367
Views
0
CrossRef citations to date
0
Altmetric
Review

A review on the thermal conductivity properties of polymer/ nanodiamond nanocomposites

, &
Pages 486-509 | Received 12 May 2022, Accepted 18 Aug 2022, Published online: 04 Sep 2022

References

  • Pan, X.; Debije, M. G.; Schenning, A. P. H. J. High Thermal Conductivity in Anisotropic Aligned Polymeric Materials. ACS Applied Polymer Materials. 2021, 3(2), 578–587. DOI: 10.1021/acsapm.0c01340.
  • Ren, Y.; Zhang, Y.; Guo, H.; Lv, R.; Bai, S.-L. A Double Mixing Process to Greatly Enhance Thermal Conductivity of Graphene Filled Polyamide 6 Composites. Composites Part A: Applied Science and Manufacturing. 2019, 126, 105578. DOI: 10.1016/j.compositesa.2019.105578.
  • Zhang, Y.; Park, S.-J. Imidazolium-optimized Conductive Interfaces in Multilayer Graphene nanoplatelet/epoxy Composites for Thermal Management Applications and Electroactive Devices. Polymer. 2019, 168, 53–60. DOI: 10.1016/j.polymer.2019.01.086.
  • Rajavel, K.; Luo, S.; Wan, Y.; Yu, X.; Hu, Y.; Zhu, P.; Sun, R.; Wong, C. 2D Ti3C2Tx MXene/polyvinylidene Fluoride (PVDF) Nanocomposites for Attenuation of Electromagnetic Radiation with Excellent Heat Dissipation. Composites Part A: Applied Science and Manufacturing. 2020, 129, 105693. DOI: 10.1016/j.compositesa.2019.105693.
  • Wei, J.; Liao, M.; Ma, A.; Chen, Y.; Duan, Z.; Hou, X.; Li, M.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Polydimethylsiloxane Composites with Carbon Fiber. Compos. Commun. 2020, 17, 141–146. DOI: 10.1016/j.coco.2019.12.004.
  • Feng, C.-P.; Wei, F.; Sun, K.-Y.; Wang, Y.; Lan, H.-B.; Shang, H.-J.; Ding, F.-Z.; Bai, L.; Yang, J.; Yang, W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nano-Micro Letters. 2022, 14(1), 127. DOI: 10.1007/s40820-022-00868-8.
  • Sun, Z.; Li, J.; Yu, M.; Kathaperumal, M.; Wong, C.-P. A Review of the Thermal Conductivity of silver-epoxy Nanocomposites as Encapsulation Material for Packaging Applications. Chemical Engineering Journal. 2022, 446, 137319. DOI: 10.1016/j.cej.2022.137319.
  • Fan, S.; Gao, C.; Duan, C.; Zhang, S.; Zhang, P.; Yu, L.; Zhang, Z. Geometry Effect of Copper Nanoparticles and Nanowires on polyetheretherketone-matrix Nanocomposites: Thermal Conductivity, Dynamic Mechanical Properties and Wear Resistance. Composites Science and Technology. 2022, 219, 109224. DOI: 10.1016/j.compscitech.2021.109224.
  • Wang, X.; Zhou, J.; Yang, S. Tailoring Three-Dimensional Copper Framework in Polyamide 6 for High-Performance Thermal Management Applications. Chemical Engineering Journal. 2022, 447, 137508. DOI: 10.1016/j.cej.2022.137508.
  • Wei, B.; Chen, X.; Yang, S. Construction of a 3D Aluminum Flake Framework with a Sponge Template to Prepare Thermally Conductive Polymer Composites. Journal of Materials Chemistry A. 2021, 9(17), 10979–10991. DOI: 10.1039/D0TA12541E.
  • Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q., et al. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano. 2021, 15(4), 6489–6498. DOI: 10.1021/acsnano.0c09229.
  • Zhang, Y.; Fan, Y.; Kamran, U.; Park, S.-J. Improved Thermal Conductivity and Mechanical Property of Mercapto group-activated Boron nitride/elastomer Composites for Thermal Management. Composites Part A: Applied Science and Manufacturing. 2022, 156, 106869. DOI: 10.1016/j.compositesa.2022.106869.
  • Zhao, L.-H.; Wang, L.; Jin, Y.-F.; Ren, J.-W.; Wang, Z.; Jia, L.-C. Simultaneously Improved Thermal Conductivity and Mechanical Properties of Boron Nitride nanosheets/aramid Nanofiber Films by Constructing Multilayer Gradient Structure. Composites Part B: Engineering. 2022, 229, 109454. DOI: 10.1016/j.compositesb.2021.109454.
  • Wang, H.; Li, L.; Wei, X.; Hou, X.; Li, M.; Wu, X.; Li, Y.; Lin, C.-T.; Jiang, N.; Yu, J. Combining Alumina Particles with Three-Dimensional Alumina Foam for High Thermally Conductive Epoxy Composites. ACS Applied Polymer Materials. 2021, 3(1), 216–225. DOI: 10.1021/acsapm.0c01055.
  • Ouyang, Y.; Bai, L.; Tian, H.; Li, X.; Yuan, F. Recent Progress of Thermal Conductive Polymer Composites: Al2O3 Fillers, Properties and Applications. Composites Part A: Applied Science and Manufacturing. 2022, 152, 106685. DOI: 10.1016/j.compositesa.2021.106685.
  • He, X.; Ou, D.; Ma, Y.; Wu, S.; Chen, Y.; Luo, Y.; Wu, D. Enhancing the Thermal Conductivities of Aluminum Nitride- Polydimethylsiloxane Composites via Tailoring of Thermal Losses in Filler Networks. Polymer Composites. 2021, 42(3), 1338–1346. DOI: 10.1002/pc.25904.
  • Zhang, K.; Lu, Y.; Hao, N.; Nie, S. J. C. Enhanced Thermal Conductivity of Cellulose nanofibril/aluminum Nitride Hybrid Films by Surface Modification of Aluminum Nitride. Cellulose. 2019, 26(16), 8669–8683. DOI: 10.1007/s10570-019-02694-5.
  • He, J.; Wang, H.; Su, Z.; Guo, Y.; Qu, Q.; Qin, T.; Tian, X. Designing Poly(vinylidene fluoride)-Silicon Carbide Nanowire Composite Structures to Achieve High Thermal Conductivity. ACS Applied Polymer Materials. 2019, 1(11), 2807–2818. DOI: 10.1021/acsapm.9b00218.
  • Cheng, S.; Duan, X.; Liu, X.; Zhang, Z.; An, D.; Zhao, G.; Liu, Y. Achieving Significant Thermal Conductivity Improvement via Constructing Vertically Arranged and Covalently Bonded Silicon Carbide nanowires/natural Rubber Composites. Journal of Materials Chemistry C. 2021, 9(22), 7127–7141. DOI: 10.1039/D1TC00659B.
  • Han, L.; Li, K.; Fu, Y.; Yin, X.; Jiao, Y.; Song, Q. Multifunctional Electromagnetic Interference Shielding 3D Reduced Graphene oxide/vertical edge-rich graphene/epoxy Nanocomposites with Remarkable Thermal Management Performance. Composites Science and Technology. 2022, 222, 109407. DOI: 10.1016/j.compscitech.2022.109407.
  • Tan, X.; Yuan, Q.; Qiu, M.; Yu, J.; Jiang, N.; Lin, C.-T.; Dai, W. Rational Design of graphene/polymer Composites with Excellent Electromagnetic Interference Shielding Effectiveness and High Thermal Conductivity: A Mini Review. Journal of Materials Science & Technology. 2022, 117, 238–250. DOI: 10.1016/j.jmst.2021.10.052.
  • Zhang, F.; Ren, D.; Zhang, Y.; Huang, L.; Sun, Y.; Wang, W.; Zhang, Q.; Feng, W.; Zheng, Q. Production of highly-oriented Graphite Monoliths with High Thermal Conductivity. Chemical Engineering Journal. 2022, 431, 134102. DOI: 10.1016/j.cej.2021.134102.
  • Uetani, K.; Takahashi, K.; Watanabe, R.; Tsuneyasu, S.; Satoh, T. Thermal Diffusion Films with In-Plane Anisotropy by Aligning Carbon Fibers in a Cellulose Nanofiber Matrix. ACS Applied Materials & Interfaces. 2022, 14(29), 33903–33911. DOI: 10.1021/acsami.2c09332.
  • Wu, Q.; Li, W.; Liu, C.; Xu, Y.; Li, G.; Zhang, H.; Huang, J.; Miao, J. Carbon Fiber Reinforced Elastomeric Thermal Interface Materials for Spacecraft. Carbon. 2022, 187, 432–438. DOI: 10.1016/j.carbon.2021.11.039.
  • Mehra, N.; Mu, L. W.; Ji, T.; Yang, X. T.; Kong, J.; Gu, J. W.; Zhu, J. H. Thermal Transport in Polymeric Materials and across Composite Interfaces. Appl. Mater. Today. 2018, 12, 92–130. DOI: 10.1016/j.apmt.2018.04.004.
  • Khan, J.; Momin, S. A.; Mariatti, M. A Review on Advanced carbon-based Thermal Interface Materials for Electronic Devices. Carbon. 2020, 168, 65–112. DOI: 10.1016/j.carbon.2020.06.012.
  • Chen, S.; Wang, Q.; Zhang, M.; Huang, R.; Huang, Y.; Tang, J.; Liu, J. Scalable Production of Thick Graphene Film for Next Generation Thermal Management Application. Carbon. 2020, 167, 270–277. DOI: 10.1016/j.carbon.2020.06.030.
  • Ruan, K.; Gu, J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules. 2022, 55(10), 4134–4145. DOI: 10.1021/acs.macromol.2c00491.
  • Li, S.; Zheng, Z.; Liu, S.; Chi, Z.; Chen, X.; Zhang, Y.; Xu, J. Ultrahigh Thermal and Electric Conductive Graphite Films Prepared by g-C3N4 Catalyzed Graphitization of Polyimide Films. Chemical Engineering Journal. 2022, 430, 132530. DOI: 10.1016/j.cej.2021.132530.
  • Mashali, F.; Languri, E. M.; Davidson, J.; Kerns, D.; Johnson, W.; Nawaz, K.; Cunningham, G. Thermo-physical Properties of Diamond Nanofluids: A Review. International Journal of Heat and Mass Transfer. 2019, 129, 1123–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.10.033.
  • Dong, J. D.; Jiang, R. M.; Huang, H. Y.; Chen, J. Y.; Tian, J. W.; Deng, F. J.; Dai, Y. F.; Wen, Y. Q.; Zhang, X. Y.; Wei, Y. Facile Preparation of Fluorescent Nanodiamond Based Polymer Nanoparticles via ring-opening Polymerization and Their Biological Imaging. Materials Science and Engineering: C. 2020, 106, 8. DOI: 10.1016/j.msec.2019.110297.
  • Song, Y.; Li, H.; Wang, L.; Qiu, D.; Ma, Y.; Pei, K.; Zou, G.; Yu, K. Nanodiamonds: A Critical Component of Anodes for High Performance lithium-ion Batteries. Chemical Communications. 2016, 52(69), 10497–10500. DOI: 10.1039/C6CC04490E.
  • Garg, S.; Garg, A.; Sahu, N. K.; Yadav, A. K. Synthesis and Characterization of nanodiamond-anticancer Drug Conjugates for Tumor Targeting. Diamond and Related Materials. 2019, 94, 172–185. DOI: 10.1016/j.diamond.2019.03.008.
  • Haddadi, S. A.; S.a, A. R.; Amini, M.; Kheradmand, A. In-situ Preparation and Characterization of ultra-high Molecular Weight polyethylene/diamond Nanocomposites Using Bi-supported Ziegler-Natta Catalyst: Effect of Nanodiamond Silanization. Materials Today Communications. 2018, 14, 53–64. DOI: 10.1016/j.mtcomm.2017.12.011.
  • Shirani, A.; Hu, Q.; Su, Y.; Joy, T.; Zhu, D.; Berman, D. Combined Tribological and Bactericidal Effect of Nanodiamonds as a Potential Lubricant for Artificial Joints. ACS Applied Materials & Interfaces. 2019, 11(46), 43500–43508. DOI: 10.1021/acsami.9b14904.
  • Seshadri, I.; Esquenazi, G. L.; Cardinal, T.; Borca-Tasciuc, T.; Ramanath, G. Microwave Synthesis of Branched Silver Nanowires and Their Use as Fillers for High Thermal Conductivity Polymer Composites. Nanotechnology. 2016, 27(17), 175601. DOI: 10.1088/0957-4484/27/17/175601.
  • Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Thermal Conductivity of Isotopically Modified graphene. Nat. Mater. 2012, 11(3), 203–207. DOI: 10.1038/nmat3207.
  • Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016, 61, 1–28. DOI: 10.1016/j.progpolymsci.2016.05.001.
  • Guo, X.; Cheng, S.; Cai, W.; Zhang, Y.; Zhang, X.-A. A Review of carbon-based Thermal Interface Materials: Mechanism, Thermal Measurements and Thermal Properties. Mater. Design. 2021, 209, 109936. DOI: 10.1016/j.matdes.2021.109936.
  • Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of polymer-based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. DOI: 10.1016/j.progpolymsci.2016.03.001.
  • May, P. W. Materials Science - the New Diamond Age?. Science. 2008, 319(5869), 1490–1491. DOI: 10.1126/science.1154949.
  • Shenderova, O. A.; McGuire, G. E. Science and Engineering of Nanodiamond Particle Surfaces for Biological Applications (Review). Biointerphases. 2015, 10(3), 030802. DOI: 10.1116/1.4927679.
  • Turcheniuk, K.; Trecazzi, C.; Deeleepojananan, C.; Mochalin, V. N. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater. Interfaces. 2016, 8(38), 25461–25468. DOI: 10.1021/acsami.6b08311.
  • Mochalin, V. N.; Gogotsi, Y. Nanodiamond–polymer Composites. Diamond Relat. Mater. 2015, 58, 161–171. DOI: 10.1016/j.diamond.2015.07.003.
  • Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S. O.; Gogotsi, Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128(35), 11635–11642. DOI: 10.1021/ja063303n.
  • Duan, X.; Tian, W.; Zhang, H.; Sun, H.; Ao, Z.; Shao, Z.; Wang, S. sp2/sp3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catal. 2019, 9(8), 7494–7519. DOI: 10.1021/acscatal.9b01565.
  • Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie. 2019. DOI: 10.1002/anie.201905997.
  • Reina, G.; Gismondi, A.; Carcione, R.; Nanni, V.; Peruzzi, C.; Angjellari, M.; Chau, N. D. Q.; Canini, A.; Terranova, M. L.; Tamburri, E. Oxidized and amino-functionalized Nanodiamonds as Shuttle for Delivery of Plant Secondary Metabolites: Interplay between Chemical Affinity and Bioactivity. Appl. Surf. Sci. 2019, 470, 744–754. DOI: 10.1016/j.apsusc.2018.11.161.
  • Krueger, A.; Lang, D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22(5), 890–906. DOI: 10.1002/adfm.201102670.
  • Gogotsi, Y. G.; Kailer, A.; Nickel, K. G. Transformation of Diamond to Graphite. Nature. 1999, 401(6754), 663–664. DOI: 10.1038/44323.
  • Jiang, X.; Zhao, J.; Zhuang, C.; Wen, B.; Jiang, X. Mechanical and Electronic Properties of Ultrathin Nanodiamonds under Uniaxial Compressions. Diamond Relat. Mater. 2010, 19(1), 21–25. DOI: 10.1016/j.diamond.2009.10.011.
  • Zhang, Y. S.; Hua, Q. S.; Zhang, J. M.; Zhao, Y. L.; Yin, H.; Dai, Z. Q.; Zheng, L. L.; Tang, J. Enhanced Thermal and Mechanical Properties by cost-effective Carboxylated Nanodiamonds in Poly (Vinyl Alcohol). Nanocomposites. 2018, 4(2), 58–67. DOI: 10.1080/20550324.2018.1493971.
  • Morimune, S.; Kotera, M.; Nishino, T.; Goto, K.; Hata, K. Poly(vinyl Alcohol) Nanocomposites with Nanodiamond. Macromolecules. 2011, 44(11), 4415–4421. DOI: 10.1021/ma200176r.
  • Zhang, Q.; Wu, M.; Li, J.; Naito, K.; Yu, X.; Zhang, Q. Water-soluble Polyvinyl Alcohol Composite Films with Nanodiamond Particles Modified with Polyethyleneimine. New J. Chem. 2022, 46(6), 2918–2929. DOI: 10.1039/D1NJ04813A.
  • Zhao, X. X.; Wang, T.; Li, Y. Y.; Huang, L.; Handschuh-Wang, S. Polydimethylsiloxane/Nanodiamond Composite Sponge for Enhanced Mechanical or Wettability Performance. Polymers. 2019, 11(6), 12. DOI: 10.3390/polym11060948.
  • Mangal, U.; Seo, J.-Y.; Yu, J.; Kwon, J.-S., and Choi, S.-H. Incorporating Aminated Nanodiamonds to Improve the Mechanical Properties of 3D-Printed Resin-Based Biomedical Appliances Nanomaterials. 2020, 10(5), 827. doi:10.3390/nano10050827.
  • Zhang, Q.; Mochalin, V. N.; Neitzel, I.; Hazeli, K.; Niu, J.; Kontsos, A.; Zhou, J. G.; Lelkes, P. I.; Gogotsi, Y. Mechanical Properties and Biomineralization of Multifunctional nanodiamond-PLLA Composites for Bone Tissue Engineering. Biomaterials. 2012, 33(20), 5067–5075. DOI: 10.1016/j.biomaterials.2012.03.063.
  • Song, N.; Cui, S. Q.; Hou, X. S.; Ding, P.; Shi, L. Y. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond. ACS Appl. Mater. Interfaces. 2017, 9(46), 40766–40773. DOI: 10.1021/acsami.7b09240.
  • Cui, S.; Song, N.; Shi, L.; Ding, P. Enhanced Thermal Conductivity of Bioinspired Nanofibrillated Cellulose Hybrid Film Based on Graphene and Nanodiamond. ACS Sustainable Chem. Eng. 2020. DOI: 10.1021/acssuschemeng.0c00420.
  • Yang, S.; Sun, X.; Shen, J.; Li, Y.; Xie, L.; Qin, S.; Xue, B.; Zheng, Q. Interface Engineering Based on Polydopamine-Assisted Metallization in Highly Thermal Conductive Cellulose/Nanodiamonds Composite Paper. ACS Sustainable Chem. Eng. 2020, 8(48), 17639–17650. DOI: 10.1021/acssuschemeng.0c04427.
  • Morimune-Moriya, S.; Obara, K.; Fuseya, M.; Katanosaka, M. Development and Characterization of Strong, heat-resistant and Thermally Conductive polyimide/nanodiamond Nanocomposites. Polymer. 2021, 230, 124098. DOI: 10.1016/j.polymer.2021.124098.
  • Morimune-Moriya, S.; Yada, S.; Kuroki, N.; Ito, S.; Hashimoto, T.; Nishino, T. Strong Reinforcement Effects of Nanodiamond on Mechanical and Thermal Properties of Polyamide 66. Compos. Sci. Technol. 2020, 199, 108356. DOI: 10.1016/j.compscitech.2020.108356.
  • Mochalin, V. N.; Neitzel, I.; Etzold, B. J. M.; Peterson, A.; Palmese, G.; Gogotsi, Y. Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. ACS Nano. 2011, 5(9), 7494–7502. DOI: 10.1021/nn2024539.
  • Neitzel, I.; Mochalin, V. N.; Niu, J.; Cuadra, J.; Kontsos, A.; Palmese, G. R.; Gogotsi, Y. Maximizing Young’s Modulus of Aminated nanodiamond-epoxy Composites Measured in Compression. Polymer. 2012, 53(25), 5965–5971. DOI: 10.1016/j.polymer.2012.10.037.
  • Hou, W.; Gao, Y.; Wang, J.; Blackwood, D. J.; Teo, S. Nanodiamond Decorated Graphene Oxide and the Reinforcement to Epoxy. Compos. Sci. Technol. 2018, 165, 9–17. DOI: 10.1016/j.compscitech.2018.06.008.
  • Wang, Q.; Zhang, J.; Shi, W.; Castillo-Rodríguez, M.; Su, D. S.; Wang, D.-Y. Coordinating Mechanical Performance and Fire Safety of Epoxy Resin via Functionalized Nanodiamond. Diamond Relat. Mater. 2020, 108, 107964. DOI: 10.1016/j.diamond.2020.107964.
  • Sen, F.; Kahraman, M. V. Thermal Conductivity and Properties of Cyanate Ester/nanodiamond Composites. Polym. Adv. Technol. 2014, 25(9), 1020–1026. DOI: 10.1002/pat.3346.
  • Zhai, Y.-J.; Wang, Z.-C.; Huang, W.; Huang, -J.-J.; Wang, -Y.-Y.; Zhao, Y.-Q. Improved Mechanical Properties of Epoxy Reinforced by Low Content Nanodiamond Powder. Mater. Sci. Eng. A. 2011, 528(24), 7295–7300. DOI: 10.1016/j.msea.2011.06.053.
  • Choi, E.-Y.; Kim, K.; Kim, C.-K.; Kang, E. Reinforcement of Nylon 6,6/nylon 6,6 Grafted Nanodiamond Composites by in Situ Reactive Extrusion. Sci. Rep. 2016, 6(1), 37010. DOI: 10.1038/srep37010.
  • Morimune-Moriya, S.; Hashimoto, T.; Haga, R.; Tanahashi, H. Enhanced Mechanical and Thermal Properties of Nanodiamond Reinforced Low Density Polyethylene Nanocomposites. J. Appl. Polym. Sci. 2021, 138(37), 50929. DOI: 10.1002/app.50929.
  • Shuai, C.; Huang, W.; Feng, P.; Gao, C.; Gao, D.; Deng, Y.; Wang, Q.; Wu, P.; Guo, X. Nanodiamond Reinforced Polyvinylidene fluoride/bioglass Scaffolds for Bone Tissue Engineering. J. Porous Mater. 2017, 24(1), 249–255. DOI: 10.1007/s10934-016-0258-0.
  • Song, N.; Cao, D.; Luo, X.; Guo, Y.; Gu, J.; Ding, P. Aligned cellulose/nanodiamond Plastics with High Thermal Conductivity. J. Mater. Chem. C. 2018, 6(48), 13108–13113. DOI: 10.1039/C8TC04309D.
  • Chen, B.; Riche, C. T.; Lehmann, M.; Gupta, M. Responsive Polymer Welds via Solution Casting for Stabilized Self-Assembly. ACS Appl. Mater. Interfaces. 2012, 4(12), 6911–6916. DOI: 10.1021/am302047y.
  • Pan, X.; Debije, M. G.; Schenning, A. P. H. J.; Bastiaansen, C. W. M. Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites. ACS Appl. Mater. Interfaces. 2021, 13(24), 28864–28869. DOI: 10.1021/acsami.1c06415.
  • Hu, Z.; Wang, S.; Liu, Y.; Qu, Z.; Tan, Z.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Constructing a Layer-by-Layer Architecture to Prepare a Transparent, Strong, and Thermally Conductive Boron Nitride Nanosheet/Cellulose Nanofiber Multilayer Film. Ind. Eng. Chem. Res. 2020, 59(10), 4437–4446. DOI: 10.1021/acs.iecr.9b05602.
  • Zhan, Y.; Nan, B.; Liu, Y.; Jiao, E.; Shi, J.; Lu, M.; Wu, K. Multifunctional cellulose-based Fireproof Thermal Conductive Nanocomposite Films Assembled by in-situ Grown SiO2 Nanoparticle onto MXene. Chem. Eng. J. 2021, 421, 129733. DOI: 10.1016/j.cej.2021.129733.
  • Ma, C.; Cao, W.-T.; Zhang, W.; Ma, M.-G.; Sun, W.-M.; Zhang, J.; Chen, F. Wearable, Ultrathin and Transparent Bacterial celluloses/MXene Film with Janus Structure and Excellent Mechanical Property for Electromagnetic Interference Shielding. Chem. Eng. J. 2021, 403, 126438. DOI: 10.1016/j.cej.2020.126438.
  • Gong, P.; Li, L.; Fu, G.-E.; Shu, S.; Li, M.; Wang, Y.; Qin, Y.; Kong, X.; Chen, H.; Jiao, C., et al. Highly Flexible Cellulose nanofiber/single-crystal Nanodiamond Flake Heat Spreader Films for Heat Dissipation. J. Mater. Chem. C. 2022. DOI: 10.1039/D2TC01830F.
  • Ma, Z.; Kang, S.; Ma, J.; Shao, L.; Zhang, Y.; Liu, C.; Wei, A.; Xiang, X.; Wei, L.; Gu, J. Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber–Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding. ACS Nano. 2020, 14(7), 8368–8382. DOI: 10.1021/acsnano.0c02401.
  • Zhan, Y.; Nan, B.; Zheng, X.; Lu, M.; Shi, J.; Wu, K. Ma Lao-like Structural Fireproof Aramid nanofiber@Ag Nanocomposite Film Enhanced with MXene for Advanced Thermal Management Applications. Colloid. Surface A. 2022, 649, 129370. DOI: 10.1016/j.colsurfa.2022.129370.
  • Chen, S.; Song, S.; Li, Z.; Xie, F.; Jia, F.; Gao, K.; Wang, Y.; Lu, Z. Constructing a BNNS/aramid Nanofiber Composite Paper via thiol-ene Click Chemistry for Improved Thermal Conductivity. Mater. Today Commun. 2022, 31, 103806. DOI: 10.1016/j.mtcomm.2022.103806.
  • Wang, Y.; Yuan, H.; Ma, P. M.; Bai, H.; Chen, M. Q.; Dong, W. F.; Xie, Y.; Deshmukh, Y. S. Superior Performance of Artificial Nacre Based on Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces. 2017, 9(4), 4215–4222. DOI: 10.1021/acsami.6b13834.
  • Wang, Z.-G.; Chen, M.-Z.; Liu, Y.-H.; Duan, H.-J.; Xu, L.; Zhou, L.; Xu, J.-Z.; Lei, J.; Li, Z.-M. Nacre-like Composite Films with High Thermal Conductivity, Flexibility, and Solvent Stability for Thermal Management Applications. J. Mater. Chem. C. 2019, 7(29), 9018–9024. DOI: 10.1039/C9TC02845E.
  • Wang, X.; Ji, S. L.; Wang, X. Q.; Bian, H. Y.; Lin, L. R.; Dai, H. Q.; Xiao, H. N. Thermally Conductive, Super Flexible and flame-retardant BN-OH/PVA Composite Film Reinforced by Lignin Nanoparticles. J. Mater. Chem. C. 2019, 7(45), 14159–14169. DOI: 10.1039/c9tc04961d.
  • Zhang, J. W.; Shi, G.; Jiang, C.; Ju, S.; Jiang, D. Z. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader. Small. 2015, 11(46), 6197–6204. DOI: 10.1002/smll.201501878.
  • Wu, Y.; Xue, Y.; Qin, S.; Liu, D.; Wang, X.; Hu, X.; Li, J.; Wang, X.; Bando, Y.; Golberg, D., et al. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Appl. Mater. Interfaces. 2017, 9(49), 43163–43170. DOI: 10.1021/acsami.7b15264.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature. 2007, 448(7152), 457–460. DOI: 10.1038/nature06016.
  • Yuan, H. C.; Lee, C. Y.; Tai, N. H. Extremely High Thermal Conductivity of nanodiamond-polydopamine/thin-layer Graphene Composite Films. Compos. Sci. Technol. 2018, 167, 313–322. DOI: 10.1016/j.compscitech.2018.08.010.
  • Nan, B.; Wu, K.; Qu, Z.; Xiao, L.; Xu, C.; Shi, J.; Lu, M. A Multifunctional Thermal Management Paper Based on Functionalized Graphene Oxide Nanosheets Decorated with Nanodiamond. Carbon. 2020, 161, 132–145. DOI: 10.1016/j.carbon.2020.01.056.
  • Li, L.; Cao, Y.; Liu, X.; Wang, J.; Yang, Y.; Wang, W. Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Appl. Mater. Interfaces. 2020, 12(24), 27350–27360. DOI: 10.1021/acsami.0c05692.
  • Aris, A.; Shojaei, A.; Bagheri, R. Cure Kinetics of Nanodiamond-Filled Epoxy Resin: Influence of Nanodiamond Surface Functionality. Ind. Eng. Chem. Res. 2015, 54(36), 8954–8962. DOI: 10.1021/acs.iecr.5b01858.
  • Ayatollahi, M. R.; Alishahi, E.; Doagou-R, S.; Shadlou, S. Tribological and Mechanical Properties of Low Content nanodiamond/epoxy Nanocomposites. Compos. B Eng. 2012, 43(8), 3425–3430. DOI: 10.1016/j.compositesb.2012.01.022.
  • Adhikari, P.; Jani, P. K.; Hsiao, L. C.; Rojas, O. J.; Khan, S. A. Interfacial Contributions in Nanodiamond-Reinforced Polymeric Fibers. J. Phys. Chem. B. 2021, 125(36), 10312–10323. DOI: 10.1021/acs.jpcb.1c03361.
  • Shen, X.; Wang, Z.; Wu, Y.; Liu, X.; Kim, J.-K. Effect of Functionalization on Thermal Conductivities of graphene/epoxy Composites. Carbon. 2016, 108, 412–422. DOI: 10.1016/j.carbon.2016.07.042.
  • Wang, X.; Li, B.; Gerada, D.; Huang, K.; Stone, I.; Worrall, S.; Yan, Y. A Critical Review on Thermal Management Technologies for Motors in Electric Cars. Appl. Therm. Eng. 2022, 201, 117758. DOI: 10.1016/j.applthermaleng.2021.117758.
  • van Heerden, A. S. J.; Judt, D. M.; Jafari, S.; Lawson, C. P.; Nikolaidis, T.; Bosak, D. Aircraft Thermal Management: Practices, Technology, System Architectures, Future Challenges, and Opportunities. Prog. Aerosp. Sci. 2022, 128, 100767. DOI: 10.1016/j.paerosci.2021.100767.
  • Kang, D. G.; Ko, H.; Koo, J.; Lim, S. I.; Kim, J. S.; Yu, Y. T.; Lee, C. R.; Kim, N.; Jeong, K. U. Anisotropic Thermal Interface Materials: Directional Heat Transfer in Uniaxially Oriented Liquid Crystal Networks. ACS Appl. Mater. Interfaces. 2018, 10(41), 35557–35562. DOI: 10.1021/acsami.8b09982.
  • Barako, M. T.; Gambin, V.; Tice, J. Integrated Nanomaterials for Extreme Thermal Management: A Perspective for Aerospace Applications. Nanotechnology. 2018, 29(15), 13. DOI: 10.1088/1361-6528/aaabe1.
  • Huang, C. L.; Qian, X.; Yang, R. G. Thermal Conductivity of Polymers and Polymer Nanocomposites. Mater Sci Eng R-Rep. 2018, 132, 1–22. DOI: 10.1016/j.mser.2018.06.002.
  • Vadivelu, M. A.; Kumar, C. R.; Joshi, G. M. Polymer Composites for Thermal Management: A Review. Compos. Interfaces. 2016, 23(9), 847–872. DOI: 10.1080/09276440.2016.1176853.
  • Moore, A. L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today. 2014, 17(4), 163–174. DOI: 10.1016/j.mattod.2014.04.003.
  • Song, N.; Cui, S.; Hou, X.; Ding, P.; Shi, L. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond. ACS Appl. Mater. Interfaces. 2017, 9(46), 40766–40773. DOI: 10.1021/acsami.7b09240.
  • Sato, K.; Tominaga, Y.; Hotta, Y.; Shibuya, H.; Sugie, M.; Saruyama, T. Cellulose nanofiber/nanodiamond Composite Films: Thermal Conductivity Enhancement Achieved by a Tuned Nanostructure. Adv. Powder Technol. 2018, 29(4), 972–976. DOI: 10.1016/j.apt.2018.01.015.
  • Tominaga, Y.; Sato, K.; Hotta, Y.; Shibuya, H.; Sugie, M.; Saruyama, T. Improvement of Thermal Conductivity of Composite Film Composed of Cellulose Nanofiber and Nanodiamond by Optimizing Process Parameters. Cellulose. 2018, 25(7), 3973–3983. DOI: 10.1007/s10570-018-1869-1.
  • Yao, Y. M.; Zeng, X. L.; Pan, G. R.; Sun, J. J.; Hu, J. T.; Huang, Y.; Sun, R.; Xu, J. B.; Wong, C. P. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity. ACS Appl. Mater. Interfaces. 2016, 8(45), 31248–31255. DOI: 10.1021/acsami.6b10935.
  • An, D.; Cheng, S. S.; Zhang, Z. Y.; Jiang, C.; Fang, H. M.; Li, J. X.; Liu, Y. Q.; Wong, C. P. A polymer-based Thermal Management Material with Enhanced Thermal Conductivity by Introducing three-dimensional Networks and Covalent Bond Connections. Carbon. 2019, 155, 258–267. DOI: 10.1016/j.carbon.2019.08.072.
  • Nan, B.; Wu, K.; Chen, W.; Liu, Y.; Zhang, Q.; Lu, M. Bioinspired Modification Strategy to Improve Thermal Conductivity of Flexible Poly(vinyl Alcohol)/nanodiamond Nanocomposite Films for Thermal Management Applications. Appl. Surf. Sci. 2020, 508, 144797. DOI: 10.1016/j.apsusc.2019.144797.
  • Li, L.; Qin, Y.; Wang, H.; Li, M.; Song, G.; Wu, Y.; Wei, X.; Ali, Z.; Yi, J.; Song, S., et al. Improving Thermal Conductivity of Poly(vinyl Alcohol) Composites by Using Functionalized Nanodiamond. Compos. Commun. 2021, 23, 100596. DOI: 10.1016/j.coco.2020.100596.
  • Kim, S.-H.; Rhee, K. Y.; Park, S.-J. Amine-terminated chain-grafted nanodiamond/epoxy Nanocomposites as Interfacial Materials: Thermal Conductivity and Fracture Resistance. Compos. B Eng. 2020, 192, 107983. DOI: 10.1016/j.compositesb.2020.107983.
  • Wang, M.; Liao, M.; Li, L.; Li, M.; Chen, Y.; Hou, X.; Yan, C.; Jiang, N.; Yu, J. Graphdiyne for Significant Thermal Conductivity Enhancement at Ultralow Mass Fraction in Polymer Composites. 2D Materials. 2020, 73, 035007. DOI:10.1088/2053-1583/ab81af.
  • Nan, B.; Xiao, L.; Wu, K.; Xu, C.-A.; Zhang, E.; Zheng, H.; Zhan, Y.; Zhang, Q.; Shi, J.; Lu, M. Covalently Introducing amino-functionalized Nanodiamond into Waterborne Polyurethane via in Situ Polymerization: Enhanced Thermal Conductivity and Excellent Electrical Insulation. Colloid. Surface A. 2020, 596, 124752. DOI: 10.1016/j.colsurfa.2020.124752.
  • Sun, C.; Wang, Y.; Liang, B.; Han, D.; Zhang, W.; Qin, Q.; Cheng, X.; Wang, C. Preparation and Their Thermal Properties of the nanodiamond/polyacrylonitrile Composite Nanofibers Generated from Electrospinning. J. Polym. Res. 2019, 26(6), 150. DOI: 10.1007/s10965-019-1818-1.
  • Hu, D.; Liu, H.; Ma, W. Rational Design of Nanohybrids for Highly Thermally Conductive Polymer Composites. Compos. Commun. 2020, 21, 100427. DOI: 10.1016/j.coco.2020.100427.
  • Zhang, H.; Zhang, X.; Fang, Z.; Huang, Y.; Xu, H.; Liu, Y.; Wu, D.; Zhuang, J., and Sun, J. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review J. Compos. Sci. 2020, 4(4), 180 doi:10.3390/jcs4040180.
  • Ma, H.; Gao, B.; Wang, M.; Yuan, Z.; Shen, J.; Zhao, J.; Feng, Y. Strategies for Enhancing Thermal Conductivity of polymer-based Thermal Interface Materials: A Review. J. Mater. Sci. 2021, 56(2), 1064–1086. DOI: 10.1007/s10853-020-05279-x.
  • Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors Affecting Thermal Conductivities of the Polymers and Polymer Composites: A Review. Compos. Sci. Technol. 2020, 193, 108134. DOI: 10.1016/j.compscitech.2020.108134.
  • Kim, H. S.; Jang, J. U.; Lee, H.; Kim, S. Y.; Kim, S. H.; Kim, J.; Jung, Y. C.; Yang, B. J. Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters. Adv. Eng. Mater. 2018, 20(10), 12. DOI: 10.1002/adem.201800204.
  • Sun, H.; Ji, T.; Bi, H.; Xu, M.; Cai, L.; Manzo, M. Synergistic Effect of Carbon Nanotubes and wood-derived Carbon Scaffold on Natural rubber-based high-performance Thermally Conductive Composites. Compos. Sci. Technol. 2021, 213, 108963. DOI: 10.1016/j.compscitech.2021.108963.
  • Tominaga, Y.; Sato, K.; Hotta, Y.; Shibuya, H.; Sugie, M.; Saruyama, T. Effect of the Addition of Al2O3 and h-BN Fillers on the Thermal Conductivity of a Cellulose nanofiber/nanodiamond Composite Film. Cellulose. 2019, 26(9), 5281–5289. DOI: 10.1007/s10570-019-02488-9.
  • Poikelispää, M.; Honkanen, M.; Vippola, M., and Sarlin, E. J. J. O. E. Plastics. Effect of Carbon Nanotubes and Nanodiamonds on the Heat Storage Ability of Natural Rubber Composites. J. Elastom. Plast. 2021, 53(4), 311–322. doi:10.1177/0095244320933977.
  • Zhang, Y.; Choi, J. R.; Park, S.-J. Thermal Conductivity and thermo-physical Properties of nanodiamond-attached Exfoliated Hexagonal Boron nitride/epoxy Nanocomposites for Microelectronics. Compos. Part A Appl. Sci. Manuf. 2017, 101, 227–236. DOI: 10.1016/j.compositesa.2017.06.019.
  • Zhang, Y.; Park, M.; Park, S.-J. Implication of Thermally Conductive nanodiamond-interspersed Graphite Nanoplatelet Hybrids in Thermoset Composites with Superior Thermal Management Capability. Sci. Rep. 2019, 9(1), 2893. DOI: 10.1038/s41598-019-39127-z.
  • Xian, Y.; Kang, Z. Hydrogen Bonds Leading Nanodiamonds Performing Different Thermal Conductance Enhancement in Different MWCNTs epoxy-based Nanocomposites. Prog. Org. Coat. 2020, 140, 105486. DOI: 10.1016/j.porgcoat.2019.105486.
  • Qin, Y.; Wang, B.; Hou, X.; Li, L.; Guan, C.; Pan, Z.; Li, M.; Du, Y.; Lu, Y.; Wei, X., et al. Constructing Tanghulu-like Diamond@Silicon Carbide Nanowires for Enhanced Thermal Conductivity of Polymer Composite. Compos. Commun. 2022, 29, 101008. DOI: 10.1016/j.coco.2021.101008.
  • Ma, M.; Xu, L.; Qiao, L.; Chen, S.; Shi, Y.; He, H.; Wang, X. Nanofibrillated Cellulose/MgO@rGO Composite Films with Highly Anisotropic Thermal Conductivity and Electrical Insulation. Chem. Eng. J. 2020, 392, 123714. DOI: 10.1016/j.cej.2019.123714.
  • ji, C.; Wang, Y.; Ye, Z.; Tan, L.; Mao, D.; Zhao, W.; Zeng, X.; Yan, C.; Sun, R.; Kang, D. J., et al. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. ACS Appl. Mater. Interfaces. 2020. DOI: 10.1021/acsami.9b22744.
  • Chen, Y.; Hou, X.; Liao, M.; Dai, W.; Wang, Z.; Yan, C.; Li, H.; Lin, C.-T.; Jiang, N.; Yu, J. Constructing a “pea-pod-like” alumina-graphene Binary Architecture for Enhancing Thermal Conductivity of Epoxy Composite. Chem. Eng. J. 2020, 381, 122690. DOI: 10.1016/j.cej.2019.122690.
  • Zhou, S. S.; Xu, T. L.; Jiang, F.; Song, N.; Shi, L. Y.; Ding, P. High Thermal Conductivity Property of polyamide-imide/boron Nitride Composite Films by Doping Boron Nitride Quantum Dots. J. Mater. Chem. C. 2019, 7(44), 13896–13903. DOI: 10.1039/c9tc04381k.
  • Yang, S.; Xue, B.; Li, Y.; Li, X.; Xie, L.; Qin, S.; Xu, K.; Zheng, Q. Controllable Ag-rGO Heterostructure for Highly Thermal Conductivity in layer-by-layer Nanocellulose Hybrid Films. Chem. Eng. J. 2019, 123072. DOI: 10.1016/j.cej.2019.123072.
  • Xiang, J. L.; Drzal, L. T. Electron and Phonon Transport in Au Nanoparticle Decorated Graphene Nanoplatelet Nanostructured Paper. ACS Appl. Mater. Interfaces. 2011, 3(4), 1325–1332. DOI: 10.1021/am200126x.
  • Ye, H.; Wen, H.; Chen, J.; Zhu, P.; Yuen, M. M. F.; Fu, X.-Z.; Sun, R.; Wong, C.-P. Alumina-Coated Cu@Reduced Graphene Oxide Microspheres as Enhanced Antioxidative and Electrically Insulating Fillers for Thermal Interface Materials with High Thermal Conductivity. ACS Appl. Electron. Mater. 2019, 1(7), 1330–1335. DOI: 10.1021/acsaelm.9b00312.
  • Li, J.; Zhao, X.; Zhang, Z.; Xian, Y.; Lin, Y.; Ji, X.; Lu, Y.; Zhang, L. Construction of Interconnected Al2O3 Doped rGO Network in Natural Rubber Nanocomposites to Achieve Significant Thermal Conductivity and Mechanical Strength Enhancement. Compos. Sci. Technol. 2020, 186, 107930. DOI: 10.1016/j.compscitech.2019.107930.
  • Yu, J.; Qian, R.; Jiang, P. Enhanced Thermal Conductivity for PVDF Composites with a Hybrid Functionalized Graphene sheet-nanodiamond Filler. Fibers Polym. 2013, 14(8), 1317–1323. DOI: 10.1007/s12221-013-1317-7.
  • Zhao, K.; Liu, G.; Cao, W.; Su, Z.; Zhao, J.; Han, J.; Dai, B.; Cao, K.; Zhu, J. A Combination of Nanodiamond and Boron Nitride for the Preparation of Polyvinyl Alcohol Composite Film with High Thermal Conductivity. Polymer. 2020, 206, 122885. DOI: 10.1016/j.polymer.2020.122885.
  • Sun, M.; Gao, G.; Dai, B.; Yang, L.; Liu, K.; Zhang, S.; Guo, S.; Han, J.; Zhu, J. Enhancement in Thermal Conductivity of Polymer Composites through Construction of graphene/nanodiamond bi-network Thermal Transfer Paths. Mater. Lett. 2020, 271, 127772. DOI: 10.1016/j.matlet.2020.127772.
  • Zhang, L.; Zhou, K.; Wei, Q.; Ma, L.; Ye, W.; Li, H.; Zhou, B.; Yu, Z.; Lin, C.-T.; Luo, J., et al. Thermal Conductivity Enhancement of Phase Change Materials with 3D Porous Diamond Foam for Thermal Energy Storage. Appl. Energy. 2019, 233-234, 208–219. DOI: 10.1016/j.apenergy.2018.10.036.
  • Wang, D.; Wei, H.; Lin, Y.; Jiang, P.; Bao, H.; Huang, X. Achieving Ultrahigh Thermal Conductivity in Ag/MXene/epoxy Nanocomposites via filler-filler Interface Engineering. Compos. Sci. Technol. 2021, 213, 108953. DOI: 10.1016/j.compscitech.2021.108953.
  • Wang, R.; Xie, C.; Gou, B.; Xu, H.; Luo, S.; Zhou, J.; Zeng, L. Epoxy Nanocomposites with High Thermal Conductivity and Low Loss Factor: Realize 3D Thermal Conductivity Network at Low Content through core-shell Structure and micro-nano Technology. Polym. Test. 2020, 89, 106574. DOI: 10.1016/j.polymertesting.2020.106574.
  • Yang, X.; Yu, X. Y.; Naito, K.; Ding, H. L.; Qu, X. W.; Zhang, Q. X. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler. J. Nanosci. Nanotechnol. 2018, 18(5), 3291–3298. DOI: 10.1166/jnn.2018.14630.
  • Jiao, E.; Wu, K.; Liu, Y.; Zhang, H.; Zheng, H.; Xu, C.-A.; Shi, J.; Lu, M. Nacre-like Robust Cellulose nanofibers/MXene Films with High Thermal Conductivity and Improved Electrical Insulation by Nanodiamond. J. Mater. Sci. 2022, 57(4), 2584–2596. DOI: 10.1007/s10853-021-06676-6.
  • Ai, T.; Feng, W.; Ren, Z.; Li, F.; Wang, P.; Zou, G.; Ji, J. Simultaneous Enhancement of Mechanical Performance and Thermal Conductivity for Polyamide 10T by Nanodiamond Compositing. J. Appl. Polym. Sci. 2022, 139(19), 52098. DOI: 10.1002/app.52098.
  • Wang, C.; Shen, J.; Hao, Z.; Luo, Z.; Shen, Z.; Li, X.; Yang, L.; Zhou, Q. Flexible Silicone rubber/carbon Fiber/ nano-diamond Composites with Enhanced Thermal Conductivity via Reducing the Interface Thermal Resistance. J. Polym. Eng. 2022, 42(6), 544–553. DOI: 10.1515/polyeng-2021-0301.
  • Wang, J.; Li, Y.; Liu, X.; Shen, C.; Zhang, H.; Xiong, K. Recent Active Thermal Management Technologies for the Development of energy-optimized Aerospace Vehicles in China. Chinese J. Aeronaut. 2021, 34(2), 1–27. DOI: 10.1016/j.cja.2020.06.021.
  • Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158(3), R1. DOI: 10.1149/1.3515880.
  • Ahn, K.; Kim, K.; Kim, J. Thermal Conductivity and Electric Properties of Epoxy Composites Filled with TiO2-coated Copper Nanowire. Polymer. 2015, 76, 313–320. DOI: 10.1016/j.polymer.2015.09.001.
  • Ruan, K.; Shi, X.; Guo, Y.; Gu, J. Interfacial Thermal Resistance in Thermally Conductive Polymer Composites: A Review. Compos. Commun. 2020, 22, 100518. DOI: 10.1016/j.coco.2020.100518.
  • Jefferson, T. B.; Witzell, O. W.; Sibbitt, W. L. Thermal Conductivity of Graphite—Silicone Oil and Graphite-Water Suspensions. Ind. Eng. Chem. Res. 1958, 50(10), 1589–1592. DOI: 10.1021/ie50586a048.
  • Fang, H. M.; Bai, S. L.; Wong, C. P. Microstructure Engineering of Graphene Towards Highly Thermal Conductive Composites. Compos. Part A Appl. Sci. Manuf. 2018, 112, 216–238. DOI: 10.1016/j.compositesa.2018.06.010.
  • Fang, Y.; Dong, J.; Zhao, X.; Chen, T.; Xiang, L.; Xie, Y.; Zhang, Q. Covalently Linked polydopamine-modified Boron Nitride nanosheets/polyimide Composite Fibers with Enhanced Heat Diffusion and Mechanical Behaviors. Compos. B Eng. 2020, 199, 108281. DOI: 10.1016/j.compositesb.2020.108281.
  • Xu, L.; Chen, G.; Wang, W.; Li, L.; Fang, X. A Facile Assembly of polyimide/graphene core–shell Structured Nanocomposites with Both High Electrical and Thermal Conductivities. Compos. Part A Appl. Sci. Manuf. 2016, 84, 472–481. DOI: 10.1016/j.compositesa.2016.02.027.
  • Fu, Y.-X.; He, Z.-X.; Mo, D.-C.; Lu, -S.-S. Thermal Conductivity Enhancement with Different Fillers for Epoxy Resin Adhesives. Appl. Therm. Eng. 2014, 66(1), 493–498. DOI: 10.1016/j.applthermaleng.2014.02.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.