226
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings

, , &
Pages 563-581 | Received 01 Aug 2022, Accepted 20 Sep 2022, Published online: 26 Dec 2022

References

  • Lendlein, A.; Kelch, S. Shape-memory Polymers. Angew. Chem. Int. Ed. 2002, 41(12), 2034–2057. DOI: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M.
  • Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv.Mate. 2021, 33(6), 2000713. DOI: 10.1002/adma.202000713.
  • Liu, C.; Qin, H.; Mather, P. Review of Progress in shape-memory Polymers. J. Mater. Chem. 2007, 17(16), 1543–1558. DOI: 10.1039/b615954k.
  • Wenbing, L.; Wanting, W.; Jinrong, L.; Junhao, L.; Kun, Q. Research Progress of Shape Memory Polymer Fibers and Reinforced Composites. 复合材料学报. 2022, 39(1), 77–96.
  • Kim, Y.-J.; Matsunaga, Y. T. Thermo-responsive Polymers and Their Application as Smart Biomaterials. J. Mater Chem. B. 2017, 5(23), 4307–4321. DOI: 10.1039/C7TB00157F.
  • Yoon, J. Design-to-fabrication with thermo-responsive Shape Memory Polymer Applications for Building Skins. Archit. Sci. Rev. 2021, 64(1–2), 72–86. DOI: 10.1080/00038628.2020.1742644.
  • Huang, Y.; Deng, L.; Ju, P.; Huang, L.; Qian, H.; Zhang, D.; Li, X.; Terryn, H. A.; Mol, J. M. Triple-action self-healing Protective Coatings Based on Shape Memory Polymers Containing dual-function Microspheres. ACS Appl. Mater. Interfaces. 2018, 10(27), 23369–23379. DOI: 10.1021/acsami.8b06985.
  • Asar, A.; Irfan, M.; Khan, K.; Zaki, W.; Umer, R. Self-sensing Shape Memory Polymer Composites Reinforced with Functional Textiles. Compos. Sci. Technol. 2022, 221, 109219. DOI: 10.1016/j.compscitech.2021.109219.
  • Sun, W.-J.; Guan, Y.; Jia, L.-C.; Li, Y.; Huang, H.-D.; Wang, -Y.-Y.; Tang, J.-H.; Yan, D.-X.; Li, Z.-M. Low-voltage and controllable-developed Actuator with Bilayer Structure Based on triple-shape Actuation. Compos. Sci. Technol. 2022, 222, 109399. DOI: 10.1016/j.compscitech.2022.109399.
  • Chang, L.; Wang, D.; Jiang, A.; Hu, Y. Soft Actuators Based on Carbon Nanomaterials. ChemPlusChem. 2022, 87(2), e202100437.
  • Sobczyk, M.; Wiesenhütter, S.; Noennig, J. R.; Wallmersperger, T. Smart Materials in Architecture for Actuator and Sensor Applications: A Review. J. Intell. Mater. Syst. Struct. 2022, 33(3), 379–399.
  • Serrano, M. C.; Ameer, G. A. Recent Insights into the Biomedical Applications of Shape-memory Polymers. Macromol. Biosci. 2012, 12(9), 1156–1171. DOI: 10.1002/mabi.201200097.
  • Safranski, D. L.; Griffis, J. C. Applications of shape-memory Polymers. Shape-Memory Polymer Device Design. 2017, 189–222.
  • Lendlein, A.; Gould, O. E. C. Reprogrammable Recovery and Actuation Behaviour of shape-memory Polymers. Nat. Rev. Mater. 2019, 4(2), 116–133. DOI: 10.1038/s41578-018-0078-8.
  • Akindoyo, J. O.; Beg, M. D.; Ghazali, S.; Islam, M.; Jeyaratnam, N.; Yuvaraj, A. Polyurethane Types, Synthesis and Applications – A Review. RSC Adv. 2016, 6(115), 114453–114482. DOI: 10.1039/C6RA14525F.
  • Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3(3), 93–101. DOI: 10.1016/j.aiepr.2020.07.002.
  • Guillame, S. M.; Khalil, H.; Misra, M. Green and Sustainable Polyurethanes for Advanced Applications; Wiley Online Library, 2017; 134(45); 45646.
  • Menon, A. V.; Madras, G.; Bose, S. Shape Memory Polyurethane Nanocomposites with Porous Architectures for Enhanced Microwave Shielding. Chem. Eng. J. 2018, 352, 590–600. DOI: 10.1016/j.cej.2018.07.048.
  • Guan, X.; Xia, H.; Ni, -Q.-Q. Shape Memory polyurethane-based Electrospun Yarns for thermo-responsive Actuation. J. Appl. Polym. Sci. 2021, 138(24), 50565. DOI: 10.1002/app.50565.
  • Ahmed, N.; Kausar, A.; Muhammad, B. Advances in Shape Memory Polyurethanes and Composites: A Review. Polym.-Plast. Technol. Eng. 2015, 54(13), 1410–1423. DOI: 10.1080/03602559.2015.1021490.
  • Seymour, I. OPEC in the 1990s. Energy. 1992, 20(10), 909–912.
  • Wang, Y.; Xu, G.; Yu, H.; Hu, C.; Yan, X.; Guo, T.; Li, J. Comparison of anti-corrosion Properties of Polyurethane Based Composite Coatings with Low Infrared Emissivity. Appl. Surf. Sci. 2011, 257(10), 4743–4748. DOI: 10.1016/j.apsusc.2010.12.152.
  • Im, J. S.; Bai, B. C.; Bae, T.-S.; In, S. J.; Lee, Y.-S. Improved anti-oxidation Properties of Electrospun Polyurethane Nanofibers Achieved by Oxyfluorinated multi-walled Carbon Nanotubes and Aluminum Hydroxide. Mater. Chem. Phys. 2011, 126(3), 685–692. DOI: 10.1016/j.matchemphys.2010.12.061.
  • Bramhecha, I.; Sheikh, J. Development of Sustainable Citric acid-based Polyol to Synthesize Waterborne Polyurethane for Antibacterial and Breathable Waterproof Coating of Cotton Fabric. Ind. Eng. Chem. Res. 2019, 58(47), 21252–21261. DOI: 10.1021/acs.iecr.9b05195.
  • Dhineshbabu, N. R.; Bose, S. Smart Textiles Coated with eco-friendly UV-blocking Nanoparticles Derived from Natural Resources. ACS omega. 2018, 3(7), 7454–7465. DOI: 10.1021/acsomega.8b00822.
  • Li, J.; Ning, Z.; Yang, W.; Yang, B.; Zeng, Y. Hydroxyl-Terminated Polybutadiene-Based Polyurethane with Self-Healing and Reprocessing Capabilities. ACS Omega. 2022,7(12), 10156–10166.
  • Gopinath, S.; Adarsh, N.; Nair, P. R.; Mathew, S. One-way thermo-responsive Shape Memory Polymer Nanocomposite Derived from Polycaprolactone and polystyrene-block-polybutadiene-block-polystyrene Packed with Carbon Nanofiber. Mater. Today Commun. 2020, 22, 100802. DOI: 10.1016/j.mtcomm.2019.100802.
  • Gopinath, S.; Adarsh, N. N.; Nair, P. R.; Mathew, S. Shape-Memory Polymer Nanocomposites of Poly(ε-caprolactone) with the Polystyrene- Block -polybutadiene- Block -polystyrene-tri- Block Copolymer Encapsulated with Metal Oxides. ACS omega. 2021, 6(9), 6261–6273. DOI: 10.1021/acsomega.0c05839.
  • Gopinath, S.; Adarsh, N. N.; Radhakrishnan Nair, P.; Mathew, S. Nano-metal Oxide Fillers in thermo-responsive polycaprolactone-based Polymer Nanocomposites Smart Materials: Impact on thermo-mechanical, and Shape Memory Properties. J. Vinyl Addit. Technol. 2021, 27(4), 768–780. DOI: 10.1002/vnl.21848.
  • Wu, X.; Han, Y.; Zhou, Z.; Zhang, X.; Lu, C. New Scalable Approach toward Shape Memory Polymer Composites via “Spring-Buckle” Microstructure Design. Microstructure Design, ACS applied materials & interfaces. 2017, 9(15), 13657–13665. DOI: 10.1021/acsami.7b02238.
  • Gunes, I. S.; Cao, F.; Jana, S. C. Evaluation of Nanoparticulate Fillers for Development of Shape Memory Polyurethane Nanocomposites. Polymer. 2008, 49(9), 2223–2234. DOI: 10.1016/j.polymer.2008.03.021.
  • Pradhan, S.; Sahu, S. K.; Pramanik, J.; Badgayan, N. D. An Insight into Mechanical & Thermal Properties of Shape Memory Polymer Reinforced with Nanofillers; a Critical Review, Materials Today: Proceedings, 2021, 50:1107–1112.
  • Wei, H.; Ding, D.; Wei, S.; Guo, Z. Anticorrosive Conductive Polyurethane Multiwalled Carbon Nanotube Nanocomposites. J. Mater. Chem. A. 2013, 1(36), 10805–10813. DOI: 10.1039/c3ta11966a.
  • Qu, M.; Wang, H.; Chen, Q.; Wu, L.; Tang, P.; Fan, M.; Guo, Y.; Fan, H.; Bin, Y. A thermally-electrically double-responsive Polycaprolactone – Thermoplastic polyurethane/multi-walled Carbon Nanotube Fiber Assisted with Highly Effective Shape Memory and Strain Sensing Performance. Chem. Eng. J. 2022, 427, 131648. DOI: 10.1016/j.cej.2021.131648.
  • Dobashi, R.; Matsunaga, K.; Tajima, M. Effects of Fullerene Derivatives on the Gas Permeability of Thermoplastic Polyurethane Elastomers. J. Appl. Polym. Sci. 2014, 131(6). DOI: 10.1002/app.39986.
  • Punetha, V. D.; Ha, Y.-M.; Kim, Y.-O.; Jung, Y. C.; Cho, J. W. Rapid Remote Actuation in Shape Memory Hyperbranched Polyurethane Composites Using cross-linked Photothermal Reduced Graphene Oxide Networks. Sens. Actuators B Chem. 2020, 321, 128468. DOI: 10.1016/j.snb.2020.128468.
  • Kausar, A. Shape Memory polymer/graphene Nanocomposites: State-of-the-art. E-Polymers. 2022, 22(1), 165–181.
  • Urban, M.; Strankowski, M. Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets. Materials. 2017, 10(9), 1083. DOI: 10.3390/ma10091083.
  • Meyyappan, M. Carbon Nanotubes: Science and Applications. 2004. CRC press; pp 15–38.
  • Li, X.; Lu, S.-G.; Chen, X.-Z.; Gu, H.; Qian, X.-S.; Zhang, Q. Pyroelectric and Electrocaloric Materials. J. Mater. Chem. C. 2013, 1(1), 23–37. DOI: 10.1039/C2TC00283C.
  • Olad, A.; Barati, M.; Shirmohammadi, H. Conductivity and Anticorrosion Performance of polyaniline/zinc Composites: Investigation of Zinc Particle Size and Distribution Effect. Prog. Org. Coat. 2011, 72(4), 599–604. DOI: 10.1016/j.porgcoat.2011.06.022.
  • Jones, D. Localized Surface Plasticity during Stress Corrosion Cracking. Corrosion. 1996, 52(5), 356–362. DOI: 10.5006/1.3292123.
  • Arthur, D. E.; Jonathan, A.; Ameh, P. O.; Anya, C. A Review on the Assessment of Polymeric Materials Used as Corrosion Inhibitor of Metals and Alloys. Int. J. Ind. Chem. 2013, 4(1), 1–9. DOI: 10.1186/2228-5547-4-2.
  • Jacobson, N. D.; Iroh, J.; Vijayan P, P. Shape Memory Corrosion-Resistant Polymeric Materials. Int. J. Polym. Sci. 2021, 2021, 1–18. 2021 DOI: 10.1155/2021/5558457.
  • Cui, Y.; Kundalwal, S.; Kumar, S. Gas Barrier Performance of graphene/polymer Nanocomposites. Carbon. 2016, 98, 313–333. DOI: 10.1016/j.carbon.2015.11.018.
  • Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Exploring Corrosion Protection Properties of Solvent Based epoxy-graphene Oxide Nanocomposite Coatings on Mild Steel. Corros. Sci. 2017, 115, 78–92. DOI: 10.1016/j.corsci.2016.11.008.
  • Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A. Electrochemical Investigation of the Properties of Co Doped ZnO Nanoparticle as a Corrosion Inhibitive Pigment for Modifying Corrosion Resistance of the Epoxy Coating. Corros. Sci. 2014, 88, 387–399. DOI: 10.1016/j.corsci.2014.07.056.
  • Golru, S. S.; Attar, M.; Ramezanzadeh, B. Studying the Influence of nano-Al2O3 Particles on the Corrosion Performance and Hydrolytic Degradation Resistance of an epoxy/polyamide Coating on AA-1050. Prog. Org. Coat. 2014, 77(9), 1391–1399. DOI: 10.1016/j.porgcoat.2014.04.017.
  • Datta, S.; Henry, T. C.; Sliozberg, Y. R.; Lawrence, B. D.; Chattopadhyay, A.; Hall, A. J. Carbon Nanotube Enhanced Shape Memory Epoxy for Improved Mechanical Properties and Electroactive Shape Recovery. Polymer. 2021, 212, 123158. DOI: 10.1016/j.polymer.2020.123158.
  • Marcus, P. Corrosion Mechanisms in Theory and Practice, CRC Press, 2011; pp 407–430.
  • Shahidzadeh, M.; Varkaneh, Z. K.; Ramezanzadeh, B.; Pedram, M. Z.; Yarmohammadi, M. Self-healing Dual Cured Polyurethane Elastomeric Coatings Prepared by Orthogonal Reactions. Prog. Org. Coat. 2020, 140, 105503. DOI: 10.1016/j.porgcoat.2019.105503.
  • Nelson, D. J.; Perumal, P. T.; Brammer, C. N.; Nagarajan, P. S. Effect of single-walled Carbon Nanotube Association upon Representative Amides. J. Phys. Chem. C. 2009, 113(40), 17378–17386. DOI: 10.1021/jp9072075.
  • Zhang, S.; Ren, Z.; He, S.; Zhu, Y.; Zhu, C. FTIR Spectroscopic Characterization of polyurethane-urea Model Hard Segments (PUUMHS) Based on Three Diamine Chain Extenders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007, 66(1), 188–193. DOI: 10.1016/j.saa.2006.02.041.
  • Yang, B.; Huang, W.; Li, C.; Li, L. Effects of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer. Polymer. 2006, 47(4), 1348–1356. DOI: 10.1016/j.polymer.2005.12.051.
  • Narine, S. S.; Kong, X.; Bouzidi, L.; Sporns, P. Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams. Journal of the American Oil Chemists‘ Society. 2007, 84(1), 65–72. DOI: 10.1007/s11746-006-1008-2.
  • Mrad, M.; Dhouibi, L.; Triki, E. Dependence of the Corrosion Performance of Polyaniline Films Applied on Stainless Steel on the Nature of Electropolymerisation Solution. Synth. Met. 2009, 159(17–18), 1903–1909. DOI: 10.1016/j.synthmet.2009.03.008.
  • Marcovich, N. E.; Auad, M. L.; Bellesi, N. E.; Nutt, S. R.; Aranguren, M. I. Cellulose micro/nanocrystals Reinforced Polyurethane. J. Mater. Res. 2006, 21(4), 870–881. DOI: 10.1557/jmr.2006.0105.
  • Song, M.; Xia, H.; Yao, K.; Hourston, D. A Study on Phase Morphology and Surface Properties of polyurethane/organoclay Nanocomposite. Eur. Polym. J. 2005, 41(2), 259–266. DOI: 10.1016/j.eurpolymj.2004.09.012.
  • Zhang, H.; An, L.; Wang, X.; Niu, C.; Hou, X. A Colorless, Transparent and Mechanically Robust Polyurethane Elastomer: Synthesis, Chemical Resistance and Adhesive Properties. New J. Chem. 2022, 46(10), 4762–4771. DOI: 10.1039/D1NJ05874F.
  • Navidfar, A.; Sancak, A.; Yildirim, K. B.; Trabzon, L. A Study on Polyurethane Hybrid Nanocomposite Foams Reinforced with Multiwalled Carbon Nanotubes and Silica Nanoparticles. Polym.-Plast. Technol. Eng. 2018, 57(14), 1463–1473. DOI: 10.1080/03602559.2017.1410834.
  • Mondal, S.; Hu, J.; Yong, Z. Free Volume and Water Vapor Permeability of Dense Segmented Polyurethane Membrane. J. Membr. Sci. 2006, 280(1–2), 427–432. DOI: 10.1016/j.memsci.2006.01.047.
  • Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.; Kharchenko, S.; Douglas, J. Thermal and Flammability Properties of polypropylene/carbon Nanotube Nanocomposites. Polymer. 2004, 45(12), 4227–4239. DOI: 10.1016/j.polymer.2004.03.088.
  • Pielichowski, K.; Leszczyńska, A.; Njuguna, J. Mechanisms Stability Enhancement in Polymer Nanocomposites. Optimization of Polymer Nanocomposite Properties. 2009, 9, 4.
  • Pascault, J.; Williams, R. Glass Transition Temperature versus Conversion Relationships for Thermosetting Polymers. J. Polym. Sci. B Polym. Phys. 1990, 28(1), 85–95. DOI: 10.1002/polb.1990.090280107.
  • Ma, S.; Webster, D. C.; Jabeen, F. Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol. Macromolecules. 2016, 49(10), 3780–3788. DOI: 10.1021/acs.macromol.6b00594.
  • Ma, S.; Webster, D. C. Naturally Occurring Acids as cross-linkers to Yield VOC-free, high-performance, Fully bio-based, Degradable Thermosets. Macromolecules. 2015, 48(19), 7127–7137. DOI: 10.1021/acs.macromol.5b01923.
  • Li, J.; Ning, Z.; Yang, W.; Yang, B.; Zeng, Y. Hydroxyl-Terminated Polybutadiene-Based Polyurethane with Self-Healing and Reprocessing Capabilities. ACS omega. 2022, 7(12), 10156–10166. DOI: 10.1021/acsomega.1c06416.
  • Yu, X.; Cao, C. Electrochemical Study of the Corrosion Behavior of Ce Sealing of Anodized 2024 Aluminum Alloy. Thin Solid Films. 2003, 423(2), 252–256. DOI: 10.1016/S0040-6090(02)01038-6.
  • Wessling, B. Passivation of Metals by Coating with Polyaniline: Corrosion Potential Shift and Morphological Changes. Adv.Mate. 1994, 6(3), 226–228. DOI: 10.1002/adma.19940060309.
  • Chen, K.; Ren, Q.; Li, J.; Chen, D.; Li, C. A Highly Stretchable and self-healing hydroxy-terminated Polybutadiene Elastomer. J. Saudi Chem. Soc. 2020, 24(12), 1034–1041. DOI: 10.1016/j.jscs.2020.11.002.
  • Al-Saleh, M. H.; Sundararaj, U. Review of the Mechanical Properties of Carbon nanofiber/polymer Composites. Composites Part A: Applied Science and Manufacturing. 2011, 42(12), 2126–2142. DOI: 10.1016/j.compositesa.2011.08.005.
  • Charlon, M.; Heinrich, B.; Matter, Y.; Couzigné, E.; Donnio, B.; Avérous, L. Synthesis, Structure and Properties of Fully Biobased Thermoplastic Polyurethanes, Obtained from a Diisocyanate Based on Modified Dimer Fatty Acids, and Different Renewable Diols. Eur. Polym. J. 2014, 61, 197–205. DOI: 10.1016/j.eurpolymj.2014.10.012.
  • Prabhakar, A.; Chattopadhyay, D.; Jagadeesh, B.; Raju, K. Structural Investigations of Polypropylene Glycol (PPG) and Isophorone Diisocyanate (Ipdi)-based Polyurethane Prepolymer by 1D and 2D NMR Spectroscopy. J. Polym. Sci. A Polym. Chem. 2005, 43(6), 1196–1209. DOI: 10.1002/pola.20583.
  • Ionita, D.; Gaina, C.; Cristea, M.; Banabic, D. Tailoring the Hard Domain Cohesiveness in Polyurethanes by Interplay between the Functionality and the Content of Chain Extender. RSC Adv. 2015, 5(94), 76852–76861. DOI: 10.1039/C5RA15190B.
  • Adhikari, A.; Claesson, P.; Pan, J.; Leygraf, C.; Dédinaité, A.; Blomberg, E. Electrochemical Behavior and Anticorrosion Properties of Modified Polyaniline Dispersed in Polyvinylacetate Coating on Carbon Steel. Electrochim. Acta. 2008, 53(12), 4239–4247. DOI: 10.1016/j.electacta.2007.12.069.
  • Perez, N. Electrochemistry and Corrosion Science; Boston, MA: Springer US, 2004.
  • Yue, M.; Zhang, J.; Liu, W.; Wang, G. Chemical Stability and Microstructure of Nd-Fe-B Magnet Prepared by Spark Plasma Sintering. J. Magn. Magn. Mater. 2004, 271(2–3), 364–368. DOI: 10.1016/j.jmmm.2003.10.002.
  • Rudd, A. L.; Breslin, C. B.; Mansfeld, F. The Corrosion Protection Afforded by Rare Earth Conversion Coatings Applied to Magnesium. Corros. Sci. 2000, 42(2), 275–288. DOI: 10.1016/S0010-938X(99)00076-1.
  • Grgur, B.; Gvozdenović, M.; Mišković-Stanković, V.; Kačarević-Popović, Z. Corrosion Behavior and Thermal Stability of Electrodeposited PANI/epoxy Coating System on Mild Steel in Sodium Chloride Solution. Prog. Org. Coat. 2006, 56(2–3), 214–219. DOI: 10.1016/j.porgcoat.2006.05.003.
  • Weng, C.-J.; Huang, J.-Y.; Huang, K.-Y.; Jhuo, Y.-S.; Tsai, M.-H.; Yeh, J.-M. Advanced Anticorrosive Coatings Prepared from Electroactive polyimide–TiO2 Hybrid Nanocomposite Materials. Electrochim. Acta. 2010, 55(28), 8430–8438. DOI: 10.1016/j.electacta.2010.07.063.
  • Yeh, J.-M.; Huang, H.-Y.; Chen, C.-L.; Su, W.-F.; Yu, Y.-H. Siloxane-modified Epoxy resin–clay Nanocomposite Coatings with Advanced Anticorrosive Properties Prepared by a Solution Dispersion Approach. Surf. Coat. Technol. 2006, 200(8), 2753–2763. DOI: 10.1016/j.surfcoat.2004.11.008.
  • Mansfeld, F. Fundamental Aspects of the Polarization Resistance technique—the Early Days. J. Solid State Electrochem. 2009, 13(4), 515–520. DOI: 10.1007/s10008-008-0652-x.
  • Stern, M.; Geaby, A. L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104(1), 56. DOI: 10.1149/1.2428496.
  • Bard, A. J.; Faulkner, L. R. Fundamentals and Applications. Electrochem Methods 2001, 2(482), 580–632.
  • Bockris, J. M. Electrochemistry and the 21st Century, Comprehensive Treatise of Electrochemistry. 1981, 1-38.
  • Shabani-Nooshabadi, M.; Ghoreishi, S.; Behpour, M. Electropolymerized Polyaniline Coatings on Aluminum Alloy 3004 and Their Corrosion Protection Performance. Electrochim. Acta. 2009, 54(27), 6989–6995. DOI: 10.1016/j.electacta.2009.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.