Trends in MXene Hybrid Conductive Polymer Energy Storage Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(8), 861–887.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Cur. Res. Green Sust. Chem. 2021. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Ezika, A.; Okpechi, V. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interf. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29, 509–527.
  • Idumah, C. I. Novel Trends in self-healable Polymer Nanocomposites. J. Thermoplast Compos Mater. 2021, 34, 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym-Plast Techno Mater. 2021, 60, 756–783.
  • Idumah, C. I. Recent Advancements in self-healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29, 246–258.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Curr Res Green Sust. Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym.-Plast. Technol. Mater 2021, 60(14), 1519–1531.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in self-polishing anti-fouling Coatings for Marine Environment. Saf Ext. Env. 2021, 3, 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Syn. Met. 2021, 273, 116674.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP- nano-biocomposites. SN App. Sci. 2019, 1, 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C.; Hassan, A. Emerging Trends in eco-compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus fiber/PP Based nano-biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14, 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and non-halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58, 1054–1109.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler kenaf–reinforced Polymer Nanocomposites. J. of Therm. Compos. Mater. 2020, 33, 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interf. 2021, 22, 100879.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer nano-biocomposites. Polym.-Plast. Technol. Mater. 2021, 60:3, 233–252.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for anti-corrosion, anti-fouling and self-healing. Surf. Interf. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I. Novel Trends in Selfhealable Polymer Nanocomposites. J Thermoplast Compos Mater, 2021, 34, 834–858.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O., and Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostructured Polymer Composites for Biomedical Applications, Elsevier, Netherlands, 2019; pp 139–166.
  • Idumah, C. I. Advancements in Conducting Polymer Bionanocomposites, and Hydrogels for Biomedical Applications. Int J. Polym Mater. Polym. Biomater. 2020. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Mater. 2020. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Influence of NT in Polymeric Textiles, Applications, and Fight against COVID-19. J. Text. Inst. 2020. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust Sci. 2022, 1–32. doi:10.1007/s10876-022-02261-2.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polym-Plast. Technol. Mater. 2022, 1–32.
  • Okafor, C. E.; Kebidi, L. C.; Ihueze, C. C.; Rangappa, S. M.; Siengchin, S.; Okonkwo, U. C. Development of Dioscorea Alata Stem Fibers as eco-friendly Reinforcement for Composite Materials. J. King Saud University - Eng. Sci. 2022. DOI: 10.1016/j.jksues.2022.02.003.
  • Okafor, C. E.; Okonkwo, U. C.; Okokpujie, I. P. Trends in Reinforced Composite Design for Ionizing Radiation Shielding Applications: A Review. J. Mater. Sci. 2021, 56, 11631–11655. DOI: 10.1007/s10853-021-06037-3.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 096739112. DOI: 10.1177/09673911221082482.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoarchitectures and Applications. Cleaner Materials, 2022; pp 100103.
  • Idumah, C. I. Emerging Trends in Poly (lactic-co-glycolic) Acid Bionanoarchitectures and Applications. Cleaner Materials, 2022; pp 100102.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Eng. 2022. DOI: 10.1080/25740881.2022.2086810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.