138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gamma irradiation-induced pH-responsive poly(methyl methacrylate- acrylic acid-divinyl benzene) hybrid polymer particles for dye treatment

ORCID Icon, , & ORCID Icon
Pages 389-402 | Received 27 Jun 2022, Accepted 15 Aug 2022, Published online: 25 Aug 2022

References

  • Albertsson, A. C.; David, G.; Strandberg, C.; Bilba, D.; Paduraru, C. Synthesis of Core-Shell Structured Carboxylated Microparticles with a Straightforward Procedure and Their Evaluation as a Polymer Support. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 5889–5898. DOI: 10.1002/pola.21022.
  • Suzuki, T.; Osumia, A.; Minami, H. One-step Synthesis of “rattle-like” Polymer Particles via Suspension Polymerization. Chem. Commun. 2014, 50, 9921–9924. DOI: 10.1039/C4CC03740E.
  • Xiangming, K.; Zhihua, S.; Zichen, L. Synthesis of Novel Polymer nano-particles and Their Interaction with Cement. Constr. Build. Mater. 2014, 68, 434–443. DOI: 10.1016/j.conbuildmat.2014.06.086.
  • Ruiz, A. L.; Ramirez, A.; McEnnis, K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics. 2022, 14(2), 421–442. DOI: 10.3390/pharmaceutics14020421.
  • Paquet, C.; Paton, A.; Kumacheva, E. Materials with Structural Hierarchy and Their Optical Applications. Front. Nanosci. 2009, 1, 298–325.
  • Chaiyasat, P.; Noppalit, S.; Okubo, M.; Chaiyasat, A. Do Encapsulated Heat Storage Materials Really Retain Their Original Thermal Properties? Phys. Chem. Chem. Phys. 2015, 17(2), 1053–1059. DOI: 10.1039/C4CP03458A.
  • Chaiyasat, P.; Namwong, S.; Okubo, M.; Chaiyasat, A. Synthesis of micrometer-sized Poly(methyl Methacrylate) Particles by Microsuspension Iodine Transfer Polymerization (Ms ITP). RSC Adv. 2016, 6(97), 95062–95066. DOI: 10.1039/C6RA19288B.
  • Chaiyasat, P.; Noppalit, S.; Okubo, M.; Chaiyasat, A. Innovative Synthesis of High Performance Poly(methyl Methacrylate) Microcapsules with Encapsulated Heat Storage Material by Microsuspension Iodine Transfer Polymerization (Ms ITP). Solar Energy Mater. Solar Cells. 2016, 157, 996–1003. DOI: 10.1016/j.solmat.2016.07.028.
  • Chiu, T. P.; Don, T. M. Synthesis and Characterization of Poly(methyl Methacrylate) Nanoparticles by emulsifier-free Emulsion Polymerization with a redox-initiated System. J. Appl. Polym. Sci. 2008, 109(6), 3622–3630. DOI: 10.1002/app.28386.
  • Corrigan, N.; Xu, J.; Boyer, C. A Photoinitiation System for Conventional and Controlled Radical Polymerization at Visible and NIR Wavelengths. Macromolecules. 2016, 49, 3274–3285. DOI: 10.1021/acs.macromol.6b00542.
  • Clayton, L. M.; Sikder, A. K.; Kumar, A.; Cinke, M.; Meyyappan, M.; Gerasimov, T. G.; Harmon, J. P. Transparent Poly(methyl methacrylate)/single-walled Carbon Nanotube (OMMA/SWNT) Composite Films with Increased Dielectric Constant. Adv. Funct. Mater. 2005, 15, 101–106. DOI: 10.1002/adfm.200305106.
  • Bhavitha, K. B.; Nair, A. K.; Mariya, H.; Jose, J.; Mayeen, A.; Kala, M. S.; Saha, A.; Thomas, S.; Oluwafemi, O. S.; Kalarikkal, N. In Situ Dose Dependent Gamma Ray Irradiated Synthesis of PMMA-Ag Nanocomposite Films for Multifunctional Applications. New J. Chem. 2018, 42, 15750. DOI: 10.1039/C8NJ02684J.
  • Eisa, W. H.; Abdel-Moneam, Y. K.; Shaaban, Y.; Abdel-Fattah, A. A.; Abou, Z.; M, A. Gamma-irradiation Assisted Seeded Growth of Ag Nanoparticles within PVA Matrix. Mater. Chem. Phys. 2011, 128, 109–113. DOI: 10.1016/j.matchemphys.2011.02.076.
  • Wu, D. Z.; Ge, X. W.; Zhang, Z. C.; Wang, M. Z.; Zhang, S. L. Novel one-step Route for Synthesizing CdS/polystyrene Nanocomposite Hollow Spheres. Langmuir. 2004, 20, 5192–5195. DOI: 10.1021/la049405d.
  • Liu, Y. D.; Wu, G. Z.; Long, D. W.; Zhang, G. R. 60Co γ-Initiated Polymerization of Vinyl Monomers in Room Temperature Ionic liquid/THF Mixed Solutions. Polymer. 2005, 46, 8403–8409. DOI: 10.1016/j.polymer.2005.07.005.
  • Safrany, A.; Beiler, B.; Laszlo, K.; Svec, F. Control of Pore Formation in Macroporous Polymers Synthesized by single-step γ-radiation-initiated Polymerization and cross-linking. Polymer. 2005, 46, 2862–2871. DOI: 10.1016/j.polymer.2005.02.024.
  • Draganic, I. G.; Draganic, Z. D. The Radiation Chemistry of Water; Academic Press: New York and London, 1971.
  • Song, L.; Wang, M.; Cong, Y.; Liu, W.; Ge, X.; Zhang, Z. The Mechanism of 60Co g-ray Radiation Induced Interfacial Redox Reaction in Inverse Emulsion and Its Application in the Synthesis of Polymer Microcapsules. Polymer. 2007, 48, 150–157. DOI: 10.1016/j.polymer.2006.10.039.
  • Meerbergen, K.; Willems, K. A.; Dewil, R.; Van Impe, J.; Appels, L.; Lievens, B. Isolation and Screening of Bacterial Isolates from Wastewater Treatment Plants to Decolorize Azo Dyes. J. Biosci. Bioeng. 2018, 125(4), 448–456. DOI: 10.1016/j.jbiosc.2017.11.008.
  • Li, W.; Mu, B.; Yang, Y. Feasibility of industrial-scale Treatment of Dye Wastewater via bio-adsorption Technology. Bioresour. Technol. 2019, 277, 157–170. DOI: 10.1016/j.biortech.2019.01.002.
  • Marsh, H., and Rodríguez-Reinoso, F. CHAPTER 8 - Applicability of Activated Carbon; Activated Carbon, In: H. Marsh, F. Rodríguez-Reinoso (Eds.) Activated Carbon, Elsevier Science Ltd, Oxford, 2006. pp 383–453.
  • Vital, R. K.; Saibaba, K. V. N.; Shaik, K. B.; Gopinath, R. Dye Removal by Adsorption: A Review. J. Biorem. Biodegrad. 2016, 7, 371–374.
  • Ashraf, M. W.; Abulibdeh, N.; Salam, A. Adsorption Studies of Textile Dye (Chrysoidine) from Aqueous Solutions Using Activated Sawdust, Int. J. Chem. Eng., 2019, Article ID 9728156, 8.
  • Lade, H. S.; Waghmode, T. R.; Kadam, A. A.; Govindwar, S. P. Enhanced Biodegradation and Detoxification of Disperse Azo Dye Rubine GFL and Textile Industry Effluent by Defined fungal-bacterial Consortium. Int. Biodeterior. Biodegrad. 2012, 72, 94–107. DOI: 10.1016/j.ibiod.2012.06.001.
  • Ardejani, F. D.; Badii, K. H.; Limaee, N. Y.; Mahmoodi, N. M.; Arami, M.; Shafaei, S. Z.; Mirhabibi, A. R. Numerical Modelling and Laboratory Studies on the Removal of Direct Red 23 and Direct Red 80 Dyes from Textile Effluents Using Orange Peel, a low-cost Adsorbent. Dyes Pigm. 2007, 73(2), 178–185. DOI: 10.1016/j.dyepig.2005.11.011.
  • Gupta, V. Application of low-cost Adsorbents for Dye removal-a Review. J. Environ. Manage. 2009, 90(8), 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017.
  • Vinod, G. K.; Alok, M.; Rajeev, J.; Megha, M.; Shalini, S. Adsorption of Safranin-T from Wastewater Using Waste Materials- Activated Carbon and Activated Rice Husks. J. Colloid Interface Sci. 2006, 303, 80–86. DOI: 10.1016/j.jcis.2006.07.036.
  • Leechart, P.; Woranan, N. B.; Paitip, T. Application of ‘Waste’ wood-shaving Bottom Ash for Adsorption of Azo Reactive Dye. J. Environ. Manage. 2009, 90, 912–920. DOI: 10.1016/j.jenvman.2008.02.005.
  • Wang, S. B.; Boyjoo, Y.; Choueib, A., and Zhu, Z. H. Utilization of Fly Ash as Low Cost Adsorbents for Dye Removal. in: Chemeca 2004: 32nd Australasian Chemical Engineering Conference: Sustainable Processes, 1, 1, 2004, [5]-[10], Barton, A.C.T., 2004
  • Sadchaiyaphum, J.; Phapugrangkul, P.; Chaiyasat, P.; Chaiyasat, A. High Encapsulation Efficiency of Magnetite Nanoparticles in Hydrophobic Polymer Microcapsules Using Microsuspension Conventional Radical Polymerization. Orient. J. Chem. 2019, 35(2), 516–522. DOI: 10.13005/ojc/350202.
  • Jantang, S.; Chaiyasat, P. High Performance Poly (Methyl methacrylate-acrylic acid-divinylbenzene) Microcapsule Encapsulated Heat Storage Material for Thermoregulating Textiles. Fibers Polym. 2018, 19, 2039–2048. DOI: 10.1007/s12221-018-8402-x.
  • Srisawang, N.; Chaiyasat, A.; Ngernchuklin, P.; Chaiyasat, P. Novel Reusable pH-responsive Photocatalyst Polymeric Microcapsules for Dye Treatment. Int. J. Energy Res. 2021, 45, 7535–7548. DOI: 10.1002/er.6335.
  • Omsinsombon, J.; Chaiyasat, A.; Busabok, C.; Chaiyasat, P. A Novel Iron Aluminate Composite Polymer Particle for high-efficiency self-coating Solar Heat Reflection. Solar Energy Mater. Solar Cells. 2021, 230, 111248. DOI: 10.1016/j.solmat.2021.111248.
  • Devarajan, R.; Balakrishnan, T.; Santappa, M.; Viswanathan, B. Gamma radiation-induced Bulk Polymerization of Some Methyl Aryloxymethacrylates. J. Polym Sci. 1982, 20(7), 1863–1873.
  • Khalil, S. A.; Ghazy, O.; El-Naggar, A. A.; Mahdy, S. R.; Senna, M. Polymerization of Acrylic Acid on Chitosan by Gamma Radiation and Its Application for the Removal of Metal Ions from Aqueous Solutions. Egypt. J. Chem. 2022, 65(1), 279–286.
  • Sheikh, N.; Akhavan, A.; Kassaee, M. Z. Synthesis of Antibacterial Silver Nanoparticles by γ-irradiation. Physica E: Low-dimensional Systems and Nanostructures. 2009, 42, 132–135.
  • Abedini, A.; Daud, A. R.; Abdul Hamid, M. A.; Kamil, O. N. Radiolytic Formation of Fe3O4 Nanoparticles: Influence of Radiation Dose on Structure and Magnetic Properties. PLoS ONE. 2014, 9(3), e90055. DOI: 10.1371/journal.pone.0090055.
  • Fujisawa, S.; Kadoma, Y. Relationships between base-catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation. Int. J. Mol. Sci. 2012, 13, 5789–5800. DOI: 10.3390/ijms13055789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.