416
Views
0
CrossRef citations to date
0
Altmetric
Review

3D Printed Ionogels In Sensors

& ORCID Icon
Pages 632-654 | Received 24 May 2022, Accepted 15 Sep 2022, Published online: 29 Sep 2022

References

  • Prajapati, D. G.; Kandasubramanian, B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. DOI: 10.1002/macp.201800561.
  • Fang, F.; Aabith, S.; Homer-Vanniasinkam, S.; Tiwari, M. K. High-resolution 3D Printing for Healthcare Underpinned by small-scale Fluidics, In: 3D. Print. Med., Elsevier. 2017, 167–206. DOI: 10.1016/B978-0-08-100717-4.00023-5.
  • Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for Daily Life: A Review. Sensors Int. 2021, 2, 100121. DOI: 10.1016/j.sintl.2021.100121.
  • Deng, Z.; Hu, T.; Lei, Q.; He, J.; Ma, P. X.; Guo, B. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. ACS Appl. Mater. Interfaces. 2019, 11, 6796–6808. DOI: 10.1021/acsami.8b20178.
  • Liang, K.; Carmone, S.; Brambilla, D.; Leroux, J.-C. 3D Printing of A Wearable Personalized Oral Delivery Device: A first-in-human Study. Sci. Adv. 2018, 4. DOI: 10.1126/sciadv.aat2544.
  • Highley, C. B.; Rodell, C. B.; Burdick, J. A. Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels. Adv. Mater. 2015, 27, 5075–5079. DOI: 10.1002/adma.201501234.
  • Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv. Mater. 2015, 27, 4035–4040. DOI: 10.1002/adma.201501099.
  • Li, T.; Wang, Y.; Li, S.; Liu, X.; Sun, J. Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra‐Durable Ionic Skins. Adv. Mater. 2020, 32, 2002706. DOI: 10.1002/adma.202002706.
  • Asbani, B.; Douard, C.; Brousse, T.; Le Bideau, J. High Temperature solid-state Supercapacitor Designed with Ionogel Electrolyte. Energy Storage Mater. 2019, 21, 439–445. DOI: 10.1016/j.ensm.2019.06.004.
  • Ren, Y.; Guo, J.; Liu, Z.; Sun, Z.; Wu, Y.; Liu, L.; Yan, F. Ionic liquid–based click-ionogels. Sci. Adv. 2019, 5. DOI: 10.1126/sciadv.aax0648.
  • Zhang, L. M.; He, Y.; Cheng, S.; Sheng, H.; Dai, K.; Zheng, W. J.; Wang, M. X.; Chen, Z. S.; Chen, Y. M.; Suo, Z. Self‐Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation. Small. 2019, 15, 1804651. DOI: 10.1002/smll.201804651.
  • Cho, K. G.; Kim, H. S.; Jang, S. S.; Kyung, H.; Kang, M. S.; Lee, K. H.; Yoo, W. C. Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors. Adv. Funct. Mater. 2020, 30, 2002053. DOI: 10.1002/adfm.202002053.
  • Le Bideau, J.; Viau, L.; Vioux, A. Ionogels, Ionic Liquid Based Hybrid Materials. Chem. Soc. Rev. 2011, 40, 907–925. DOI: 10.1039/c0cs00059k.
  • Hyun, Woo Jin , Moraes, Ana C. M. de , Lim, Jin-Myoung , Downing, Julia R. , Park, Kyu-Young , Tan, Mark Tian Zhi , Hersam, Mark C. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries ACS Nano 13, 8 , (n.d.). https://doi.org/10.1021/acsnano.9b04989.
  • Gore, P. M.; Kandasubramanian, B. Heterogeneous Wettable Cotton Based Superhydrophobic Janus Biofabric Engineered with PLA/functionalized-organoclay Microfibers for Efficient oil–water Separation. J. Mater. Chem. A. 2018, 6, 7457–7479. DOI: 10.1039/C7TA11260B.
  • Gharde, S.; Surendren, A.; Korde, J. M.; Saini, S.; Deoray, N.; Goud, R.; Nimje, S.; Kandasubramanian, B. Recent Advances in Additive Manufacturing of Bio-inspired Materials, In: Biomanufacturing; Springer International Publishing: Cham, 2019, pp 35–68. DOI: 10.1007/978-3-030-13951-3_2.
  • Rastogi, P.; Kandasubramanian, B. Breakthrough in the Printing Tactics for stimuli-responsive Materials: 4D Printing. Chem. Eng. J. 2019, 366, 264–304. DOI: 10.1016/j.cej.2019.02.085.
  • Subash, A.; Kandasubramanian, B. 4D Printing of Shape Memory Polymers, Eur. Polym. J. 2020, 134, 109771. DOI: 10.1016/j.eurpolymj.2020.109771.
  • Patadiya, J.; Gawande, A.; Joshi, G.; Kandasubramanian, B. Additive Manufacturing of Shape Memory Polymer Composites for Futuristic Technology, Ind. Eng. Chem. Res. 2021, 60, 15885–15912. DOI: 10.1021/acs.iecr.1c03083.
  • Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M.; Jetting, B. Addit. Manuf. Technol; Springer International Publishing: Cham, 2021, pp 237–252. DOI: 10.1007/978-3-030-56127-7_8.
  • Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process. 2019, 3, 82. DOI: 10.3390/jmmp3030082.
  • Rastogi, P.; Gharde, S., and Kandasubramanian, B. Thermal Effects in 3D Printed Parts.Switzerland: Springer Publishing Company, 2020, 43–68.Doi:10.1007/978-981-15-5424-7_3.
  • Cherukattu Gopinathapanicker, J.; Inamdar, A.; Anand, A.; Joshi, M.; Kandasubramanian, B.; Transparent, R. Impact-Resistant, and High-Temperature Capable Radome Composites Using Polyetherimide-Toughened Cyanate Ester Resins for High-Speed Aircrafts through Resin Film Infusion, Ind. Eng. Chem. Res. 2020, 59, 7502–7511. DOI: 10.1021/acs.iecr.9b06439.
  • Wong, K. V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012. 2012, 1–10. DOI: 10.5402/2012/208760.
  • Khan, A.; Mcmenamin, P.; Rozen, W.; Chae, M.; Saxena, A.; Kamran, M. A Comprehensive Study on 3D Printing Technology Investigation of Heat Storage Performance of A Solar Pond with P … Aiman Nud Emerging Applicat Ions of Bedside 3D Print Ing in Plast Ic Surgery A Comprehensive Study on 3D Printing Technology Investigation. MIT Int. J. Mech. Eng. 2016, 6, 63–69. https://www.researchgate.net/publication/310961474.
  • Kumar, V.; Kandasubramanian, B. Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications. Particuology. 2016, 27, 1–28. DOI: 10.1016/j.partic.2016.01.007.
  • Wong, J.; Gong, A. T.; Defnet, P. A.; Meabe, L.; Beauchamp, B.; Sweet, R. M.; Sardon, H.; Cobb, C. L.; Nelson, A. 3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Adv. Mater. Technol. 2019, 4, 1–6. DOI: 10.1002/admt.201900452.
  • Shin, H. S.; Kim, T.; Bergbreiter, S.; Park, Y. L. Biomimetic Soft Airflow Sensor with Printed Ionogel Conductor, RoboSoft 2019 - 2019 IEEE Int. Conf. Soft Robot. 2019, 611–616. DOI: 10.1109/ROBOSOFT.2019.8722710.
  • Zhang, C.; Zheng, H.; Sun, J.; Zhou, Y.; Xu, W.; Dai, Y.; Mo, J.; Wang, Z. 3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. Adv. Mater. 2022, 34, 1–8. DOI: 10.1002/adma.202105996.
  • Wang, Z.; Zhang, J.; Liu, J.; Hao, S.; Song, H.; Zhang, J. 3D Printable, Highly Stretchable, Superior Stable Ionogels Based on Poly(ionic Liquid) with Hyperbranched Polymers as Macro-cross-linkers for High-Performance Strain Sensors. ACS Appl. Mater. Interfaces. 2021, 13, 5614–5624. DOI: 10.1021/acsami.0c21121.
  • Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New Frontiers in Materials Science Opened by Ionic Liquids. Adv. Mater. 2010, 22, 1196–1221. DOI: 10.1002/adma.200902184.
  • Seki, S.; Susan, M. A. B. H.; Kaneko, T.; Tokuda, H.; Noda, A.; Watanabe, M. Distinct Difference in Ionic Transport Behavior in Polymer Electrolytes Depending on the Matrix Polymers and Incorporated Salts. J. Phys. Chem. B. 2005, 109, 3886–3892. DOI: 10.1021/jp045328j.
  • Ueki, T.; Watanabe, M. Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities. Macromolecules. 2008, 41, 3739–3749. DOI: 10.1021/ma800171k.
  • Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. DOI: 10.1021/cr980032t.
  • Wasserscheid, P., and Welton, T., eds. Ionic Liquids in Synthesis; New Jersey: Wiley, 2007. DOI:10.1002/9783527621194.
  • Leclercq, L.; Schmitzer, A. R. Supramolecular Effects Involving the Incorporation of Guest Substrates in Imidazolium Ionic Liquid Networks: Recent Advances and Future Developments. Supramol. Chem. 2009, 21, 245–263. DOI: 10.1080/10610270802468421.
  • Jiang, J.; Gao, D.; Li, Z.; Su, G. Gel Polymer Electrolytes Prepared by in Situ Polymerization of Vinyl Monomers in room-temperature Ionic Liquids. React. Funct. Polym. 2006, 66, 1141–1148. DOI: 10.1016/j.reactfunctpolym.2006.02.004.
  • Põhako-Esko, K.; Timusk, M.; Saal, K.; Lõhmus, R.; Kink, I.; Mäeorg, U. Increased Conductivity of Polymerized Ionic Liquids through the Use of a Nonpolymerizable Ionic Liquid Additive. J. Mater. Res. 2013, 28, 3086–3093. DOI: 10.1557/jmr.2013.330.
  • Andrzejewska, E.; Marcinkowska, A.; Zgrzeba, A. Ionogels – Materials Containing Immobilized Ionic Liquids. Polimery. 2017, 62, 344–352. DOI: 10.14314/polimery.2017.344.
  • Liew, C.-W.; Ramesh, S.; Arof, A. K. Investigation of Ionic liquid-doped Ion Conducting Polymer Electrolytes for carbon-based Electric Double Layer Capacitors (Edlcs. Mater. Des. 2016, 92, 829–835. DOI: 10.1016/j.matdes.2015.12.115.
  • Sundrarajan, M.; Gandhi, R. G. R.; Suresh, J.; Selvam, S.; Gowri, S. Sol–Gel Synthesis of MgO Nanoparticles Using Ionic Liquid- [BMIM]BF 4 − as Capping Agent. Nanosci. Nanotechnol. Lett. 2012, 4(4), 100–104. DOI: 10.1166/nnl.2012.1273.
  • Bansal, D.; Cassel, F.; Croce, F.; Hendrickson, M.; Plichta, E.; Salomon, M. Conductivities and Transport Properties of Gelled Electrolytes with and without an Ionic Liquid for Li and Li-Ion Batteries. J. Phys. Chem. B. 2005, 109, 4492–4496. DOI: 10.1021/jp0443963.
  • Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes. J. Am. Chem. Soc. 2005, 127, 4976–4983. DOI: 10.1021/ja045155b.
  • Ogihara, W.; Washiro, S.; Nakajima, H.; Ohno, H. Effect of Cation Structure on the Electrochemical and Thermal Properties of Ion Conductive Polymers Obtained from Polymerizable Ionic Liquids. Electrochim. Acta. 2006, 51, 2614–2619. DOI: 10.1016/j.electacta.2005.07.043.
  • Ohno, H. Design of Ion Conductive Polymers Based on Ionic Liquids. Macromol. Symp. 2007, 249–250, 551–556. DOI: 10.1002/masy.200750435.
  • Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H., and Scrosati, B. Ionic-liquid Materials for the Electrochemical Challenges of the Future. In Mater. Sustain. Energy Dusastre, Vincent; Co-Published with Macmillan Publishers Ltd: UK, 2010; 129–137. DOI:10.1142/9789814317665_0020.
  • Li, M.; Yang, L.; Fang, S.; Dong, S. Novel Polymeric Ionic Liquid Membranes as Solid Polymer Electrolytes with High Ionic Conductivity at Moderate Temperature. J. Memb. Sci. 2011, 366, 245–250. DOI: 10.1016/j.memsci.2010.10.004.
  • Yadav, R.; Goud, R.; Dutta, A.; Wang, X.; Naebe, M.; Kandasubramanian, B. Biomimicking of Hierarchal Molluscan Shell Structure via Layer by Layer 3D Printing, Ind. Eng. Chem. Res. 2018, 57, 10832–10840. DOI: 10.1021/acs.iecr.8b01738.
  • Issac, M. N.; Kandasubramanian, B. Review of Manufacturing three-dimensional-printed Membranes for Water Treatment. Environ. Sci. Pollut. Res. 2020, 27, 36091–36108. DOI: 10.1007/s11356-020-09452-2.
  • Shahrubudin, N.; Lee, T. C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. DOI: 10.1016/j.promfg.2019.06.089.
  • Hemanth, N. R.; Kandasubramanian, B. Recent Advances in 2D MXenes for Enhanced Cation Intercalation in Energy Harvesting Applications: A Review. Chem. Eng. J. 2020, 392, 123678. DOI: 10.1016/j.cej.2019.123678.
  • Mu, Q.; Wang, L.; Dunn, C. K.; Kuang, X.; Duan, F.; Zhang, Z.; Qi, H. J.; Wang, T. Digital Light Processing 3D Printing of Conductive Complex Structures. Addit. Manuf. 2017, 18, 74–83. DOI: 10.1016/j.addma.2017.08.011.
  • Stansbury, J. W.; Idacavage, M. J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities, Dent. Mater. 2016, 32, 54–64. DOI: 10.1016/j.dental.2015.09.018.
  • Crivello, J. V.; Lee, J. L. Alkoxy-substituted Diaryliodonium Salt Cationic Photoinitiators. J. Polym. Sci. Part A Polym. Chem. 1989, 27, 3951–3968. DOI: 10.1002/pola.1989.080271207.
  • Rasaki, S. A.; Xiong, D.; Xiong, S.; Su, F.; Idrees, M.; Chen, Z. Photopolymerization-based Additive Manufacturing of Ceramics: A Systematic Review. J. Adv. Ceram. 2021, 10, 442–471. DOI: 10.1007/s40145-021-0468-z.
  • Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D Printing of Soft Robotic Systems. Nat. Rev. Mater. 2018, 3, 84–100. DOI: 10.1038/s41578-018-0002-2.
  • Walker, D. A.; Hedrick, J. L.; Mirkin, C. A. Rapid, large-volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface. Science 2019, 366, 360–364. 80. DOI: 10.1126/science.aax1562.
  • Truby, R. L.; Lewis, J. A. Printing Soft Matter in Three Dimensions. Nature. 2016, 540(7633), 371–378. DOI: 10.1038/nature21003.
  • Zhang, B.; Li, H.; Cheng, J.; Ye, H.; Sakhaei, A. H.; Yuan, C.; Rao, P.; Zhang, Y.; Chen, Z.; Wang, R., et al. Mechanically Robust and UV‐Curable Shape‐Memory Polymers for Digital Light Processing Based 4D Printing. Adv. Mater. 2021, 33, 2101298. DOI: 10.1002/adma.202101298.
  • Lei, Z.; Wu, P. A Highly Transparent and ultra-stretchable Conductor with Stable Conductivity during Large Deformation. Nat. Commun. 2019, 10, 3429. DOI: 10.1038/s41467-019-11364-w.
  • Yu, Z.; Wu, P. Underwater Communication and Optical Camouflage Ionogels. Adv. Mater. 2021, 33, 2008479. DOI: 10.1002/adma.202008479.
  • Champeau, M.; Heinze, D. A.; Viana, T. N.; de Souza, E. R.; Chinellato, A. C.; Titotto, S. 4D Printing of Hydrogels: A Review. Adv. Funct. Mater. 2020, 30, 1910606. DOI: 10.1002/adfm.201910606.
  • Chen, L.; Guo, M. Highly Transparent, Stretchable, and Conductive Supramolecular Ionogels Integrated with Three-Dimensional Printable, Adhesive, Healable, and Recyclable Character. ACS Appl. Mater. Interfaces. 2021, 13, 25365–25373. DOI: 10.1021/acsami.1c04255.
  • Wong, J.; Gong, A. T.; Defnet, P. A.; Meabe, L.; Beauchamp, B.; Sweet, R. M.; Sardon, H.; Cobb, C. L.; Nelson, A. 3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Adv. Mater. Technol. 2019, 4, 1900452. DOI: 10.1002/admt.201900452.
  • Hao, S.; Li, T.; Yang, X.; Song, H. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS Appl. Mater. Interfaces. 2022, 14, 2029–2037. DOI: 10.1021/acsami.1c21325.
  • Karakurt, I.; Lin, L. 3D Printing Technologies: Techniques, Materials, and post-processing, Curr. Opin. Chem. Eng. 2020, 28, 134–143. DOI: 10.1016/j.coche.2020.04.001.
  • Zhu, Z.; Park, H. S.; McAlpine, M. C. 3D Printed Deformable Sensors. Sci. Adv. 2020, 6, 1–11. DOI: 10.1126/sciadv.aba5575.
  • Shahrubudin, N.; Lee, T. C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. DOI: 10.1016/j.promfg.2019.06.089.
  • Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities, Mater. Today. 2018, 21, 22–37. DOI: 10.1016/j.mattod.2017.07.001.
  • Hsueh, M.-H.; Lai, C.-J.; Wang, S.-H.; Zeng, Y.-S.; Hsieh, C.-H.; Pan, C.-Y.; Huang, W.-C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers (Basel). 2021, 13, 1758. DOI: 10.3390/polym13111758.
  • Padole, M.; Gharde, S.; Kandasubramanian, B. Three-dimensional Printing of Molluscan Shell Inspired Architectures via Fused Deposition Modeling. Environ. Sci. Pollut. Res. 2021, 28, 46356–46366. DOI: 10.1007/s11356-020-09799-6.
  • Goud, R.; Yadav, R.; Wang, X.; Naebe, M.; Kandasubramanian, B. Mollusk-Inspired 3D Printing of Polycarbonate via Fused Deposition Modelling; Springer International Publishing: Cham, 2021, pp 1493–1504, Handb. Polym. Ceram. Nanotechnol. DOI: 10.1007/978-3-030-40513-7_46.
  • Varma, M. V.; Kandasubramanian, B.; Ibrahim, S. M. 3D Printed Scaffolds for Biomedical Applications. Mater. Chem. Phys. 2020, 255, 123642. DOI: 10.1016/j.matchemphys.2020.123642.
  • Goud, R.; Yadav, R.; Wang, X.; Naebe, M.; Kandasubramanian, B. Mollusk-Inspired 3D Printing of Polycarbonate via Fused Deposition Modelling; Springer International Publishing: Cham, 2020, pp 1–12, Handb. Polym. Ceram. Nanotechnol. DOI: 10.1007/978-3-030-10614-0_46-1.
  • Experimental Study of the Cooling Characteristics of Polymer Filaments in FDM and Impact on the Mesostructures and Properties of Prototypes. Proceedings of the 14th Solid Freeform Fabrication Symposium, The University of Texas in Austin, (n.d.). DOI: 10.26153/tsw/5566.
  • Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A Critical Review of Fused Deposition Modeling 3D Printing Technology in Manufacturing Polylactic Acid Parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. DOI: 10.1007/s00170-019-03332-x.
  • Xiang, D.; Zhang, X.; Harkin-Jones, E.; Zhu, W.; Zhou, Z.; Shen, Y.; Li, Y.; Zhao, C.; Wang, P. Synergistic Effects of Hybrid Conductive Nanofillers on the Performance of 3D Printed Highly Elastic Strain Sensors, Compos. Part A Appl. Sci. Manuf. 2020, 129, 105730. DOI: 10.1016/j.compositesa.2019.105730.
  • Cheng, Y.; Chan, K. H.; Wang, X.-Q.; Ding, T.; Li, T.; Lu, X.; Ho, G. W. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano. 2019, 13, 13176–13184. DOI: 10.1021/acsnano.9b06144.
  • Huang, T.; Liu, W.; Su, C.; Li, Y.; Sun, J. Direct Ink Writing of Conductive Materials for Emerging Energy Storage Systems. Nano Res. 2022, 15, 6091–6111. DOI: 10.1007/s12274-022-4200-2.
  • Lewis, J. A.; Gratson, G. M. Direct Writing in Three Dimensions, Mater. Today. 2004, 7, 32–39. DOI: 10.1016/S1369-7021(04)00344-X.
  • Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Anal. Chem. 2014, 86, 3240–3253. DOI: 10.1021/ac403397r.
  • Sachs, E.; Cima, M.; Williams, P.; Brancazio, D.; Cornie, J. Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. J. Eng. Ind. 1992, 114, 481–488. DOI: 10.1115/1.2900701.
  • Song, J. H.; Edirisinghe, M. J.; Evans, J. R. G. Formulation and Multilayer Jet Printing of Ceramic Inks. J. Am. Ceram. Soc. 2004, 82, 3374–3380. DOI: 10.1111/j.1151-2916.1999.tb02253.x.
  • Lewis, J. A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. DOI: 10.1002/adfm.200600434.
  • Morissette, S. L.; Lewis, J. A.; Clem, P. G.; Cesarano, J.; Dimos, D. B. Direct-Write Fabrication of Pb(Nb,Zr,Ti)O 3 Devices: Influence of Paste Rheology on Print Morphology and Component Properties. J. Am. Ceram. Soc. 2001, 84, 2462–2468. DOI: 10.1111/j.1151-2916.2001.tb01036.x.
  • Smay, J. E.; Cesarano, J.; Lewis, J. A. Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Langmuir. 2002, 18, 5429–5437. DOI: 10.1021/la0257135.
  • Smay, J. E.; Gratson, G. M.; Shepherd, R. F.; Cesarano, J.; Lewis, J. A. Directed Colloidal Assembly of 3D Periodic Structures. Adv. Mater. 2002, 14, 1279–1283. DOI: 10.1002/1521-4095(20020916)14:18<1279::AID-ADMA1279>3.0.CO;2-A.
  • Zhao†, X.; Evans, J. R. G.; Edirisinghe, M. J.; Song, J.-H. Direct Ink-Jet Printing of Vertical Walls. J. Am. Ceram. Soc. 2002, 85, 2113–2115. DOI: 10.1111/j.1151-2916.2002.tb00414.x.
  • Mott, M.; Evans, J. R. Zirconia/alumina Functionally Graded Material Made by Ceramic Ink Jet Printing, Mater. Sci. Eng. A. 1999, 271, 344–352. DOI: 10.1016/S0921-5093(99)00266-X.
  • Tay, B. Y.; Edirisinghe, M. J. Investigation of Some Phenomena Occurring during Continuous ink-jet Printing of Ceramics. J. Mater. Res. 2001, 16, 373–384. DOI: 10.1557/JMR.2001.0057.
  • Seerden, K. A. M.; Reis, N.; Evans, J. R. G.; Grant, P. S.; Halloran, J. W.; Derby, B. Ink-Jet Printing of Wax-Based Alumina Suspensions. J. Am. Ceram. Soc. 2001, 84, 2514–2520. DOI: 10.1111/j.1151-2916.2001.tb01045.x.
  • Gratson, G. M.; Xu, M.; Lewis, J. A. Microperiodic Structures: Direct Writing of three-dimensional Webs. Nature. 2004, 428, 386–386. DOI: 10.1038/428386a.
  • Krishnan, V. V.; Ramola, K.; Karmakar, S. Universal non-Debye low-frequency Vibrations in Sheared Amorphous Solids. Soft Matter. 2022. DOI: 10.1039/D2SM00218C.
  • Therriault, D.; White, S. R.; Lewis, J. A. Chaotic Mixing in three-dimensional Microvascular Networks Fabricated by direct-write Assembly. Nat. Mater. 2003, 2, 265–271. DOI: 10.1038/nmat863.
  • Smay, J. E.; Cesarano, J.; Tuttle, B. A.; Lewis, J. A. Piezoelectric Properties of 3- X Periodic Pb(ZrxTi1−X)O3–polymer Composites. J. Appl. Phys. 2002, 92, 6119–6127. DOI: 10.1063/1.1513202.
  • Lai, C. W.; Yu, S. S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces. 2020, 12, 34235–34244. DOI: 10.1021/acsami.0c11152.
  • Li, K.; Wei, H.; Liu, W.; Meng, H.; Zhang, P.; Yan, C. 3D Printed Stretchable Capacitive Sensors for Highly Sensitive Tactile and Electrochemical Sensing. Nanotechnology. 2018, 29, 185501. DOI: 10.1088/1361-6528/aaafa5.
  • Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for 2D and 3D Printed Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1712–1740. DOI: 10.1039/C8CS00738A.
  • Kotikian, A.; Truby, R. L.; Boley, J. W.; White, T. J.; Lewis, J. A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Adv. Mater. 2018, 30, 1706164. DOI: 10.1002/adma.201706164.
  • Farahani, R. D.; Dubé, M.; Therriault, D. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv. Mater. 2016, 28, 5794–5821. DOI: 10.1002/adma.201506215.
  • Sun, L.; Chen, S.; Guo, Y.; Song, J.; Zhang, L.; Xiao, L.; Guan, Q.; You, Z. Ionogel-based, Highly Stretchable, Transparent, Durable Triboelectric Nanogenerators for Energy Harvesting and Motion Sensing over a Wide Temperature Range. Nano Energy. 2019, 63, 103847. DOI: 10.1016/j.nanoen.2019.06.043.
  • Wu, W.; DeConinck, A.; Lewis, J. A. Omnidirectional Printing of 3D Microvascular Networks. Adv. Mater. 2011, 23, H178–H183. DOI: 10.1002/adma.201004625.
  • Muth, J. T.; Vogt, D. M.; Truby, R. L.; Mengüç, Y.; Kolesky, D. B.; Wood, R. J.; Lewis, J. A. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Adv. Mater. 2014, 26, 6307–6312. DOI: 10.1002/adma.201400334.
  • Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature. 2016, 536, 451–455. DOI: 10.1038/nature19100.
  • Truby, R. L.; Wehner, M.; Grosskopf, A. K.; Vogt, D. M.; Uzel, S. G. M.; Wood, R. J.; Lewis, J. A. Soft Somatosensitive Actuators via Embedded 3D Printing. Adv. Mater. 2018, 30, 1706383. DOI: 10.1002/adma.201706383.
  • Grosskopf, A. K.; Truby, R. L.; Kim, H.; Perazzo, A.; Lewis, J. A.; Stone, H. A. Viscoplastic Matrix Materials for Embedded 3D Printing. ACS Appl. Mater. Interfaces. 2018, 10, 23353–23361. DOI: 10.1021/acsami.7b19818.
  • Truby, R. L.; Katzschmann, R. K.; Lewis, J. A., and Rus, D. Soft Robotic Fingers with Embedded Ionogel Sensors and Discrete Actuation Modes for Somatosensitive Manipulation. RoboSoft 2019 - 2019 IEEE Int. Conf. Soft Robot, Seoul, South Korea. 2019, 322–329. DOI: 10.1109/ROBOSOFT.2019.8722722.
  • Onal, C. D.; Chen, X.; Whitesides, G. M., and Rus, D. Soft Mobile Robots with On-Board Chemical Pressure Generation, Switzerland: Springer Nature. 2017, 525–540. Doi:10.1007/978-3-319-29363-9_30.
  • Yan-qing, W.; Zhong-ming, W.; Cheng-jin, S.; You-liang, W. Research on Enhancement of GFRP-anchor’s Torsional Strength. Sci. Eng. Compos. Mater. 2012, 19, 423–429. DOI: 10.1515/secm-2011-0141.
  • Liu, H.; Zhang, H.; Han, W.; Lin, H.; Li, R.; Zhu, J.; Huang, W. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals. Adv. Mater. 2021, 33, 1–19. DOI: 10.1002/adma.202004782.
  • Kousiatza, C.; Tzetzis, D.; Karalekas, D. In-situ Characterization of 3D Printed Continuous Fiber Reinforced Composites: A Methodological Study Using Fiber Bragg Grating Sensors, Compos. Sci. Tech. 2019, 174, 134–141. DOI: 10.1016/j.compscitech.2019.02.008.
  • Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer Composite for Antistatic Application in Aerospace, Def. Technol. 2020, 16, 107–118. DOI: 10.1016/j.dt.2019.04.008.
  • George, S. M.; Kandasubramanian, B. Advancements in MXene-Polymer Composites for Various Biomedical Applications. Ceram. Int. 2020, 46, 8522–8535. DOI: 10.1016/j.ceramint.2019.12.257.
  • Ambekar, R. S.; Choudhary, M.; Kandasubramanian, B. Recent Advances in dendrimer-based Nanoplatform for Cancer Treatment: A Review, Eur. Polym. J. 2020, 126, 109546. DOI: 10.1016/j.eurpolymj.2020.109546.
  • Sarath, M. V.; Gharde, S. S.; Ojjela, O., and Kandasubramanian, B. Fiber-Reinforced Composites for Restituting Automobile Leaf Spring Suspension System; Switzerland: Springer Nature. 2021, 67–105. Doi:10.1007/978-981-33-4550-8_4.
  • Ambekar, R. S.; Kandasubramanian, B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application, Ind. Eng. Chem. Res. 2019, 58, 6163–6194. DOI: 10.1021/acs.iecr.8b05334.
  • Jiang, G.; Gilbert, M.; Hitt, D. J.; Wilcox, G. D.; Balasubramanian, K. Preparation of Nickel Coated Mica as A Conductive Filler, Compos. Part A Appl. Sci. Manuf. 2002, 33, 745–751. DOI: 10.1016/S1359-835X(01)00148-8.
  • V, N.; Kandasubramanian, B. Advanced Polymeric Composites via Commingling for Critical Engineering Applications. Polym. Test. 2020, 91, 106774. DOI: 10.1016/j.polymertesting.2020.106774.
  • Cao, Z.; Liu, H.; Jiang, L. Transparent, Mechanically Robust, and Ultrastable Ionogels Enabled by Hydrogen Bonding between Elastomers and Ionic Liquids, Mater. Horizons. 2020, 7, 912–918. DOI: 10.1039/C9MH01699F.
  • Wang, M.; Li, R.; Chen, G.; Zhou, S.; Feng, X.; Chen, Y.; He, M.; Liu, D.; Song, T.; Qi, H. Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents. ACS Appl. Mater. Interfaces. 2019, 11, 14313–14321. DOI: 10.1021/acsami.9b00728.
  • Zhang, J.; Liu, E.; Hao, S.; Yang, X.; Li, T.; Lou, C.; Run, M.; Song, H. 3D Printable, ultra-stretchable, Self-healable, and self-adhesive Dual cross-linked Nanocomposite Ionogels as ultra-durable Strain Sensors for Motion Detection and Wearable human-machine Interface. Chem. Eng. J. 2022, 431, 133949. DOI: 10.1016/j.cej.2021.133949.
  • Liu, X.; Taiwo, O. O.; Yin, C.; Ouyang, M.; Chowdhury, R.; Wang, B.; Wang, H.; Wu, B.; Brandon, N. P.; Wang, Q., et al. Aligned Ionogel Electrolytes for High-Temperature Supercapacitors. Adv. Sci. 2019, 6, 1801337. DOI: 10.1002/advs.201801337.
  • Kim, Y. M.; Moon, H. C. Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics. Adv. Funct. Mater. 2020, 30, 1907290. DOI: 10.1002/adfm.201907290.
  • Li, H.; Feng, Z.; Zhao, K.; Wang, Z.; Liu, J.; Liu, J.; Song, H. Chemically Crosslinked Liquid Crystalline Poly(ionic liquid)s/halloysite Nanotubes Nanocomposite Ionogels with Superior Ionic Conductivity, High Anisotropic Conductivity and a High Modulus. Nanoscale. 2019, 11, 3689–3700. DOI: 10.1039/C8NR09030K.
  • Lai, J.; Zhou, H.; Jin, Z.; Li, S.; Liu, H.; Jin, X.; Luo, C.; Ma, A.; Chen, W. Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant Ionogels for High-Performance Flexible Sensors. ACS Appl. Mater. Interfaces. 2019, 11, 26412–26420. DOI: 10.1021/acsami.9b10146.
  • Xiang, S.; Zheng, F.; Chen, S.; Lu, Q. Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. ACS Appl. Mater. Interfaces. 2021, 13, 20653–20661. DOI: 10.1021/acsami.1c02843.
  • Hammock, M. L.; Chortos, A.; Tee, B. C.-K.; Tok, J. B.-H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History. Adv. Mater. 2013, 25, 5997–6038. DOI: 10.1002/adma.201302240.
  • Luque, G. C.; Picchio, M. L.; Martins, A. P. S.; Dominguez-Alfaro, A.; Ramos, N.; Del Agua, I.; Marchiori, B.; Mecerreyes, D.; Minari, R. J.; Tomé, L. C. 3D Printable and Biocompatible Iongels for Body Sensor Applications. Adv. Electron. Mater. 2021, 7, 202100178. DOI: 10.1002/aelm.
  • Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2016, 28, 4449–4454. DOI: 10.1002/adma.201503132.
  • Yang, H.; Qi, D.; Liu, Z.; Chandran, B. K.; Wang, T.; Yu, J.; Chen, X. Soft Thermal Sensor with Mechanical Adaptability. Adv. Mater. 2016, 28, 9175–9181. DOI: 10.1002/adma.201602994.
  • Peng, S.; Li, Y.; Wu, L.; Zhong, J.; Weng, Z.; Zheng, L.; Yang, Z.; Miao, J.-T. 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS Appl. Mater. Interfaces. 2020, 12, 6479–6488. DOI: 10.1021/acsami.9b20631.
  • Caprioli, M.; Roppolo, I.; Chiappone, A.; Larush, L.; Pirri, C. F.; Magdassi, S. 3D-printed self-healing Hydrogels via Digital Light Processing. Nat. Commun. 2021, 12, 2462. DOI: 10.1038/s41467-021-22802-z.
  • Cai, L.; Chen, G.; Tian, J.; Su, B.; He, M. Three-dimensional Printed Ultrahighly Sensitive Bioinspired Ionic Skin Based on Submicrometer-Scale Structures by Polymerization Shrinkage. Chem. Mater. 2021, 33, 2072–2079. DOI: 10.1021/acs.chemmater.0c04581.
  • Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F. Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing‐Tolerant Ionic Conductive Organohydrogel for Multi‐Functional Sensors. Adv. Funct. Mater. 2020, 30, 2003430. DOI: 10.1002/adfm.202003430.
  • Malik, A.; Kandasubramanian, B. Flexible Polymeric Substrates for Electronic Applications. Polym. Rev. 2018, 58, 630–667. DOI: 10.1080/15583724.2018.1473424.
  • Cowan, M. G.; Lopez, A. M.; Masuda, M.; Kohno, Y.; McDanel, W. M.; Noble, R. D.; Gin, D. L. Imidazolium-Based Poly(ionic liquid)/Ionic Liquid Ion-Gels with High Ionic Conductivity Prepared from a Curable Poly(ionic Liquid. Macromol. Rapid Commun. 2016, 37, 1150–1154. DOI: 10.1002/marc.201600029.
  • Yu, X.; Zheng, Y.; Zhang, H.; Wang, Y.; Fan, X.; Liu, T. Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing. Chem. Mater. 2021, 33, 6146–6157. DOI: 10.1021/acs.chemmater.1c01595.
  • Wang, Y.; Cao, X.; Cheng, J.; Yao, B.; Zhao, Y.; Wu, S.; Ju, B.; Zhang, S.; He, X.; Niu, W. Cephalopod-Inspired Chromotropic Ionic Skin with Rapid Visual Sensing Capabilities to Multiple Stimuli. ACS Nano. 2021, 15, 3509–3521. DOI: 10.1021/acsnano.1c00181.
  • Wen, J.; Tang, J.; Ning, H.; Hu, N.; Zhu, Y.; Gong, Y.; Xu, C.; Zhao, Q.; Jiang, X.; Hu, X., et al. Multifunctional Ionic Skin with Sensing, UV‐Filtering, Water‐Retaining, and Anti‐Freezing Capabilities. Adv. Funct. Mater. 2021, 31, 2011176. DOI: 10.1002/adfm.202011176.
  • Gong, S.; Wang, Y.; Yap, L. W.; Ling, Y.; Zhao, Y.; Dong, D.; Shi, Q.; Liu, Y.; Uddin, H.; Cheng, W. A Location- and sharpness-specific Tactile Electronic Skin Based on staircase-like Nanowire Patches. Nanoscale Horizons. 2018, 3, 640–647. DOI: 10.1039/C8NH00125A.
  • Mackanic, D. G.; Chang, T.-H.; Huang, Z.; Cui, Y.; Bao, Z. Stretchable Electrochemical Energy Storage Devices. Chem. Soc. Rev. 2020, 49, 4466–4495. DOI: 10.1039/D0CS00035C.
  • Trung, T. Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. DOI: 10.1002/adma.201504244.
  • Han, -D.-D.; Zhang, Y.-L.; Ma, J.-N.; Liu, Y.-Q.; Han, B.; Sun, H.-B. Light-Mediated Manufacture and Manipulation of Actuators. Adv. Mater. 2016, 28, 8328–8343. DOI: 10.1002/adma.201602211.
  • Korde, J. M.; Kandasubramanian, B. Naturally Biomimicked Smart Shape Memory Hydrogels for Biomedical Functions. Chem. Eng. J. 2020, 379, 122430. DOI: 10.1016/j.cej.2019.122430.
  • Ambekar, R. S.; Kandasubramanian, B. Advancements in Nanofibers for Wound Dressing: A Review, Eur. Polym. J. 2019, 117, 304–336. DOI: 10.1016/j.eurpolymj.2019.05.020.
  • Simões, M.; Pereira, A. R.; Simões, L. C.; Cagide, F.; Borges, F. Biofilm Control by Ionic Liquids, Drug Discov. Today. 2021, 26, 1340–1346. DOI: 10.1016/j.drudis.2021.01.031.
  • Matsuhisa, N.; Chen, X.; Bao, Z.; Someya, T. Materials and Structural Designs of Stretchable Conductors. Chem. Soc. Rev. 2019, 48, 2946–2966. DOI: 10.1039/C8CS00814K.
  • Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Adv. Mater. 2016, 28, 9881–9919. DOI: 10.1002/adma.201602251.
  • Wang, M.; Yan, Z.; Wang, T.; Cai, P.; Gao, S.; Zeng, Y.; Wan, C.; Wang, H.; Pan, L.; Yu, J., et al. Gesture Recognition Using a Bioinspired Learning Architecture that Integrates Visual Data with Somatosensory Data from Stretchable Sensors. Nat. Electron. 2020, 3, 563–570. DOI: 10.1038/s41928-020-0422-z.
  • Pena-Francesch, A.; Jung, H.; Demirel, M. C.; Sitti, M. Biosynthetic self-healing Materials for Soft Machines. Nat. Mater. 2020, 19, 1230–1235. DOI: 10.1038/s41563-020-0736-2.
  • Yadav, R.; Naebe, M.; Wang, X.; Kandasubramanian, B. Body Armour Materials: From Steel to Contemporary Biomimetic Systems. RSC Adv. 2016, 6, 115145–115174. DOI: 10.1039/C6RA24016J.
  • Sahoo, B. N.; Kandasubramanian, B. Recent Progress in Fabrication and Characterisation of Hierarchical Biomimetic Superhydrophobic Structures. RSC Adv. 2014, 4, 22053. DOI: 10.1039/c4ra00506f.
  • Fu, K.; Yao, Y.; Dai, J.; Hu, L. Progress in 3D Printing of Carbon Materials for Energy‐Related Applications. Adv. Mater. 2017, 29, 1603486. DOI: 10.1002/adma.201603486.
  • Yang, H.; Leow, W. R.; Chen, X. 3D Printing of Flexible Electronic Devices. Small Methods. 2018, 2, 1700259. DOI: 10.1002/smtd.201700259.
  • Kotz, F.; Arnold, K.; Bauer, W.; Schild, D.; Keller, N.; Sachsenheimer, K.; Nargang, T. M.; Richter, C.; Helmer, D.; Rapp, B. E. Three-dimensional Printing of Transparent Fused Silica Glass. Nature. 2017, 544, 337–339. DOI: 10.1038/nature22061.
  • Moore, D. G.; Barbera, L.; Masania, K.; Studart, A. R. Three-dimensional Printing of Multicomponent Glasses Using phase-separating Resins. Nat. Mater. 2020, 19, 212–217. DOI: 10.1038/s41563-019-0525-y.
  • Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater. 2017, 29, 1606000. DOI: 10.1002/adma.201606000.
  • Xing, J.-F.; Zheng, M.-L.; Duan, X.-M. Two-photon Polymerization Microfabrication of Hydrogels: An advanced 3D Printing Technology for Tissue Engineering and Drug Delivery. Chem. Soc. Rev. 2015, 44, 5031–5039. DOI: 10.1039/C5CS00278H.
  • Minas, C.; Carnelli, D.; Tervoort, E.; Studart, A. R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics. Adv. Mater. 2016, 28, 9993–9999. DOI: 10.1002/adma.201603390.
  • Jayalakshmi, C. G.; Inamdar, A.; Anand, A.; Kandasubramanian, B. Polymer Matrix Composites as Broadband Radar Absorbing Structures for Stealth Aircrafts. J. Appl. Polym. Sci. 2018, 47241. DOI: 10.1002/app.47241.
  • Zammali, M.; Liu, S.; Yu, W. A Biomimetic skin-like Sensor with Multiple Sensory Capabilities Based on Hybrid Ionogel, Sensors Actuators. A Phys. 2021, 330, 112855. DOI: 10.1016/j.sna.2021.112855.
  • Crump, M. R.; Gong, A. T.; Chai, D.; Bidinger, S. L.; Pavinatto, F. J.; Reihsen, T. E.; Sweet, R. M.; Mackenzie, J. D. Monolithic 3D Printing of Embeddable and Highly Stretchable Strain Sensors Using Conductive Ionogels. Nanotechnology. 2019, 30. DOI: 10.1088/1361-6528/ab2440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.