508
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of material extrusion 3D printable ABS/PC polymer blends: influence of styrene–isoprene–styrene copolymer on printability and mechanical properties

, &
Pages 419-432 | Received 03 Jun 2022, Accepted 01 Sep 2022, Published online: 13 Sep 2022

References

  • Jumat, M. A.; Chevallier, P.; Mantovani, D.; Copes, F.; Razak, S. I. A., and Saidin, S. Three-dimensional Printed Biodegradable poly(l-lactic acid)/(poly(d-lactic Acid) Scaffold as an Intervention of Biomedical Substitute. Polym. Plast. Technol. Eng. 2021, 60(9), 1005–1015. DOI: 10.1080/25740881.2021.1876879.
  • Bere, P.; Neamtu, C.; Udroiu, R. Novel Method for the Manufacture of Complex CFRP Parts Using FDM-based Molds. Polymers. 2020, 12(10), 2220. DOI: 10.3390/polym12102220.
  • Verma, N.; Awasthi, P., and Pandey, P. M., and Banerjee, S. S. Development of Material Extrusion 3D Printing Compatible Tailorable Thermoplastic Elastomeric Materials from Acrylonitrile Butadiene Styrene and styrene-(ethylene-butylene)-styrene Block Copolymer Blends. J.App Polym Sci. (n/a), e53039. DOI: 10.1002/app.53039.
  • Zhu, J.; Zhang, J.; Wang, J., and Wang, B. Compatibilizer Assistant SCF/ABS Composites with Improved Mechanical Properties Prepared by Fused Deposition Modeling. Polym.-Plast. Technol. Eng. 2018, 57(15), 1576–1584. DOI: 10.1080/03602559.2017.1410843.
  • Deoray, N.; Kandasubramanian, B. Review on three-dimensionally Emulated fiber-embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector. Polym.-Plast. Technol. Eng. 2018, 57(9), 860–874. DOI: 10.1080/03602559.2017.1354226.
  • Kruth, J.-P.; Wang, X.; Laoui, T., and Froyen, L. Lasers and Materials in Selective Laser Sintering. Assem. Autom. 2003, 23(4), 357–371. DOI: 10.1108/01445150310698652.
  • Lewis, J. A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16(17), 2193–2204. DOI: 10.1002/adfm.200600434.
  • Lewis, J. A.; Smay, J. E.; Stuecker, J., and Cesarano, J. Direct Ink Writing of Three‐dimensional Ceramic Structures. J. Am. Ceram. Soc. 2006, 89(12), 3599–3609. DOI: 10.1111/j.1551-2916.2006.01382.x.
  • Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes. 2020, 8(9), 1138. DOI: 10.3390/pr8091138.
  • Patel, D. K.; Sakhaei, A. H., and Layani, M.; Zhang, B.; Ge, Q., and Magdassi, S. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater. 2017, 29(15), 1606000. DOI: 10.1002/adma.201606000.
  • Tee, Y. L.; Peng, C.; Pille, P.; Leary, M., and Tran, P. PolyJet 3D Printing of Composite Materials: Experimental and Modelling Approach. JOM. 2020, 72(3), 1105–1117. DOI: 10.1007/s11837-020-04014-w.
  • Awasthi, P.; Banerjee, S. S. Fused Deposition Modeling of Thermoplastic Elastomeric Materials: Challenges and Opportunities. Addit. Manuf. 2021, 46, 102177.
  • Prasad, A.; Kandasubramanian, B. Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applications. Polym. Plast. Technol. Eng. 2019, 58(13), 1365–1398. DOI: 10.1080/25740881.2018.1563117.
  • Mansour, M.; Tsongas, K.; Tzetzis, D. Measurement of the Mechanical and Dynamic Properties of 3D Printed Polylactic Acid Reinforced with Graphene. Polym. Plast. Technol. Eng. 2019, 58(11), 1234–1244. DOI: 10.1080/03602559.2018.1542730.
  • Banerjee, S. S.; Burbine, S., and Kodihalli Shivaprakash, N., and Mead, J. 3D-printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties. Polymers. 2019, 11(2), 347. DOI: 10.3390/polym11020347.
  • Sun, Q.; Rizvi, G.; Bellehumeur, C., and Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyping J. 2008, 14(2), 72–80. DOI: 10.1108/13552540810862028.
  • Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers. 2019, 11(7), 1094. DOI: 10.3390/polym11071094.
  • Banerjee, S. S.; Bhowmick, A. K. Tailored Nanostructured Thermoplastic Elastomers from Polypropylene and Fluoroelastomer: Morphology and Functional Properties. Ind. Eng. Chem. Res. 2015, 54(33), 8137–8146. DOI: 10.1021/acs.iecr.5b01176.
  • Banerjee, S. S.; Bhowmick, A. K. An Effective Strategy to Develop Nanostructured Morphology and Enhanced physico-mechanical Properties of PP/EPDM Thermoplastic Elastomers. J. Mater. Sci. 2016, 51(14), 6722–6734. DOI: 10.1007/s10853-016-9959-7.
  • Prabhu, R.; Devaraju, A. Recent Review of Tribology, Rheology of Biodegradable and FDM Compatible Polymers. Mater. Today: Proc. 2021, 39, 781–788.
  • Utracki, L. A.; Favis, B. Polymer Alloys and Blends. Handbook of Polymer Science and Technology. 1989, 4, 121–185.
  • Awasthi, P.; Banerjee, S. S. Design of Ultrastretchable and Superelastic Tailorable Hydrophilic Thermoplastic Elastomeric Materials. Polymer. 2022, 252, 124914. DOI: 10.1016/j.polymer.2022.124914.
  • Samykano, M.; Selvamani, S.; Kadirgama, K.; Ngui, W. K.; Kanagaraj, G., and Sudhakar, K. Mechanical Property of FDM Printed ABS: Influence of Printing Parameters. J. Adv. Manuf. Technol. 2019, 102(9), 2779–2796. DOI: 10.1007/s00170-019-03313-0.
  • Sayanjali, M.; Rezadoust, A. M.; Sourki, F. A. Tailoring physico-mechanical Properties and Rheological Behavior of ABS Filaments for FDM via Blending with SEBS TPE. Rapid Prototyp. J. 2020, 26(10), 1687–1700. DOI: 10.1108/RPJ-06-2019-0173.
  • Singh, S.; Singh, R. Mechanical Characterization and Comparison of Additive Manufactured ABS, Polyflex™ and ABS/Polyflex™ Blended Functional Prototypes. Rapid Prototyp. J. 2020, 26(2), 225–237. DOI: 10.1108/RPJ-11-2017-0234.
  • Sun, Y.; Guo, Z. X.; Yu, J. Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromol. Mater. Eng. 2010, 295(3), 263–268. DOI: 10.1002/mame.200900242.
  • Torrado, A. R.; Shemelya, C. M., and English, J. D.; Lin, Y.; Wicker, R. B., and Roberson, D. A. Characterizing the Effect of Additives to ABS on the Mechanical Property Anisotropy of Specimens Fabricated by Material Extrusion 3D Printing. Addit. Manuf. 2015, 6, 16–29. DOI: 10.1016/j.addma.2015.02.001.
  • Ajinjeru, C.; Kishore, V., and Liu, P.; Lindahl, J.; Hassen, A. A.; Kunc, V.; Post, B.; Love, L., and Duty, C. Determination of Melt Processing Conditions for High Performance Amorphous Thermoplastics for Large Format Additive Manufacturing. Addit. Manuf. 2018, 21, 125–132. DOI: 10.1016/j.addma.2018.03.004.
  • Barthes, M. L.; Mantaux, O.; Pedros, M.; Lacoste, E., and Dumon, M. Recycling of Aged ABS from Real WEEE through ABS/PC Blends in the ABS‐rich Compositions. Adv. Polym. Tech. 2012, 31(4), 343–353. DOI: 10.1002/adv.20257.
  • Nishino, K.; Shindo, Y.; Takayama, T., and Ito, H. Improvement of Impact Strength and Hydrolytic Stability of PC/ABS Blend Using Reactive Polymer. J. Appl Polym Sci 2017, 134(9). doi:10.1002/app.44550
  • Debbah, I.; Krache, R.; Aranburu, N.; Etxeberria, A.; Pérez, E., and Benavente, R. Influence of ABS Type and Compatibilizer on the Thermal and Mechanical Properties of PC/ABS Blends. Int. Polym. Process. 2020, 35(1), 83–94. DOI: 10.3139/217.3858.
  • Li, S.; Tang, R., and Jing, B.; Dai, W., and Zou, X. Phase Morphology and Interfacial Characteristics of polycarbonate/acrylonitrile‐ethylene‐propylene‐diene‐styrene Blends Compatibilized by Styrene‐maleic Anhydride Copolymers. J. Appl. Polym. Sci. 2015, 132(24), 42103. DOI: 10.1002/app.42103.
  • Farzadfar, A.; Khorasani, S. N.; Khalili, S. Blends of Recycled Polycarbonate and acrylonitrile–butadiene–styrene: Comparing the Effect of Reactive Compatibilizers on Mechanical and Morphological Properties. Polym. Int. 2014, 63(1), 145–150. DOI: 10.1002/pi.4493.
  • Wildes, G.; Harada, T.; Keskkula, H.; Paul, D. R.; Janarthanan, V., and Padwa, A. R. Synthesis and Characterization of an amine-functional SAN for the Compatibilization of PC/ABS Blends. Polymer. 1999, 40(11), 3069–3082. DOI: 10.1016/S0032-3861(98)00521-7.
  • Dos Anjos Egr; Braga, N. F.; Ribeiro, B.; Anjos, E. G. R.; Escanio, C. A.; Cardoso, A. D. M.; Marini, J.; Antonelli, E., and Passador, F. R. Influence of Blending Protocol on the Mechanical, Rheological, and Electromagnetic Properties of Pc / ABS / ABS- G -MAH blend-based MWCNT Nanocomposites. J. Appl. Polym. Sci. 2022, 139(15), 51946. DOI: 10.1002/app.51946.
  • Debbah, I.; Krache, R.; Aranburu, N.; Fernández, M., and Etxeberria, A., et al. Effect of SEBS-g-MAH Addition on the Mechanical, Rheological, and Morphological Properties of polycarbonate/acrylonitrile–butadiene–styrene Blends. J. Elastomers Plast. 2018, 50(7), 611–633. DOI: 10.1177/2F0095244317753652.
  • Tasdemir, M.; Karatop, S. Effect of styrene–isopren–styrene Addition on the Recycled polycarbonate/acrylonitrile–butadiene–styrene Polymer Blends. J. Appl. Polym. Sci. 2006, 101(1), 559–566. DOI: 10.1002/app.23555.
  • Dong, G.; Wijaya, G., and Tang, Y., and Zhao, Y. F. Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures. Addit. Manuf. 2018, 19, 62–72. DOI: 10.1016/j.addma.2017.11.004.
  • Mehat, N. M.; Kamaruddin, S. Optimization of Mechanical Properties of Recycled Plastic Products via Optimal Processing Parameters Using the Taguchi Method. J. Mater. Process. Technol. 2011, 211(12), 1989–1994. DOI: 10.1016/j.jmatprotec.2011.06.014.
  • Srivastava, M.; Rathee, S. Optimisation of FDM Process Parameters by Taguchi Method for Imparting Customised Properties to Components. Virtual Phys. Prototyp. 2018, 13(3), 203–210. DOI: 10.1080/17452759.2018.1440722.
  • Banerjee, S. S.; Bhowmick, A. K. Dynamic Vulcanization of Novel Nanostructured Polyamide 6/fluoroelastomer Thermoplastic Elastomeric Blends with Special Reference to Morphology, Physical Properties and Degree of Vulcanization. Polymer. 2015, 57, 105–116. DOI: 10.1016/j.polymer.2014.12.016.
  • Banerjee, S. S.; Kumar, K. D.; Bhowmick, A. K. Distinct Melt Viscoelastic Properties of Novel Nanostructured and Microstructured Thermoplastic Elastomeric Blends from Polyamide 6 and Fluoroelastomer. Macromol. Mater. Eng. 2015, 300(3), 283–290. DOI: 10.1002/mame.201400264.
  • Lay, M.; Thajudin, N. L. N.; Hamid, Z. A. A.; Rusli, A.; Abdullah, M. K., and Shuib, R. K. Comparison of Physical and Mechanical Properties of PLA, ABS and Nylon 6 Fabricated Using Fused Deposition Modeling and Injection Molding. Compos. B Eng. 2019, 176, 107341. DOI: 10.1016/j.compositesb.2019.107341.
  • Wickramasinghe, S.; Do, T.; Tran, P. FDM-based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers. 2020, 12(7), 1529. DOI: 10.3390/polym12071529.
  • Tambrallimath, V.; Keshavamurthy, R.; Bavan, S. D.; Patil, A. Y.; Yunus Khan, T. M.; Badruddin, I. A., and Kamangar, S. Mechanical Properties of PC-ABS-based graphene-reinforced Polymer Nanocomposites Fabricated by FDM Process. Polymers. 2021, 13(17), 2951. DOI: 10.3390/polym13172951.
  • Banerjee, S. S.; Ramakrishnan, I., and Satapathy, B. K. J. P. E, and Science. Modification of Polydimethylsiloxane with Polyvinylpyrrolidone: Influence of Reinforcing Filler on Physico‐mechanical Properties. Polym Eng Sci. 2016, 56(5), 491–499. DOI: 10.1002/pen.24240.
  • Schirmeister, C. G.; Hees, T., and Licht, E. H., and Muelhaupt, R. 3D Printing of High Density Polyethylene by Fused Filament Fabrication. Addit. Manuf. 2019, 28, 152–159. DOI: 10.1016/j.addma.2019.05.003.
  • Dizon, J. R. C.; Gache, C. C. L.; Cascolan, H. M. S.; Cancino, L. T., and Advincula, R. C. Post-processing of 3D-printed Polymers. Technologies. 2021, 9(3), 61. DOI: 10.3390/technologies9030061.
  • Suárez-Macías, J.; Terrones-Saeta, J. M.; Iglesias-Godino, F. J., and Corpas-Iglesias, F. A. Surface Treatments with Dichloromethane to Eliminate Printing Lines on Polycarbonate Components Printed by Fused Deposition Modelling Technology. Materials. 2020, 13(12), 2724. DOI: 10.3390/ma13122724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.