899
Views
1
CrossRef citations to date
0
Altmetric
Review

Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications

Pages 655-700 | Received 12 Jul 2022, Accepted 23 Sep 2022, Published online: 17 Oct 2022

References

  • Wang, R. M.; Zheng, S. R.; Zheng, Y.-P. Polymer Matrix Composites and Technology, 1st ed.; Philadelphia, PA, USA: Woodhead Publishing, 2011.
  • Sadasivuni J–JC, K. K.; Ponnamma, D.; Al–Maadeed, S. A.; Kim, J. Biopolymer Composites in Electronics, 1st ed.; Amsterdam, Netherlands: Elsevior, 2016.
  • Chi, H.; Wang, S.; Li, T.; Li, Z. Recent Progress in Using Hybrid Silicon Polymer Composites for Wastewater Treatment. Chemosphere. 2021, 263, 128380. DOI: 10.1016/j.chemosphere.2020.128380.
  • Yu, X.; Manthiram, A. A Review of Composite Polymer‒ceramic Electrolytes for Lithium Batteries. Energy Storage Mater. 2021, 34, 282. DOI: 10.1016/j.ensm.2020.10.006.
  • Charles, A. D.; Rider, A. N.; Brown, S. A.; Wang, C. H. Multifunctional Magneto‒polymer Matrix Composites for Electromagnetic Interference Suppression, Sensors and Actuators. Prog. Mater. Sci. 2021, 115, 100705.
  • Dan, L.; Cheng, Q.; Narain, R.; Krause, B.; Pötschke, P.; Elias, A. Three‒dimensional Printed and Biocompatible Conductive Composites Comprised of Polyhydroxybutyrate and Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2021, 60(2), 885. DOI: 10.1021/acs.iecr.0c04753.
  • Visakh, P. M.; Raneesh, B. Metal Oxide Nanocomposites: State‒of‒the‒art and New Challenges. Metal Oxide Nanocomposites: Synthesis and Applications; 1st; Hoboken, NJ, USA: Wiley‒Scrivener, 2020; pp. 1–26. DOI: 10.1002/9781119364726.ch1.
  • Kaur, S.; Gallei, M.; Ionseca, E. Polymer‒ceramic Nanohybrid Materials. In Organic‒inorganic Hybrid Nanomaterials. Berlin, Germany, Springer‒Verlag Berlin Heidelberg, Advances in Polymer Science; Kalia, S., Haldorai, Y.; Eds., Switzerland: Springer International Publishing, 2014; pp. 143–186.
  • Zhang, Z.; Zhang, P.; Wang, Y.; Zhang, W. Recent Advances in Organic–inorganic Well–defined Hybrid Polymers Using Controlled Living Radical Polymerization Techniques. Polym. Chem. 2016, 7(24), 3950. DOI: 10.1039/C6PY00675B.
  • Nuhnen, A.; Dietrich, D.; Millan, S.; Janiak, C. Role of Filler Porosity and Filler/polymer Interface Volume in Metal–organic Framework/polymer Mixed–matrix Membranes for Gas Separation. ACS Appl. Mater. Interfaces. 2018, 10(39), 33589. DOI: 10.1021/acsami.8b12938.
  • Davris, T.; Mermet–Guyennet, M. R. B.; Bonn, D.; Lyulin, A. V. Filler Size Effects on Reinforcement in Elastomer–based Nanocomposites: Experimental and Simulational Insights into Physical Mechanisms. Macromolecules. 2016, 49(18), 7077. DOI: 10.1021/acs.macromol.6b00844.
  • Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. DOI: 10.1016/j.cis.2020.102165.
  • Ulloa, J. A.; Lorusso, G.; Evangelisti, M.; Camón, A.; Barberá, J.; Serrano, J. L. Magnetism of Dendrimer–coated Gold Nanoparticles: A Size and Functionalization Study. J. Phys. Chem. C. 2021, 125(37), 20482. DOI: 10.1021/acs.jpcc.1c04213.
  • Fan, B.; Wan, J.; Liu, Y.; Tian, W. W.; Thang, S. H. Functionalization of Liquid Metal Nanoparticles via the RAFT Process. Polym. Chem. 2021, 12(20), 3015. DOI: 10.1039/D1PY00257K.
  • Perla, V. K.; Mallick, K. Carbon Nitride–supported Nickel Oxide Nanoparticles for Resistive Memory Application. ACS Appl. Nano Mater. 2021, 4(3), 2496. DOI: 10.1021/acsanm.0c03065.
  • Ye, H. –. L.; He, X. –. W.; Li, W. –. Y.; Zhang, Y. –. K. Two–photon–excited Tumor Cell Fluorescence Targeted Imaging Based on Transferrin–functionalized Silicon Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120450. DOI: 10.1016/j.saa.2021.120450.
  • Agarwal, S.; Kumar, D. S. Surface Functionalization of Nanoparticles for Stability in Biological Systems. In Microbial Interactions at Nanobiotechnology Interfaces. Hoboken, NJ, USA: Wiley, 2021; pp. 129–166.
  • Chen, X.; Huang, G.; An, C.; Feng, R.; Wu, Y.; Huang, C. Superwetting Polyethersulfone Membrane Functionalized with ZrO2 Nanoparticles for Polycyclic Aromatic Hydrocarbon Removal. J. Mater. Sci. Technol. 2022, 98, 14. DOI: 10.1016/j.jmst.2021.01.063.
  • Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo–Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S., et al. Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Self–assembly Applications. Chem. Eur. J. 2021, 27(35), 9011.
  • Basiruddin, S. K.; Saha, A.; Pradhan, N.; Jana, N. R. Advances in Coating Chemistry in Deriving Soluble Functional Nanoparticle. J. Phys. Chem. C. 2010, 114(25), 11009. DOI: 10.1021/jp100844d.
  • Yang, H. Y.; Li, Y.; Lee, D. S. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. Adv. NanoBiomed. Res. 2021, 1(5), 2000043. DOI: 10.1002/anbr.202000043.
  • Saladino, G. M.; Hamawandi, B.; Demir, M. A.; Yazgan, I.; Toprak, M. S. A Versatile Strategy to Synthesize Sugar Ligand Coated Superparamagnetic Iron Oxide Nanoparticles and Investigation of Their Antibacterial Activity. Colloids Surf. A. 2021, 613, 126086. DOI: 10.1016/j.colsurfa.2020.126086.
  • Kymakis, E.; Spyropoulos, G. D.; Fernandes, R.; Kakavelakis, G.; Kanaras, A. G.; Stratakis, E. Plasmonic Bulk Heterojunction Solar Cells: The Role of Nanoparticle Ligand Coating. ACS Photonics. 2015, 2(6), 714. DOI: 10.1021/acsphotonics.5b00202.
  • Heuer–Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E., et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119(8), 4819.
  • Zhao, Y.; Li, A.; Jiang, L.; Gu, Y.; Liu, J. Hybrid Membrane–coated Biomimetic Nanoparticles (Hm@bnps): A Multifunctional Nanomaterial for Biomedical Applications. Biomacromolecules. 2021, 22(8), 3149. DOI: 10.1021/acs.biomac.1c00440.
  • Zhang, L.; Jin, D.; Stenzel, M. H. Polymer–functionalized Upconversion Nanoparticles for Light/imaging–guided Drug Delivery. Biomacromolecules. 2021, 22(8), 3168. DOI: 10.1021/acs.biomac.1c00669.
  • Zou, Y.; Huang, B.; Cao, L.; Deng, Y.; Su, J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Adv. Mater. 2021, 33(2), 2005215. DOI: 10.1002/adma.202005215.
  • Zhang, J.; Wang, X.; Zhang, C.; Yan Feng, H.; Yu, B.; Yang, W.; Pei, X.; Zhou, F. Self–lubricating Interpenetrating Polymer Networks with Functionalized Nanoparticles Enhancement for Quasi–static and Dynamic Antifouling. Chem. Eng. J. 2022, 429, 132300. DOI: 10.1016/j.cej.2021.132300.
  • Singh, G.; Mohit, D.; Suman, P.; Singh, K. N.; Singh, K. N.; Gonzalez-Silvera, D.; Espinosa-Ruiz, C.; Singh, K. N.; Gonzalez-Silvera, D.; Espinosa-Ruiz, C. & Esteban, M. A., et al. Functionalized Organosilanes and Their Magnetic Nanoparticles as Receptor for Sn (II) Ions Detection and Potent Antioxidants. J. Mol. Struct. 2022, 1247, 131297. DOI: 10.1016/j.molstruc.2021.131297.
  • Alam, A. –. M.; Shon, Y. –. S. Water–soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS Appl. Nano Mater. 2021, 4(4), 3294. DOI: 10.1021/acsanm.1c00335.
  • Kaur, R.; Bakshi, M. S. Mechanistic Aspects of Simultaneous Extraction of Silver and Gold Nanoparticles across Aqueous–organic Interfaces by Surface Active Iron Oxide Nanoparticles. Langmuir. 2020, 36(26), 7505. DOI: 10.1021/acs.langmuir.0c01102.
  • Zhao, H.; Xu, X.; Zhou, L.; Hu, Y.; Huang, Y.; Narita, A. Water–soluble Nanoparticles with Twisted Double [7] Carbohelicene for Lysosome–targeted Cancer Photodynamic Therapy. Small. 2022, 18(1), 2105365. DOI: 10.1002/smll.202105365.
  • Spiridonov, V. V.; Afanasov, M. I.; Makarova, L. A.; Sybachin, A. V.; Yaroslavov, A. A. A Facile Approach to Prepare Water–soluble Magnetic Metal (Oxide) Frameworks Based on Na,Ca Alginate and Maghemite. Mendeleev. Commun. 2021, 31(3), 412–414. DOI: 10.1016/j.mencom.2021.04.043.
  • Diwald, O.; Berger, T. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces; Wiley: Hoboken, NJ, USA, 2021.
  • Tran, V. V.; Nu, T. T. V.; Jung, H.-R.; Chang, M. Advanced Photocatalysts Based on Conducting Polymer/metal Oxide Composites for Environmental Applications. Polymers. 2021, 13(18), 3031. DOI: 10.3390/polym13183031.
  • Pourrahimi, A. M.; Olsson, R. T.; Hedenqvist, M. S. The Role of Interfaces in Polyethylene/metal–oxide Nanocomposites for Ultrahigh–voltage Insulating Materials. Adv. Mater. 2018, 30(4), 1703624. DOI: 10.1002/adma.201703624.
  • Shanmugam, S.; Ketpang, K.; Aziz, M. A.; Oh, K.; Lee, K.; Son, B.; Chanunpanich, N. Composite Polymer Electrolyte Membrane Decorated with Porous Titanium Oxide Nanotubes for Fuel Cell Operating under Low Relative Humidity. Electrochim. Acta. 2021, 384, 138407. DOI: 10.1016/j.electacta.2021.138407.
  • Nikolic, M. V.; Vasiljevic, Z. Z.; Auger, S.; Vidic, J. Metal Oxide Nanoparticles for Safe Active and Intelligent Food Packaging. Trends Food Sci. Technol. 2021, 116, 655. DOI: 10.1016/j.tifs.2021.08.019.
  • Zhang, L.; Wang, W.; Wu, H.; Zheng, Z.; Wei, M.; Huang, X. Corrosion–resistant Composite Coatings Based on a Graphene Oxide–metal Oxide/urushiol Formaldehyde Polymer System. J. Coat. Technol. Res. 2021, 18(5), 1209. DOI: 10.1007/s11998-021-00480-2.
  • Pardo, A.; Gómez–Florit, M.; Barbosa, S.; Taboada, P.; Domingues, R. M. A.; Gomes, M. E. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano. 2021, 15(1), 175. DOI: 10.1021/acsnano.0c08253.
  • Wang, X.; Cai, W.; Ye, D.; Zhu, Y.; Cui, M.; Xi, J., Xing, W. Bio–based Polyphenol Tannic Acid as Universal Linker between Metal Oxide Nanoparticles and Thermoplastic Polyurethane to Enhance Flame Retardancy and Mechanical Properties. Compos. B Eng. 2021, 224, 109206. DOI: 10.1016/j.compositesb.2021.109206.
  • Anu, M. A.; Pillai, S. S. Structure, Thermal, Optical and Dielectric Properties of SnO2 Nanoparticles–filled HDPE Polymer. Solid State Commun. 2022, 341, 114577. DOI: 10.1016/j.ssc.2021.114577.
  • Saidi, N. M.; Omar, F. S.; Numan, A.; Apperley, D. C.; Algaradah, M. M.; Kasi, R.; Avestro, A.-J.; Subramaniam, R. T. Enhancing the Efficiency of a Dye–sensitized Solar Cell Based on a Metal Oxide Nanocomposite Gel Polymer Electrolyte. ACS Appl. Mater. Int. 2019, 11(33), 30185.
  • Kaur, D.; Kumar, M. A Strategic Review on Gallium Oxide Based Deep–ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021, 9(9), 2002160. DOI: 10.1002/adom.202002160.
  • Li, J.; Zhuang, Y.; Chen, J.; Li, B.; Wang, L.; Liu, S.; Zhao, Q. Two–dimensional Materials for Electrochromic Applications. Energy Chem. 2021, 3(5), 100060.
  • Shaikh, N. S.; Ubale, S. B.; Mane, V. J.;.; Shaikh, J. S.; Lokhande, V. C.; Praserthdam, S.; Lokhande, C. D.; Kanjanaboos, P. Novel Electrodes for Supercapacitor: Conducting Polymers, Metal Oxides, Chalcogenides, Carbides, Nitrides, MXenes, and Their Composites with Graphene. J. Alloys Compd. 2022, 893, 161998. DOI: 10.1016/j.jallcom.2021.161998.
  • Chen, S. –. H.; Tu, Y. –. C.; Wang, D. –. R.; Hwang, J. –. D.; Kao, P. –. C. Highly–luminous Performance of Polymer Light–emitting Devices Utilizing Platinum/nickelous Oxide as the Anode Material. Synth. Met. 2021, 277, 116796. DOI: 10.1016/j.synthmet.2021.116796.
  • Xia, Y.; He, G.; Wang, W.; Gao, Q.; Liu, Y. Low–Voltage Operating Field–effect Transistors and Inverters Based on In2O3 Nanofiber Networks. IEEE Trans Electron. Devices. 2021, 68(5), 2522. DOI: 10.1109/TED.2021.3066138.
  • Li, Y.; Xue, B.; Yang, S.; Cheng, Z.; Xie, L.; Zheng, Q. Flexible Multilayered Films Consisting of Alternating Nanofibrillated cellulose/Fe3O4 and Carbon Nanotube/polyethylene Oxide Layers for Electromagnetic Interference Shielding. Chem. Eng. J. 2021, 410, 128356. DOI: 10.1016/j.cej.2020.128356.
  • Gibot, P.; Goetz, V. Polypyrrole Material for the Electrostatic Discharge Sensitivity Mitigation of Al/SnO 2 Energetic Composites. J. Appl. Polym. Sci. 2021, 138(29), 50752. DOI: 10.1002/app.50752.
  • Al–Tamimi, S. A. Prospective of Modified Polymeric MgO/ZnO Nanocomposite Sensor for Potentiometric Determination of Chronic Myelogenous Leukemia Medication. Sens. Actuators A Phys. 2021, 331, 112949. DOI: 10.1016/j.sna.2021.112949.
  • Soytaş, S. H.; Oğuz, O.; Menceloğlu, Y. Z. Polymer Nanocomposites with Decorated Metal Oxides. In Polymer Composites with Functionalized Nanoparticles; Pielichowski, K., Majka, T. M., Eds.; Amsterdam, Netherlands: Elsevier, 2019; pp. 287–323.
  • Razzaque, S.; Hussain, S. Z.; Hussain, I.; Tan, B. Design and Utility of Metal/metal Oxide Nanoparticles Mediated by Thioether End–functionalized Polymeric Ligands. Polymers. 2016, 8(4), 156. DOI: 10.3390/polym8040156.
  • Ezzat, H. A.; Hegazy, M. A.; Nada, N. A.; Osman, O.; Ibrahim, M. A. Development of Natural Polymer/metal Oxide Nanocomposite Reinforced with Graphene Oxide for Optoelectronic Applications. NRIAG J. Astron. Geophys. 2021, 10(1), 10. DOI: 10.1080/20909977.2020.1846246.
  • Jeong, J. W.; Hwang, H. S.; Choi, D.; Ma, B. C.; Jung, J.; Chang, M. Hybrid Polymer/metal Oxide Thin Films for High Performance, Flexible Transistors. Micromachines. 2020, 11(3), 264. DOI: 10.3390/mi11030264.
  • Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A. K. Polymer–supported Metals and Metal Oxide Nanoparticles: Synthesis, Characterization, and Applications. J. Nanopart. Res. 2012, 14(2), 715. DOI: 10.1007/s11051-011-0715-2.
  • Jadhav, N.; Kasisomayajula, S.; Gelling, V. J. Polypyrrole/metal Oxides–based Composites/nanocomposites for Corrosion Protection. Front. Mater, 2020, 7.
  • Shifrina, Z. B.; Matveeva, V. G.; Bronstein, L. M. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem. Rev. 2020, 120(2), 1350. DOI: 10.1021/acs.chemrev.9b00137.
  • Sakib, S.; Bakhshandeh, F.; Saha, S.; Soleymani, L.; Zhitomirsky, I. Surface Functionalization of Metal Oxide Semiconductors with Catechol Ligands for Enhancing Their Photoactivity. Sol. RRL. 2021, 5(10), 2100512. DOI: 10.1002/solr.202100512.
  • Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo–Tardajos, A.; Nuti, S.; Verbruggen, S. W. Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Self‒assembly Applications. Chem. Eur. J. 2021, 27(35), 9011. DOI: 10.1002/chem.202100029.
  • Abdi, F. F.; Berglund, S. P. Recent Developments in Complex Metal Oxide Photoelectrodes. J. Phys. D Apl. Phys. 2017, 50(19), 193002. DOI: 10.1088/1361-6463/aa6738.
  • Irani, V.; Khosh, A. G.; Polyethyleneimine, T. A. Polyethyleneimine (PEI) Functionalized Metal Oxide Nanoparticles Recovered from the Catalytic Converters of Spent Automotive Exhaust Systems and Application for CO2 Adsorption. Front. Energy Res. 2020, 8, 196. DOI: 10.3389/fenrg.2020.00196.
  • Kumar, D. K.; Kriz, J.; Bennett, N.; Chen, B.; Upadhayaya, H.; Reddy, K. R. & Sadhu, V. Functionalized Metal Oxide Nanoparticles for Efficient Dye–sensitized Solar Cells (Dsscs): A Review. Mater. Sci. Energy Technol. 2020, 3, 472.
  • Wang, J.; Shen, H.; Xia, Y.; Komarneni, S. Light–activated Room–temperature Gas Sensors Based on Metal Oxide Nanostructures: A Review on Recent Advances. Ceram. Int. 2021, 47(6), 7353. DOI: 10.1016/j.ceramint.2020.11.187.
  • Purushothaman, S.; Jeyasubramanian, K.; Muthuselvi, M.; Hikku, G. Cu2O Nanosheets Decorated CuMnO2 Nanosphere Electrodeposited on Cu Foil as High–performance Supercapacitor Electrode. Mater. Sci. Semicond. Process. 2021, 121, 105366. DOI: 10.1016/j.mssp.2020.105366.
  • Gurtu, A.; Akhtar, N.; Verma, M.; Singh, K.; Moyle–Heyrman, G.; Bakshi, M. S. Functionalized Iron Oxide–metal Hybrid Nanoparticles for Protein Extraction from Complex Fluids. Ind. Eng. Chem. Res. 2019, 59(3), 1045. DOI: 10.1021/acs.iecr.9b06150.
  • Abarca–Cabrera, L.; Fraga–García, P.; Berensmeier, S. Bio–nano Interactions: Binding Proteins, Polysaccharides, Lipids and Nucleic Acids onto Magnetic Nanoparticles. Biomater. Res. 2021, 25(1), 12. DOI: 10.1186/s40824-021-00212-y.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–inorganic nanocomposites—A Review. Prog. Polym. Sci. 2013, 38, 1232.
  • Mallakpour, S.; Madani, M. A Review of Current Coupling Agents for Modification of Metal Oxide Nanoparticles. Prog. Org. Coat. 2015, 86, 194. DOI: 10.1016/j.porgcoat.2015.05.023.
  • Xavier, J. R.; Vinodhini, S.; Beryl, J. R. Effect of Silane-Functionalized RuO2 Nanoparticles on the Anticorrosive and Mechanical Properties of Poly (Methyl Methacrylate) Coatings. Metall. Mater. Trans. A. 2021, 52(9), 3896. DOI: 10.1007/s11661-021-06351-0.
  • Stroea, L.; Chibac-Scutaru, A.-L.; Melinte, V. Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO2 Nanoparticles with UV-Shielding Features. Polymers. 2021, 13(8), 1318. DOI: 10.3390/polym13081318.
  • Ju, S.; Zhang, H.; Chen, M.; Zhang, C.; Chen, X.; Zhang, Z. Improved Electrical Insulating Properties of LDPE Based Nanocomposite: Effect of Surface Modification of Magnesia Nanoparticles. Compos. Part A Appl. Sci. Manuf. 2014, 66, 183. DOI: 10.1016/j.compositesa.2014.07.003.
  • Dalod, A. R.; Henriksen, L.; Grande, T.; Einarsrud, M.-A. Functionalized TiO 2 Nanoparticles by Single-step Hydrothermal Synthesis: The Role of the Silane Coupling Agents. Beilstein J. Nanotechnol. 2017, 8, 304. DOI: 10.3762/bjnano.8.33.
  • Sivakumar, P.; Du, S. M.; Selter, M.; Daye, J.; Cho, J. Improved Adhesion of Polyurethane–based Nanocomposite Coatings to Tin Surface through Silane Coupling Agents. Int. J. Adhes. 2021, 110, 102948. DOI: 10.1016/j.ijadhadh.2021.102948.
  • Liu, H.; Hu, D.; Ma, W. Cinnamic Acid–functionalized ZnO Nanoparticles for Constructing UV–shielding and Mechanically Robust Polyvinyl Butyral Composites. Colloids Surf. A. 2021, 629, 127438. DOI: 10.1016/j.colsurfa.2021.127438.
  • Jiao, J.; Zhou, Z.; Tian, S.; Ren, Z. Facile Preparation of Molecular–imprinted Polymers for Selective Extraction of Theophylline Molecular from Aqueous Solution. J. Mol. Struct. 2021, 1243, 130891. DOI: 10.1016/j.molstruc.2021.130891.
  • Chen, S.; Yang, J.; Li, K.; Lu, B.; Ren, L. Carboxylic Acid-functionalized TiO 2 </sub> Nanoparticle-loaded PMMA/PEEK Copolymer Matrix as a Dental Resin for 3D Complete Denture Manufacturing by Stereolitographic Technique. Int. J. Food Prop. 2018, 21(1), 2557. DOI: 10.1080/10942912.2018.1534125.
  • Anaya, S.; Serrano, B.; Herrero, B.; Cervera, A.; Baselga, J. γ-Alumina Modification with Long Chain Carboxylic Acid Surface Nanocrystals for Biocompatible Polysulfone Nanocomposites. ACS Appl. Mater. Int. 2014, 6(16), 14460. DOI: 10.1021/am503744z.
  • Benabid, F.; Kharchi, N.; Zouai, F. Mourad, A–HI.; Benachour, D. Impact of Co–mixing Technique and Surface Modification of ZnO Nanoparticles Using Stearic Acid on Their Dispersion into HDPE to Produce HDPE/ZnO Nanocomposites. Polym. Polym. Compos. 2019, 27, 389.
  • Gonzalez–Rodriguez, V.; Escobar–Barrios, V.; Peña–Juárez, M. G.; Pérez, E.; Gonzalez–Calderon, J. A. Effect of Aliphatic Chain in Dicarboxylic Acids on Non–isothermal Crystallization and Mechanical Behavior of Titanium dioxide/iPP Composites. Thermochim. Acta. 2020, 686, 178543. DOI: 10.1016/j.tca.2020.178543.
  • Wu, C. –. S.; Kao, T. –. H.; Li, H. –. Y.; Liu, Y. –. L. Preparation of Polybenzoxazine–functionalized Fe3O4 Nanoparticles through in Situ Diels–Alder Polymerization for High Performance Magnetic polybenzoxazine/Fe3O4 Nanocomposites. Compos. Sci. Technol. 2012, 72(13), 1562. DOI: 10.1016/j.compscitech.2012.06.018.
  • Yan, F.; Li, J.; Zhang, J.; Liu, F.; Yang, W. Preparation of Fe3O4/polystyrene Composite Particles from Monolayer Oleic Acid Modified Fe3O4 Nanoparticles via Miniemulsion Polymerization. J. Nanopart. Res. 2009, 11(2), 289. DOI: 10.1007/s11051-008-9382-3.
  • Ledwa, K. A.; Kępiński, L. Dispersion of Ceria Nanoparticles on γ–alumina Surface Functionalized Using Long Chain Carboxylic Acids. Appl. Surf. Sci. 2017, 400, 212. DOI: 10.1016/j.apsusc.2016.12.127.
  • Alexander, S.; Gomez, V.; Barron, A. R. Carboxylation and Decarboxylation of Aluminum Oxide Nanoparticles Using Bifunctional Carboxylic Acids and Octylamine. J. Nanomater. 2016, 2016, 7950876. DOI: 10.1155/2016/7950876.
  • Barron, A. R. The Interaction of Carboxylic Acids with Aluminium Oxides: Journeying from a Basic Understanding of Alumina Nanoparticles to Water Treatment for Industrial and Humanitarian Applications. Dalton Trans. 2014, 43(22), 8127–8143. DOI: 10.1039/c4dt00504j.
  • Derakhshan, A. A.; Rajabi, L. Review on Applications of Carboxylate–alumoxane Nanostructures. Powder Technol. 2012, 226, 117. DOI: 10.1016/j.powtec.2012.04.031.
  • Jouet, R. J.; Warren, A. D.; Rosenberg, D. M.; Bellitto, V. J.; Park, K.; Zachariah, M. R. Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids. Chem. Mater. 2005, 17(11), 2987. DOI: 10.1021/cm048264y.
  • Alexander, S.; Eastoe, J.; Lord, A. M.; Guittard, F.; Barron, A. R. Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces. ACS Appl. Mater. Int. 2016, 8(1), 660. DOI: 10.1021/acsami.5b09784.
  • Çınar, S.; Akinc, M. Ascorbic Acid as a Dispersant for Concentrated Alumina Nanopowder Suspensions. J. Eur. Ceram. Soc. 2014, 34(8), 1997. DOI: 10.1016/j.jeurceramsoc.2014.01.014.
  • Lesiak, B.; Rangam, N.; Jiricek, P.; Gordeev, I.; Toth, J.; Kover, L. Surface Study of Fe3O4 Nanoparticles Functionalized with Biocompatible Adsorbed Molecules. Front. Chem. 2019, 7.
  • Khan, S.; Shah, Z. H.; Riaz, S.; Ahmad, N.; Islam, S.; Raza, M. A.; Naseem, S. Antimicrobial Activity of Citric Acid Functionalized Iron Oxide nanoparticles–Superparamagnetic Effect. Ceram. Int. 2020, 46(8), 10942.
  • Abate, S. Y.; Huang, D.-C.; Tao, Y.-T. Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group. Org. Electron. 2020, 78, 105583. DOI: 10.1016/j.orgel.2019.105583.
  • Shiel, A. I.; Ayre, W. N.; Blom, A. W.; Hallam, K. R.; Heard, P. J.; Payton, O.; Picco, L.; Mansell, J. P. Development of a Facile Fluorophosphonate–functionalised Titanium Surface for Potential Orthopaedic Applications. J. Orthop. Translat. 2020, 23, 140. DOI: 10.1016/j.jot.2020.02.002.
  • Quiñones, R.; Rodriguez, K.; Iuliucci, R. J. Investigation of Phosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles under Ambient Conditions. Thin Solid Films. 2014, 565, 155. DOI: 10.1016/j.tsf.2014.06.057.
  • Hotchkiss, P. J.; Malicki, M.; Giordano, A. J.; Armstrong, N. R.; Marder, S. R. Characterization of Phosphonic Acid Binding to Zinc Oxide. J. Mater. Chem. 2011, 21(9), 3107. DOI: 10.1039/c0jm02829k.
  • Kalska–Szostko, B.; Rogowska, M.; Satuła, D. Organophosphorous Functionalization of Magnetite Nanoparticles. Colloids Surf. B Biointerfaces. 2013, 111, 656. DOI: 10.1016/j.colsurfb.2013.07.004.
  • Benbenishty–Shamir, H.; Gilert, R.; Gotman, I.; Gutmanas, E. Y.; Sukenik, C. N. Phosphonate–anchored Monolayers for Antibody Binding to Magnetic Nanoparticles. Langmuir. 2011, 27(19), 12082. DOI: 10.1021/la202190x.
  • Minko, S. Grafting on Solid Surfaces:“grafting To” and “Grafting From” Methods. In Polymer Surfaces and Interfaces; Stamm, M., Ed.; Berlin, Heidelberg: Springer, 2008; pp 215–234. DOI: 10.1007/978-3-540-73865-7-11.
  • Asai, M.; Zhao, D.; Kumar, S. K. Role of Grafting Mechanism on the Polymer Coverage and Self–assembly of Hairy Nanoparticles. ACS Nano. 2017, 11(7), 7028. DOI: 10.1021/acsnano.7b02657.
  • Hong, R.; Li, J.; Chen, L.; Liu, D.; Li, H. Z.; Zheng, Y.; Ding, J. Synthesis, Surface Modification and Photocatalytic Property of ZnO Nanoparticles. Powder Technol. 2009, 189(3), 426.
  • Hou, Z.; Liu, Y.; Xu, J.; Zhu, J. Surface Engineering of Magnetic Iron Oxide Nanoparticles by Polymer Grafting: Synthesis Progress and Biomedical Applications. Nanoscale. 2020, 12(28), 14957. DOI: 10.1039/D0NR03346D.
  • Alkhodairi, H.; Russell, S. T.; Pribyl, J.; Benicewicz, B. C.; Kumar, S. K. Compatibilizing Immiscible Polymer Blends with Sparsely Grafted Nanoparticles. Macromolecules. 2020, 53(23), 10330. DOI: 10.1021/acs.macromol.0c02108.
  • Chung, H. –. J.; Kim, J.; Ohno, K.; Composto, R. J. Controlling the Location of Nanoparticles in Polymer Blends by Tuning the Length and End Group of Polymer Brushes. ACS Macro Lett. 2012, 1(1), 252. DOI: 10.1021/mz200068p.
  • Bonnevide, M.; Phan, T. N.; Malicki, N.; Kumar, S. K.; Couty, M.; Gigmes, D.; Jestin, J. Synthesis of Polyisoprene, Polybutadiene and Styrene Butadiene Rubber Grafted Silica Nanoparticles by Nitroxide–mediated Polymerization. Polymer. 2020, 190, 122190. DOI: 10.1016/j.polymer.2020.122190.
  • Piroonpan, T.; Huajaikaew, E.; Katemake, P.; Pasanphan, W.; Huajaikaew, E.; Katemake, P.; Pasanphan, W. Surface Modification of SiO2 Nanoparticles with PDMAEMA Brushes and Ag Nanoparticles as Antifungal Coatings Using Electron Beam Assisted Synthesis. Mater. Chem. Phys. 2020, 253, 123438. DOI: 10.1016/j.matchemphys.2020.123438.
  • Kim, S. –. E.; Park, J. H.; Cheol Lee, B.; Lee, J. –. C.; Kwon, Y. K. Large–scale Synthesis of Silver Nanoparticles Using Ag (I)–S12 Polymer through Electron Beam Irradiation. Radiat. Phys. Chem. 2012, 81, 978. DOI: 10.1016/j.radphyschem.2012.02.038.
  • Aoki, S.; Fujiwara, K.; Sugo, T.; Suzuki, K. Antimicrobial Fabric Adsorbed Iodine Produced by Radiation–induced Graft Polymerization. Radiat. Phys. Chem. 2013, 84, 242. DOI: 10.1016/j.radphyschem.2012.05.003.
  • Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications. Chem. Mater. 2005, 17(18), 4617. DOI: 10.1021/cm0507819.
  • Yan, K.; Li, P.; Zhu, H.; Zhou, Y.; Ding, J.; Shen, J.; Li, Z.; Xu, Z.; Chu, P. K. Recent Advances in Multifunctional Magnetic Nanoparticles and Applications to Biomedical Diagnosis and Treatment. RSC Adv. 2013, 3(27), 10598.
  • Dierick, R.; Van den Broeck, F.; De Nolf, K.; Zhao, Q.; Vantomme, A.; Martins, J. C. Surface Chemistry of CuInS 2 Colloidal Nanocrystals, Tight Binding of L-Type Ligands. Chem. Mater. 2014, 26(20), 5950.
  • De Roo, J.; Van Driessche, I.; Martins, J. C.; Hens, Z. Colloidal Metal Oxide Nanocrystal Catalysis by Sustained Chemically Driven Ligand Displacement. Nature Mater. 2016, 15(5), 517. DOI: 10.1038/nmat4554.
  • Talapin, D. V.;. Lee, J–S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110(1), 389. DOI: 10.1021/cr900137k.
  • Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M. A Generalized Ligand–exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. J. Am. Chem. Soc. 2011, 133(4), 998.
  • Lattuada, M.; Hatton, T. A. Functionalization of Monodisperse Magnetic Nanoparticles. Langmuir. 2007, 23(4), 2158. DOI: 10.1021/la062092x.
  • An, P.; Zuo, F.; Wu, Y. P.; Zhang, J. H.; Zheng, Z. H.; Ding, X. B. Fast Synthesis of Dopamine–coated Fe3O4 Nanoparticles through Ligand–exchange Method. Chin. Chem. Lett. 2012, 23(9), 1099.
  • Patil, R.; Shete, P.; Thorat, N.; Otari, S.; Barick, K.; Prasad, A.; Ningthoujam, R. S.; Tiwale, B. M.; Pawar, S. H. Non–aqueous to Aqueous Phase Transfer of Oleic Acid Coated Iron Oxide Nanoparticles for Hyperthermia Application. RSC Adv. 2014, 4(9), 4515.
  • Cai, J.; Miao, Y. Q.; Yu, B. Z.; Ma, P.; Li, L.; Fan, H. M. Large–scale, Facile Transfer of Oleic Acid–stabilized Iron Oxide Nanoparticles to the Aqueous Phase for Biological Applications. Langmuir. 2017, 33(7), 1662. DOI: 10.1021/acs.langmuir.6b03360.
  • LaNasa, J. A.; Torres, V. M.; Hickey, R. J. In Situ Polymerization and Polymer Grafting to Stabilize Polymer-functionalized Nanoparticles in Polymer Matrices. J. Appl. Phys. 2020, 127(13), 134701. DOI: 10.1063/1.5144212.
  • Issa, S.; Cousin, F.; Bonnevide, M.; Gigmes, D.; Jestin, J.; Phan, T. T. Poly(ethylene Oxide) Grafted Silica Nanoparticles: Efficient Routes of Synthesis with Associated Colloidal Stability. Soft Matter. 2021, 17(27), 6552. DOI: 10.1039/D1SM00678A.
  • Vandenabeele, C. R.; Lucas, S. Technological Challenges and Progress in Nanomaterials Plasma Surface Modification–a Review. Mater. Sci. Eng. R Rep. 2020, 139, 100521. DOI: 10.1016/j.mser.2019.100521.
  • Houk, R. S. Mass Spectrometry of Inductively Coupled Plasmas. Anal. Chem. 1986, 58(1), 97A. DOI: 10.1021/ac00292a003.
  • Mutaf–Yardimci, O.; Saveliev, A. V.; Fridman, A. A.; Kennedy, L. A. Thermal and Nonthermal Regimes of Gliding Arc Discharge in Air Flow. J. Appl. Phys. 2000, 87(4), 1632. DOI: 10.1063/1.372071.
  • Kim, Y.; Yu, Q.; Ma, H. Plasma Treatment of Nanoparticles and Carbon Nanotubes for Nanofluids. In Encyclopedia of Microfluidics and Nanofluidics. Business Media New York: Springer Science, 2013; pp 1–17. DOI: 10.1007/978-3-642-27758-0-1254-4.
  • Mathioudaki, S.; Barthelemy, B.; Detriche, S.; Vandenabeele, C.; Delhalle, J.; Mekhalif, Z.; Lucas, S. Plasma Treatment of Metal Oxide Nanoparticles: Development of Core–shell Structures for a Better and Similar Dispersibility. ACS Appl. Nano Mater. 2018, 1(7), 3464.
  • Mol, B.; Beeran, A. E.; Jayaram, P. S.; Prakash, P.; Jayasree, R. S.; Thomas, S.; Chakrapani, B.; Anantharaman, M. R.; Bushiri, M. J. Radio Frequency Plasma Assisted Surface Modification of Fe3O4 Nanoparticles Using Polyaniline/polypyrrole for Bioimaging and Magnetic Hyperthermia Applications. J. Mater. Sci. Mater. Med. 2021, 32(9), 1.
  • Mohammadi, M. A.; Asghari, S.; Aslibeiki, B. Surface Modified Fe3O4 Nanoparticles: A Cross–linked Polyethylene Glycol Coating Using Plasma Treatment. Surf. Interfaces. 2021, 25, 101271. DOI: 10.1016/j.surfin.2021.101271.
  • Skiba, M.; Vorobyova, V.; Pasenko, O. Surface Modification of Titanium Dioxide with Silver Nanoparticles for Application in Photocatalysis. Appl. Nanosci, 2021, 1.
  • Sumitsawan, S.; Cho, J.; Sattler, M. L.; Timmons, R. B. Plasma Surface Modified TiO 2 Nanoparticles: Improved Photocatalytic Oxidation of Gaseous M -xylene. Environ. Sci. Technol. 2011, 45(16), 6970. DOI: 10.1021/es2012963.
  • Nam, S. –. H.; Boo, J. –. H. Enhancement of Photocatalytic Activity of Synthesized ZnO Nanoparticles with Oxygen Plasma Treatment. Catal. Today. 2016, 265, 84. DOI: 10.1016/j.cattod.2015.11.003.
  • Swanson, E. J.; Tavares, J.; Coulombe, S. Improved Dual–plasma Process for the Synthesis of Coated or Functionalized Metal Nanoparticles. IEEE Trans. Plasma. Sci. 2008, 36(4), 886. DOI: 10.1109/TPS.2008.924549.
  • Nguyen, L. N.; Kaushik, N.; Lamichhane, P.; Mumtaz, S.; Paneru, R.; Bhartiya, P. In Situ Plasma-assisted Synthesis of polydopamine-functionalized Gold Nanoparticles for Biomedical Applications. Green Chem. 2020, 22(19), 6588.
  • Pleskunov, P.; Nikitin, D.; Tafiichuk, R.; Shelemin, A.; Hanus, J.; Khalakhan, I.; Choukourov, A. Carboxyl–functionalized Nanoparticles Produced by Pulsed Plasma Polymerization of Acrylic Acid. J. Phys. Chem. B. 2018, 122(14), 4187.
  • Agnihotri, A. S.; Varghese, A.; N, M. Transition Metal Oxides in Electrochemical and Bio Sensing: A State–of–art Review. Appl. Surf. Sci. Adv. 2021, 4, 100072. DOI: 10.1016/j.apsadv.2021.100072.
  • You, J.; Wang, L.; Zhao, Y.; Bao, W. A Review of Amino–functionalized Magnetic Nanoparticles for Water Treatment: Features and Prospects. J. Clean Prod. 2021, 281, 124668. DOI: 10.1016/j.jclepro.2020.124668.
  • Pasqui, D.; Atrei, A.; Giani, G.; De Cagna, M.; Barbucci, R. Metal Oxide Nanoparticles as Cross–linkers in Polymeric Hybrid Hydrogels. Mater. Lett. 2011, 65(2), 392. DOI: 10.1016/j.matlet.2010.10.053.
  • Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of Metal and Metal Oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237. DOI: 10.1016/j.ccr.2015.08.002.
  • Opoku, F.; Kiarii, E. M.; Govender, P. P.; Mamo, M. A. Metal Oxide Polymer Nanocomposites in Water Treatments. In Descriptive Inorganic Chemistry Researches of Metal Compounds; Akitsu, T., Ed.; InTechOpen: Janeza Trdine 9, 51000 Rijeca, Croatia, 2017; pp 173–199.
  • Maruthi, N.; Faisal, M.; Raghavendra, N. Conducting Polymer Based Composites as Efficient EMI Shielding Materials: A Comprehensive Review and Future Prospects. Synth. Met. 2021, 272, 116664. DOI: 10.1016/j.synthmet.2020.116664.
  • Neşer, G. Polymer Based Composites in Marine Use: History and Future Trends. Procedia Eng. 2017, 194, 19. DOI: 10.1016/j.proeng.2017.08.111.
  • Fernandes, M. M.; Martins, P.; Correia, D. M.; Carvalho, E. O.; Gama, F. M.; Vazquez, M.; Bran, C.; Lanceros-Mendez, S. Magnetoelectric Polymer–based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS Appl. Bio Mater. 2021, 4(1), 559.
  • Dongre, R. S.; Sadasivuni, K. K.; Deshmukh, K.; Mehta, A.; Basu, S.; Meshram, J. S. Natural Polymer Based Composite Membranes for Water Purification: A Review. Polym. Plast. Technol. Mater. 2019, 58, 1295.
  • Huang, H. –M. Medical Application of Polymer–based Composites. Polymers. 2020, 12(11), 2560. DOI: 10.3390/polym12112560.
  • Yu, X.; Zeng, L.; Zhou, N.; Guo, P.; Shi, F.; Buchholz, D. B.; Ma, Q.; Yu, J.; Dravid, V. P.; Chang, R. P. H., et al. Ultra‒flexible,“invisible” Thin‒film Transistors Enabled by Amorphous Metal Oxide/polymer Channel Layer Blends. Adv. Mater. 2015, 27(14), 2390.
  • Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. Nano–Micro Lett. 2021, 13(1), 181. DOI: 10.1007/s40820-021-00707-2.
  • Sivalingam, G.; Karthik, R.; Madras, G. Effect of Metal Oxides on Thermal Degradation of Poly(vinyl Acetate) and Poly(vinyl Chloride) and Their Blends. Ind. Eng. Chem. 2003, 42(16), 3647. DOI: 10.1021/ie030009k.
  • Le, T. T.; Nguyen, H. D.; Nguyen, T. N. L.; Phan, T. H. T.; Ho, D. Q.; Nguyen, T. V. Facile Fabrication of Fe3O4@poly(acrylic) Acid Based Ferrofluid with Magnetic Resonance Imaging Contrast Effect. Chem. Sel. 2020, 5, 12915.
  • Liu, F.; Mao, C.; Wu, S.; Wang, B.; Wu, C.; Hu, T. Preparation and Characterization of poly(ε–caprolactone)/Fe3O4 Nanocomposites. Polym. Crystallization. 2021, 4, e10196.
  • Wang, H.; Liu, Y.; Deng, Z.; Han, S. Preparation of Fe 3 O 4 /Poly(L -glutamic Acid) Microspheres and Their Adsorption of Cu(II) Ions. J. Appl. Polym. Sci. 2016, 133(35), 43730. DOI: 10.1002/app.43730.
  • Xie, Y.; Yao, L.; Zhang, Z.; Lv, A.; Shi, X. Synthesis and Characterization of Fe 3 O 4 /Poly(lactide- Co -glycolide) Composite and Its Coating Effects on Magnesium Alloy. Polym. Compos. 2016, 37(5), 1369. DOI: 10.1002/pc.23305.
  • Dalkıran, B.; Erden, P. E.; Kaçar, C.; Kılıç, E. Disposable Amperometric Biosensor Based on Poly-L-lysine and Fe3 O4</sub> NPs-chitosan Composite for the Detection of Tyramine in Cheese. Electroanalysis. 2019, 31(7), 1324. DOI: 10.1002/elan.201900092.
  • Xia, Y.; Fang, J.; Li, P.; Zhang, B.; Yao, H.; Chen, J.; Ding, J.; Ouyang, J. Solution-Processed Highly Superparamagnetic and Conductive PEDOT:PSS/Fe 3 O 4 Nanocomposite Films with High Transparency and High Mechanical Flexibility. ACS Appl. Mater. Int. 2017, 9(22), 19001.
  • Lizundia, E.; Armentano, I.; Luzi, F.; Bertoglio, F.; Restivo, E.; Visai, L. Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(L -lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS Appl. Bio Mater. 2020, 3(8), 5263.
  • Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater. Sci. 2019, 1(1), 2. DOI: 10.1016/j.nanoms.2019.02.006.
  • Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A Critical Review on the Development and Performance of Polymer/graphene Nanocomposites. Sci. Eng. Compos. Mater. 2018, 25(6), 1059. DOI: 10.1515/secm-2017-0199.
  • Abudula, T.; Qurban, R. O.; Bolarinwa, S. O.; Mirza, A. A.; Pasovic, M.; Memic, A. 3D Printing of Metal/metal Oxide Incorporated Thermoplastic Nanocomposites with Antimicrobial Properties. Front. Bioeng. Biotechnol. 2020, 8, 568186. DOI: 10.3389/fbioe.2020.568186.
  • Lagashetty, A.; Venkataraman, A. Polymer Nanocomposites. Resonance. 2005, 10(7), 49. DOI: 10.1007/BF02867106.
  • Tarani, E.; Pusnik, C.; Zemljic, K.; Chrissafis, L. F.; Papageorgiou, K.; Lambropoulou, G. Z.; Zamboulis, A.; N. Bikiaris, D.; Terzopoulou, Z. Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. Appl. Sci. 2021, 11(7), 3004. DOI: 10.3390/app11073004.
  • Esmailzadeh, H.; Sangpour, P.; Shahraz, F.; Eskandari, A.; Hejazi, J.; Khaksar, R. CuO/LDPE Nanocomposite for Active Food Packaging Application: A Comparative Study of Its Antibacterial Activities with ZnO/LDPE Nanocomposite. Polym. Bull. 2021, 78(3), 1671. DOI: 10.1007/s00289-020-03175-7.
  • Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Liebscher, M.; Tzounis, L. Mechanical Properties of 3D-Printed Acrylonitrile–Butadiene–Styrene TiO2 and ATO Nanocomposites. Polymers. 2020, 12(7), 1589. DOI: 10.3390/polym12071589.
  • Nguyen, T. H.; Nguyen, T. H.; Nguyen, T. H.; Nguyen, T. H.; Van, C. P.; Nguyen–Tri, P.; Nguyen-Tri, P.; Gupta, R. K.; Nguyen, T. A. A Facile Strategy for the Construction of TiO2/Ag Nanohybrid-based Polyethylene Nanocomposite for Antimicrobial Applications. Nano–Struct. Nano–Objects. 2021, 25, 100671. DOI: 10.1016/j.nanoso.2021.100671.
  • El–Sharkawy, R. M.; Allam, E. A.; El–Taher, A.; Shaaban, E. R.; Mahmoud, M. E. Synergistic Effect of Nano-bentonite and Nanocadmium Oxide Doping Concentrations on Assembly, Characterization, and Enhanced Gamma-rays Shielding Properties of Polypropylene Ternary Nanocomposites. Int. J. Energy Res. 2021, 45(6), 8942. DOI: 10.1002/er.6427.
  • Käselau, S.; Scheel, S.; Petersson, L.; Ho, C.-H.; Luinstra, G. A. Isotactic Polypropylene Metal Oxide and Silica Nanocomposites by a Two–step Process Comprising in Situ Olefin Polymerization and Melt Compounding. Polym. Int. 2019, 68(5), 946. DOI: 10.1002/pi.5785.
  • Sampreeth, T.; Al–Maghrabi, M. A.; Bahuleyan, B. K.; Ramesan, M. T. Synthesis, Characterization, Thermal Properties, Conductivity and Sensor Application Study of Polyaniline/cerium–doped Titanium Dioxide Nanocomposites. J. Mater. Sci. 2018, 53(1), 591. DOI: 10.1007/s10853-017-1505-8.
  • Ahmad, A. F.; Abbas, Z.; Ab Aziz, S.; Obaiys, S. J.; Zainuddin, M. F. Synthesis and Characterisation of Nickel Oxide Reinforced with Polycaprolactone Composite for Dielectric Applications by Controlling Nickel Oxide as a Filler. Results. Phys. 2018, 11, 427. DOI: 10.1016/j.rinp.2018.08.041.
  • Rojas, K.; Canales, D.; Amigo, N.; Montoille, L.; Cament, A.; Rivas, L. M.; Gil-Castell, O.; Reyes, P.; Ulloa, M. T.; Ribes-Greus, A., et al. Effective Antimicrobial Materials Based on Low–density Polyethylene (LDPE) with Zinc Oxide (ZnO) Nanoparticles. Compos. B Eng. 2019, 172, 173. DOI: 10.1016/j.compositesb.2019.05.054.
  • Guglielmi, M.; Martucci, A. Sol–gel Nanocomposites for Optical Applications. J. Solgel Sci. Technol. 2018, 88(3), 551. DOI: 10.1007/s10971-018-4846-0.
  • Figueira, R. B. Hybrid Sol–gel Coatings for Corrosion Mitigation: A Critical Review. Polymers. 2020, 12(3), 689. DOI: 10.3390/polym12030689.
  • Morikawa, A.; Iyoku, Y.; Kakimoto, M.-A.; Imai, Y. Feature Article. Preparation of New Polyimide–silica Hybrid Materials via the Sol–gel Process. J. Mater. Chem. 1992, 2(7), 679. DOI: 10.1039/JM9920200679.
  • Schmidt, H. Organic Modification of Glass Structure New Glasses or New Polymers? J. Non Cryst. Solids. 1989, 112(1–3), 419. DOI: 10.1016/0022-3093(89)90565-6.
  • Factori, I. M.; Amaral, J. M.; Camani, P. H.; Rosa, D. S.; Lima, B. A.; Brocchi, M. ZnO Nanoparticle/poly(vinyl Alcohol) Nanocomposites via Microwave–assisted Sol–gel Synthesis for Structural Materials, UV Shielding, and Antimicrobial Activity. ACS Appl. Nano Mater. 2021, 4(7), 7371.
  • Abebe, B.; Murthy, H. A.; Zereffa, E. A.; Adimasu, Y. Synthesis and Characterization of ZnO/PVA Nanocomposites for Antibacterial and Electrochemical Applications. Inorg. Nano–Metal Chem. 2021, 51(8), 1127. DOI: 10.1080/24701556.2020.1814338.
  • Garibay–Martínez, F.; Rao, M. G. S.; Cortázar–Martinez, O.; Hurtado–Macias, A.; Quevedo–López, M. A.; Ramírez–Bon, R. Optical, Mechanical and Dielectric Properties of Sol–gel PMMA–GPTMS–ZrO2 Hybrid Thin Films with Variable GPTMS Content. J. Non Cryst. Solids. 2021, 563, 120803. DOI: 10.1016/j.jnoncrysol.2021.120803.
  • Morales–Acosta, M.; Quevedo–Lopez, M.; Ramirez–Bon, R. PMMA–SiO2 Hybrid Films as Gate Dielectric for ZnO Based Thin-film Transistors. Mater. Chem. Phys. 2014, 146(3), 380. DOI: 10.1016/j.matchemphys.2014.03.042.
  • Alvarado–Beltran, C. G.; Almaral–Sanchez, J. L.; Mejia, I.; Quevedo–Lopez, M. A.; Sol–gel, R. R. Sol–Gel PMMA–ZrO 2 Hybrid Layers as Gate Dielectric for Low-Temperature ZnO-Based Thin-Film Transistors. ACS Omega. 2017, 2(10), 6968. DOI: 10.1021/acsomega.7b00552.
  • Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the Mechanical Properties of ZrO2</sub>-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials. 2019, 12(8), 1344. DOI: 10.3390/ma12081344.
  • Alvarado–Beltran, C.; Almaral–Sanchez, J.; Quevedo–Lopez, M. A.; Ramirez–Bon, R. Dielectric Gate Applications of PMMA–TiO2 Hybrid Films in ZnO–based Thin Film Transistors. Int. J. Electrochem. Sci. 2015, 10, 4068.
  • Meza–Arroyo, J.; Syamala Rao, M. G.; Mejia, I.; Quevedo– López, M. A.; Ramírez–Bon, R. Low Temperature Processing of Al2O3–GPTMS–PMMA Hybrid Films with Applications to High–performance ZnO Thin–film Transistors. Appl. Surf. Sci. 2019, 467–468, 456. DOI: 10.1016/j.apsusc.2018.10.170.
  • Ragosta, G.; Musto, P. Polyimide/silica Hybrids via the Sol–gel Route: High Performance Materials for the New Technological Challenges. Express Polym. Lett. 2009, 3(7), 428. DOI: 10.3144/expresspolymlett.2009.51.
  • Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide‒based Materials for Space Applications. Adv. Mater. 2019, 31(18), 1807738. DOI: 10.1002/adma.201807738.
  • Rao, M. G. S.; Sanchez–Martinez, A.; Gutierrez–Heredia, G.; Quevedo– López, M. A.; Ramirez–Bon, R. Sol–gel Derived Low Temperature HfO2–GPTMS Hybrid Gate Dielectric for a–IGZO Thin–film Transistors (TFTs). Ceram. Int. 2018, 44(14), 16428. DOI: 10.1016/j.ceramint.2018.06.056.
  • Liou, G. S.; Lin, P. H.; Yen, H. J.; Yu, Y. Y.; Chen, W. C. Flexible Nanocrystalline‒titania/polyimide Hybrids with High Refractive Index and Excellent Thermal Dimensional Stability. J. Polym. Sci. A Polym. Chem. 2010, 48(6), 1433. DOI: 10.1002/pola.23914.
  • Chiu, Y. –. W.; Pai, M. –. H.; Liou, G. –. S. Facile Approach of Porous Electrochromic polyamide/ZrO2 Facile Approach of Porous Electrochromic Polyamide/ZrO 2# Films for Enhancing Redox Switching Behavior. ACS Appl. Mater. Interfaces. 2020, 12(31), 35273. DOI: 10.1021/acsami.0c09314.
  • Lei, Y.; Shi, W.; Ding, S.; Sun, X.; Liu, S. In–situ Benzoxazine–isocyanide Chemistry (Bic)/sol–gel Preparation and Pb(II) Electrochemical Probing Investigation of Modified Polyamide/silica Composite. Colloids Surf. A. 2022, 632, 127798. DOI: 10.1016/j.colsurfa.2021.127798.
  • Suzuki, T. Gas Transport Properties of Thermally Rearranged (TR) Polybenzoxazole –silica Hybrid Membranes. Polymer. 2021, 214, 123274. DOI: 10.1016/j.polymer.2020.123274.
  • Zhao, Y.; Zhao, X.; Shen, Z.; Zhang, X. Preparation of Two–component Hybrid Polyimide Film for Atomic Oxygen Erosion Resistance. Mater. Today Commun. 2021, 27, 102141. DOI: 10.1016/j.mtcomm.2021.102141.
  • Chen, B. –. K.; Su, C. –. T.; Tseng, M. –. C.; Tsay, S. –. Y. Preparation of Polyetherimide Nanocomposites with Improved Thermal, Mechanical and Dielectric Properties. Polym. Bull. 2006, 57(5), 671. DOI: 10.1007/s00289-006-0630-3.
  • Zhang, Y. –. H.; Li, Y.; Fu, S. –. Y.; Xin, J. H.; Daoud, W. A.; Li, L. –. F. Synthesis and Cryogenic Properties of Polyimide–silica Hybrid Films by Sol–gel Process. Polymer. 2005, 46(19), 8373. DOI: 10.1016/j.polymer.2005.07.012.
  • Hones, H. M.; Cook, J. T.; McCaffrey, M. J.; Krchnavek, R. R.; Xue, W. Effects of Material Preparation in polyimide/SiO2 Nanocomposites for Low–temperature Dielectric Applications. IEEE Trans. Nanotechnol. 2021, 20, 695. DOI: 10.1109/TNANO.2021.3112255.
  • Zhan, C.; Yu, G.; Lu, Y.; Wang, L.; Wujcik, E.; Wei, S. Conductive Polymer Nanocomposites: A Critical Review of Modern Advanced Devices. J. Mater. Chem. C. 2017, 5(7), 1569. DOI: 10.1039/C6TC04269D.
  • Maira, B.; Chammingkwan, P.; Terano, M.; Taniike, T. Reactor Granule Technology for Fabrication of Functionally Advantageous Polypropylene Nanocomposites with Oxide Nanoparticles. Compos. Sci. Technol. 2017, 144, 151. DOI: 10.1016/j.compscitech.2017.03.026.
  • Ramesan, M.; Nidhisha, V.; Jayakrishnan, P. Synthesis, Characterization and Conducting Properties of Novel Poly (Vinyl Cinnamate)/zinc Oxide Nanocomposites via in Situ Polymerization. Mater. Sci. Semicond. Process. 2017, 63, 253. DOI: 10.1016/j.mssp.2017.02.027.
  • Ramesan, M.; Surya, K. Synthesis, Characterization, and Properties of Cashew Gum Graft Poly (Acrylamide)/magnetite Nanocomposites. J. Appl. Polym. Sci. 2016, 133. DOI: 10.1002/app.43496.
  • Ul–Haq, Y.; Murtaza, I.; Mazhar, S.; Ullah, R.; Iqbal, M.; Qarni, A. A.; Qarni, A. A.; Amin, S. Dielectric, Thermal and Mechanical Properties of Hybrid PMMA/RGO/Fe2O3 Nanocomposites Fabricated by In–situ Polymerization. Ceram. Int. 2020, 46(5), 5828.
  • Majumder, M.; Choudhary, R. B.; Thakur, A. K.; Karbhal, I. Impact of Rare-earth Metal Oxide (Eu 2 O 3) on the Electrochemical Properties of a polypyrrole/CuO Polymeric Composite for Supercapacitor Applications. RSC Adv. 2017, 7(32), 20037. DOI: 10.1039/C7RA01438D.
  • Arjomandi, J.; Soleimani, H.; Parvin, M. H.; Azizi, E. Synthesis and Characterization of Novel Polyindole/metal Oxide Nanocomposites and Its Evaluation for Lithium Ion Rechargeable Battery Applications. Polym. Compos. 2019, 40(2), 496. DOI: 10.1002/pc.24674.
  • Sankar, S.; Naik, A. A.; Anilkumar, T.; Ramesan, M. T. In Situ Preparation of SnO2@polyaniline Nanocomposites and Their Synergetic Structure for High-performance Supercapacitors. J. Mater. Chem. A. 2014, 2(22), 8334.
  • Liao, G.; Li, Q.; Xu, Z. The Chemical Modification of Polyaniline with Enhanced Properties: A Review. Prog. Org. Coat. 2019, 126, 35–43. DOI: 10.1016/j.porgcoat.2018.10.018.
  • Vyas, S.; Shukla, A.; Shivhare, S. J.; Bagal, S.; Upadhyay, N. High Performance Conducting Nanocomposites Polyaniline (Pani)–cuo with Enhanced Antimicrobial Activity for Biomedical Applications. Mater. Manuf. Process. 2021, 15, 46.
  • Tanguy, N. R.; Thompson, M.; Yan, N. A Review on Advances in Application of Polyaniline for Ammonia Detection. Sens. Actuators B Chem. 2018, 257, 1044. DOI: 10.1016/j.snb.2017.11.008.
  • Kondawar, S.; Agrawal, S.; Nimkar, S.; Sharma, H.; Patil, P. Conductive Polyaniline–tin Oxide Nanocomposites for Ammonia Sensor. Adv. Mater. Lett. 2012, 3(5), 393. DOI: 10.5185/amlett.2012.6361.
  • Nandapure, B.; Kondawar, S.; Salunkhe, M.; Nandapure, A. Magnetic and Transport Properties of Conducting Polyaniline/nickel Oxide Nanocomposites. Adv. Mater. Lett. 2013, 4, 134.
  • Pippara, R. K.; Chauhan, P. S.; Yadav, A.; Kishnani, V.; Gupta, A. Room Temperature Hydrogen Sensing with polyaniline/SnO2/Pd Nanocomposites. Micro Nano Eng. 2021, 12, 100086. DOI: 10.1016/j.mne.2021.100086.
  • Liu, A.; Lv, S.; Zhao, L.; Liu, F.; Wang, J.; You, R.; Yang, Z.; He, J.; Jiang, L.; Wang, C., et al. Room Temperature Flexible NH3 Sensor Based on Polyaniline Coated Rh–doped SnO2 Hollow Nanotubes. Sens. Actuators B Chem. 2021, 330, 129313. DOI: 10.1016/j.snb.2020.129313.
  • Hu, Q.; Wang, Z.; Chang, J.; Wan, P.; Huang, J.; Feng, L. Design and Preparation of Hollow NiO Sphere–polyaniline Composite for NH3 Gas Sensing at Room Temperature. Sens. Actuators B Chem. 2021, 344, 130179. DOI: 10.1016/j.snb.2021.130179.
  • Jamil, S.; Ahmad, Z.; Ali, M.; Rauf, K.; Ali, S.; Amen Hammami, S.; Haroon, M.; Saleh, T. A.; Ramzan Saeed Ashraf Janjua, M. Synthesis and Characterization of Polyaniline/nickel Oxide Composites for Fuel Additive and Dyes Reduction. Chem. Phys. Lett. 2021, 776, 138713. DOI: 10.1016/j.cplett.2021.138713.
  • Ramadoss, M.; Chen, Y.; Ranganathan, S.; Giribabu, K.; Thangavelu, D.; Annamalai, P.; Vengidusamy, N. Self–assembled Ni/NiO Impregnated Polyaniline Nanoarchitectures: A Robust Bifunctional Catalyst for Nitrophenol Reduction and Epinephrine Detection. Appl. Catal. A Gen. 2021, 613, 118028. DOI: 10.1016/j.apcata.2021.118028.
  • Jadhav, S.; Dhas, S.; Patil, K.; Moholkar, A.; Polyaniline, P. P. (Pani)–manganese Dioxide (Mno2) Nanocomposites as Efficient Electrode Materials for Supercapacitors. Chem. Phys. Lett. 2021, 778, 138764. DOI: 10.1016/j.cplett.2021.138764.
  • Hamdy, M. S.; Abd–Rabboh, H. S. M.; Benaissa, M.; Al–Metwaly, M. G.; Galal, A. H.; Ahmed, M. A. Fabrication of Novel polyaniline/ZnO Heterojunction for Exceptional Photocatalytic Hydrogen Production and Degradation of Fluorescein Dye through Direct Z–scheme Mechanism. Opt. Mater. 2021, 117, 111198. DOI: 10.1016/j.optmat.2021.111198.
  • Paulraj, R.; Shankar, P.; Mani, G. K.; Nallathambi, L.; Rayappan, J. B. B. PANI–CdO Nanocomposite Thin Films as a Room Temperature Methanol Sensor. J. Electron. Mater. 2018, 47(10), 6000. DOI: 10.1007/s11664-018-6485-1.
  • Singh, P.; Shukla, S. K. Structurally Optimized Cupric Oxide/polyaniline Nanocomposites for Efficient Humidity Sensing. Surf. Interfaces. 2020, 18, 100410. DOI: 10.1016/j.surfin.2019.100410.
  • Manzoor, S.; Yasmin, G.; Raza, N.; Fernandez, J.; Atiq, R.; Chohan, S.; Iqbal, A.; Manzoor, S.; Malik, B.; Winter, F., et al. Synthesis of Polyaniline Coated Magnesium and Cobalt Oxide Nanoparticles through Eco–friendly Approach and Their Application as Antifungal Agents. Polymers. 2021, 13(16), 2669.
  • Chen, K.; Zhang, G.; Xiao, L.; Li, P.; Li, W.; Xu, Q.; Xu, J. Polyaniline Encapsulated Amorphous V 2 O 5 </sub> Nanowire-Modified Multi-Functional Separators for Lithium–Sulfur Batteries. Small Methods. 2021, 5(3), 2001056.
  • Chen, J.; Wang, N.; Liu, Y.; Zhu, J.; Feng, J.; Yan, W. Synergetic Effect in a Self–doping polyaniline/TiO2 Composite for Selective Adsorption of Heavy Metal Ions. Synth. Met. 2018, 245, 32. DOI: 10.1016/j.synthmet.2018.08.006.
  • Rastgordani, M.; Zolgharnein, J.; Mahdavi, V. Derivative Spectrophotometry and Multivariate Optimization for Simultaneous Removal of Titan Yellow and Bromophenol Blue Dyes Using polyaniline@SiO2 Nanocomposite. Microchem. J. 2020, 155, 104717. DOI: 10.1016/j.microc.2020.104717.
  • Manna, R.; Srivastava, S. K. Reduced Graphene Oxide/Fe 3 O 4 /Polyaniline Ternary Composites as a Superior Microwave Absorber in the Shielding of Electromagnetic Pollution. ACS Omega. 2021, 6(13), 9164. DOI: 10.1021/acsomega.1c00382.
  • Haldar, P. Achieving Wide Potential Window and High Capacitance for Supercapacitors Using Different Metal Oxides (Viz.: ZrO2, WO3 and V2O5) and Their PANI/graphene Composites with Na2SO4 Electrolyte. Electrochim. Acta. 2021, 381, 138221. DOI: 10.1016/j.electacta.2021.138221.
  • Lei, Y.; Qiu, Z.; Tan, N.; Du, H.; Li, D.; Liu, J. Polyaniline/CeO2 Nanocomposites as Corrosion Inhibitors for Improving the Corrosive Performance of Epoxy Coating on Carbon Steel in 3.5% NaCl Solution. Prog. Org. Coat. 2020, 139, 105430. DOI: 10.1016/j.porgcoat.2019.105430.
  • Bekhti, M. A.; Belardja, M. S. E.; Lafjah, M.; Chouli, F.; Benyoucef, A. Enhanced Tailored of Thermal Stability, Optical and Electrochemical Properties of PANI Matrix Containing Al 2 O 3 Hybrid Materials Synthesized through in Situ Polymerization. Polym. Compos. 2021, 42(1), 6. DOI: 10.1002/pc.25812.
  • Li, S.; Diao, Y.; Yang, Z.; He, J.; Wang, J.; Liu, C. Enhanced Room Temperature Gas Sensor Based on Au–loaded Mesoporous In2O3 Nanospheres@polyaniline Core–shell Nanohybrid Assembled on Flexible PET Substrate for NH3 Detection. Sens. Actuators B Chem. 2018, 276, 526. DOI: 10.1016/j.snb.2018.08.120.
  • Roy, A. S.; Parveen, A.; Prasad, A.; Anilkumar, K. R. Influence of Ta 2 O 5 on Polyaniline Surface for Liquid Petroleum Gas Sensing Applications. Sens. Rev. 2012, 32(2), 163. DOI: 10.1108/02602281211209455.
  • Jacob, S.; Santhoskumar, A.; Bhuvana, K.; Palanivelu, K.; Nayak, S. Investigation on the Structural and Magnetic Properties of a Polymer Composite: Polyaniline/Cr 2 O 3. Polym. Plast. Technol. Eng. 2012, 51(3), 317. DOI: 10.1080/03602559.2011.639328.
  • Hosseini, M. G.; Sefidi, P. Y.; Kinayyigit, S. Modification of polyaniline–WO3 as a Noble Metal–free Photo Electrocatalyst with (6,6)–phenyl–c61–butyric Acid Methyl Ester for Solar Photoelectrochemical Water Splitting. Mater. Sci. Semicond. Process. 2021, 121, 105440. DOI: 10.1016/j.mssp.2020.105440.
  • Hu, H.; Onyebueke, L.; Abatan, A. Characterizing and Modeling Mechanical Properties of Nanocomposites–review and Evaluation. J. Miner. Mater. Charact. Eng. 2010, 9, 275.
  • Mallakpour, S.; Zadehnazari, A. New Organosoluble, Thermally Stable, and Nanostructured Poly(amide-imide)s with Dopamine Pendant Groups: Microwave-assisted Synthesis and Characterization. Int. J. Polym. Anal. Charact. 2012, 17(6), 408. DOI: 10.1080/1023666X.2012.669646.
  • Mallakpour, S.; Zadehnazari, A. Synergic Effects of Molten Ionic Liquid and Microwave Irradiation in Preparation of Optically Active Nanostructured Poly(amide-imide)s Containing Amino Acid and Dopamine Moiety. Polym. Plast. Technol. Eng. 2012, 51(11), 1090. DOI: 10.1080/03602559.2012.689059.
  • Mallakpour, S.; Zadehnazari, A. Tailored Synthesis of Nanostructured Polymer Thin Films from Optically Active and Thermally Stable Poly(amide-co-imide)s Containing Hydroxyl Pendant Groups in a Green Ionic Solvent. Polym. Plast. Technol. Eng. 2012, 51(11), 1097. DOI: 10.1080/03602559.2012.689060.
  • Mallakpour, S.; Zadehnazari, A. Simple and Efficient Microwave-assisted Polycondensation for Preparation of Chiral Poly(amide-imide)s Having Pendant Phenol Moiety. Polym. Sci. Ser B. 2012, 54(5–6), 314. DOI: 10.1134/S1560090412060048.
  • Mallakpour, S.; Zadehnazari, A. Nanostructure Formation in Chiral Poly(amide-imide)s Based on Dopamine Moiety and N-trimellitylimido-L-amino Acids in the Main Chain. J. Chil. Chem. Soc. 2012, 57(3), 1248. DOI: 10.4067/S0717-97072012000300011.
  • Mallakpour, S.; Zadehnazari, A. Synthesis and Characterization of Novel Heat Stable and Processable Optically Active Poly(amide–imide) Nanostructures Bearing Hydroxyl Pendant Group in an Ionic Green Medium. J. Polym. Environ. 2013, 21(1), 132. DOI: 10.1007/s10924-012-0442-5.
  • Mallakpour, S.; Zadehnazari, A. Synthesis of Novel Nanostructured Chiral Poly(amide-imide)s Containing Dopamine and Natural Amino Acids. J. Chem. Sci. 2013, 125(1), 203. DOI: 10.1007/s12039-012-0351-0.
  • Mallakpour, S.; Zadehnazari, A. Novel Optically Active Poly(amide-thioester-imide)s Containing -α-amino Acids and Thiadiazol Anticorrosion Group. High Perform. Polym. 2013, 25(4), 377. DOI: 10.1177/0954008312467809.
  • Mallakpour, S.; Zadehnazari, A. Microwave-assisted Synthesis and Morphological Characterization of Chiral Poly(amide-imide) Nanostructures in Molten Ionic Liquid Salt. Adv. Polym. Technol. 2013, 32(1), 21333. DOI: 10.1002/adv.21333.
  • Mallakpour, S.; Zadehnazari, A. Microwave Irradiation for Accelerating Synthesis of New Chiral Poly(amide-imide)s Having a Thiazole Pendant Group. Int. J. Polym. Anal. Charact. 2013, 18(6), 469. DOI: 10.1080/1023666X.2013.814210.
  • Mallakpour, S.; Zadehnazari, A. Chiral Poly(amide-thioester-imide)s Having Thiadiazol Group: Microwave-assisted Synthesis and Study of Thermo-optical Behavior. Chem. Eng. Commun. 2014, 201(5), 635. DOI: 10.1080/00986445.2013.782293.
  • Mallakpour, S.; Zadehnazari, A. Molten Salt-supported Polycondensation of Optically Active Diacid Monomers with an Aromatic Thiazole Bearing Diamine Using Microwave Irradiation. J. Adv. Res. 2014, 5(3), 311. DOI: 10.1016/j.jare.2013.04.003.
  • Mallakpour, S.; Zadehnazari, A. Thermoplastic Vinyl Polymers: From Macro to Nanostructure. Polym. Plast. Technol. Eng. 2013, 52(14), 1423. DOI: 10.1080/03602559.2013.828233.
  • Mallakpour, S.; Zadehnazari, A. Thermoplastic Non-vinyl Polymers: From Macro to Nanostructure. Polym. Plast. Technol. Eng. 2014, 53(6), 564. DOI: 10.1080/03602559.2013.854387.
  • Mallakpour, S.; Zadehnazari, A. The Production of Functionalized Multiwall Carbon Nanotube/amino Acid–based Poly(amide–imide) Composites Containing a Pendant Dopamine Moiety. Carbon. 2013, 56, 27. DOI: 10.1016/j.carbon.2012.12.089.
  • Mallakpour, S.; Zadehnazari, A. Functionalization of Multi–wall Carbon Nanotubes with Amino Acid and Its Influence on the Properties of Thiadiazol Bearing Poly(amide–thioester–imide) Composites. Synth. Met. 2013, 169, 1–11. DOI: 10.1016/j.synthmet.2013.03.002.
  • Takassi, M. A.; Zadehnazari, A.; Farhadi, A.; Mallakpour, S. Highly Stable Polyimide Composite Films Based on 1,2,4–triazole Ring Reinforced with Multi–walled Carbon Nanotubes: Study on Thermal, Mechanical, and Morphological Properties. Prog. Org. Coat. 2015, 80, 142. DOI: 10.1016/j.porgcoat.2014.12.001.
  • Mallakpour, S.; Zadehnazari, A. Efficient Functionalization of Multi-walled Carbon Nanotubes with P -aminophenol and Their Application in the Fabrication of Poly(amide-imide)-matrix Composites. Polym. Int. 2014, 63(7), 1203. DOI: 10.1002/pi.4622.
  • Mallakpour, S.; Zadehnazari, A. Chiral Poly(amide-imide)/carbon Nanotube Bionanocomposites Containing Hydroxyl Pendant Groups and L-phenylalanine Amino Acid: Synthesis, Preparation of Thin Films, and Thermomechanical Behavior. Soft Mater. 2012, 11(4), 494. DOI: 10.1080/1539445X.2012.718310.
  • Mallakpour, S.; Zadehnazari, A. Synthesize Procedures, Mechanical and Thermal Properties of Thiazole Bearing Poly(amid-imide) Composite Thin Films Containing Multiwalled Carbon Nanotubes. Colliod Nd Polym. Sci. 2013, 291(6), 1525. DOI: 10.1007/s00396-012-2873-x.
  • Mallakpour, S.; Zadehnazari, A. Studies on Behavior of Acid-functionalized Multi-walled Carbon Nanotubes Partitioning in a Phenol-containing Poly(amide-imide)-based Blend Nanocomposites. Fuller. Nanotub. Carbon Nanostructures. 2014, 23(4), 346. DOI: 10.1080/1536383X.2013.812635.
  • Mallakpour, S.; Zadehnazari, A. Thermal and Mechanical Stabilities of Composite Films from Thiadiazol Bearing Poly(amide-thioester-imide) and Multiwall Carbon Nanotubes by Solution Compounding. Polym. Bull. 2014, 71(1), 207. DOI: 10.1007/s00289-013-1056-3.
  • Mallakpour, S.; Zadehnazari, A. An Investigation on the Effects of Functionalized Multi-walled Carbon Nanotube on Mechanical and Thermal Properties of Dopamine-bearing Poly(amide-imide) Composite Films. J. Thermoplast. Compos. Mater. 2015, 28(12), 1644. DOI: 10.1177/0892705713518783.
  • Mallakpour, S.; Zadehnazari, A. The Effect of Carboxylated Multi-walled Carbon Nanotubes on Reinforcement Efficiency of Thiazole Bearing Poly(amid-imide) Composites. Des. Monomers Polym. 2014, 17(3), 275. DOI: 10.1080/15685551.2013.840502.
  • Mallakpour, S.; Zadehnazari, A. A Facile, Efficient, and Rapid Covalent Functionalization of Multi-walled Carbon Nanotubes with Natural Amino Acids under Microwave Irradiation. Prog. Org. Coat. 2014, 77(3), 679. DOI: 10.1016/j.porgcoat.2013.12.003.
  • Mallakpour, S.; Zadehnazari, A. Effect of Amino Acid-functionalization on the Interfacial Adhesion and Behaviour of Multi-walled Carbon Nanotubes/poly(amide-imide) Nanocomposites Containing Thiazole Side Unit. J. Polym. Res. 2013, 20(7), 1. DOI: 10.1007/s10965-013-0192-7.
  • Mallakpour, S.; Zadehnazari, A. Functionalization of Multi-wall Carbon Nanotubes with S-valine Amino Acid and Its Reinforcement on an Amino Acid Containing Poly(amide-imide) Bionanocomposites. High Perform. Polym. 2013, 25(8), 966. DOI: 10.1177/0954008313491126.
  • Mallakpour, S.; Zadehnazari, A. Effect of Amino Acid-functionalized Multi-walled Carbon Nanotubes on the Properties of Dopamine-based Poly(amide-imide) Composites: An Experimental Study. Bull. Mater. Sci. 2014, 37(5), 1065. DOI: 10.1007/s12034-014-0046-x.
  • Mallakpour, S.; Zadehnazari, A. A Convenient Strategy to Functionalize Carbon Nanotubes with Ascorbic Acid and Its Effect on the Physical and Thermomechanical Properties of Poly(amide-imide) Composites. J. Solid State Chem. 2014, 211, 136. DOI: 10.1016/j.jssc.2013.12.021.
  • Mallakpour, S.; Zadehnazari, A. One-pot Synthesis of Glucose Functionalized Multi-walled Carbon Nanotubes: Dispersion in Hydroxylated Poly(amide-imide) Composites and Their Thermo-mechanical Properties. Polymer. 2013, 54(23), 6329. DOI: 10.1016/j.polymer.2013.09.048.
  • Mallakpour, S.; Zadehnazari, A. Rapid and Green Functionalization of Multi-walled Carbon Nanotubes by Glucose: Structural Investigation and the Preparation of Dopamine-based Poly(amide-imide) Composites. Polym. Bull. 2014, 71(10), 2523. DOI: 10.1007/s00289-014-1205-3.
  • Mallakpour, S.; Zadehnazari, A. Preparation and Properties of High-performance Poly(amide-imide) Composite Films Based on Glucose-functionalized Multiwalled Carbon Nanotubes. High Perform. Polym. 2016, 28(1), 14. DOI: 10.1177/0954008314568731.
  • Mallakpour, S.; Zadehnazari, A. Functionalized Multi-walled Carbon Nanotubes with Vitamin C Structures: Characterization and Fabrication of Thiazole Containing Poly(amide-imide)-based Composites. Polym. Plast. Technol. Eng. 2015, 54(15), 1644. DOI: 10.1080/03602559.2015.1036441.
  • Mallakpour, S.; Zadehnazari, A. Microwave-induced Chemical Functionalization of Carboxylated Multi-walled Nanotubes with P-aminophenol: Towards the Synthesis of MWCNT–poly(amide-imide) Hybrids. Polym. Sci. Ser B. 2015, 57(6), 717. DOI: 10.1134/S1560090415070040.
  • Takassi, M. A.; Zadehnazari, A. Nanocomposites of Triazole Functionalized Multiwalled Carbon Nanotube with Chemically Grafted Polyimide: Preparation, Characterization and Properties. Fuller. Nanotub. Carbon Nanostructures. 2016, 24(2), 128. DOI: 10.1080/1536383X.2015.1115976.
  • Mallakpour, S.; Zadehnazari, A. Preparation of Dopamine-functionalized Multi-wall Carbon Nanotube/poly(amide-imide) Composites and Their Thermal and Mechanical Properties. New Carbon Mater. 2016, 31(1), 18. DOI: 10.1016/S1872-5805(16)60001-X.
  • Zadehnazari, A.; Takassi, M. A. Synthesis of Modified Multi-walled Carbon Nanotube Poly(benzimidazole-imide) Composites: Assessment of Morphological and Thermo-mechanical Properties. Compos. Interfaces. 2016, 23(9), 909. DOI: 10.1080/09276440.2016.1180500.
  • Mallakpour, S.; Zadehnazari, A. Synthesis, Morphology Investigation and Thermal Mechanical Properties of Dopamine-functionalized Multi-walled Carbon Nanotube/poly(amide-imide) Composites. React. Funct. Polym. 2016, 106, 112. DOI: 10.1016/j.reactfunctpolym.2016.07.010.
  • Mallakpour, S.; Zadehnazari, A. Improved Covalent Functionalization of Multi-walled Carbon Nanotubes Using Ascorbic Acid for Poly(amide-imide) Composites Having Dopamine Linkages. Bull. Mater. Sci. 2017, 40(1), 213. DOI: 10.1007/s12034-017-1358-4.
  • Takassi, M. A.; Zadehnazari, A. Investigation of Thermal and Tensile Properties of Poly(benzimidazole-imide) Composites Incorporating Salicylic Acid-functionalized Multi-walled Carbon Nanotubes. High Perform. Polym. 2018, 30(2), 139. DOI: 10.1177/0954008316684933.
  • Takassi, M. A.; Zadehnazari, A. Green Synthesis of Salicylic Acid-based Poly(amide-imide) in Ionic Liquid and Composite Formation with Multi-walled Carbon Nanotube. Polym. Plast. Technol. Eng. 2017, 56(12), 1358. DOI: 10.1080/03602559.2016.1275686.
  • Kianpour Kalchounaki, E.; Farhadi, A.; Zadehnazari, A. Preparation and Properties Evaluation of Polyimide-matrix Nanocomposites Reinforced with Glutamine Functionalized Multi-walled Carbon Nanotube. Polym. Bull. 2018, 75(12), 5731. DOI: 10.1007/s00289-018-2358-2.
  • Rahman, M.; Hoque, M. A.; Rahman, G.; Gafur, M.; Khan, R. A.; Hossain, M. K. Evaluation of Thermal, Mechanical, Electrical and Optical Properties of Metal–oxide Dispersed HDPE Nanocomposites. Mater. Res. Express. 2019, 6(8), 085092. DOI: 10.1088/2053-1591/ab22d8.
  • Di Maro, M.; Duraccio, D.; Malucelli, G.; Faga, M. G. High Density Polyethylene Composites Containing Alumina–toughened Zirconia Particles: Mechanical and Tribological Behavior. Compos. B Eng. 2021, 217, 108892. DOI: 10.1016/j.compositesb.2021.108892.
  • Michler, G. H.; Von Schmeling, H. –. H. K. –. B. The Physics and Micro–mechanics of Nano–voids and Nano–particles in Polymer Combinations. Polymer. 2013, 54(13), 3131. DOI: 10.1016/j.polymer.2013.03.035.
  • Song, Y.; Zheng, Q. Linear Rheology of Nanofilled Polymers. J. Rheol. 2015, 59(1), 155. DOI: 10.1122/1.4903312.
  • Zhang, W.; Chen, J.; Zeng, H. Chapter 8 – Polymer Processing and Rheology. In Polymer Science and Nanotechnology, Narain, R., Ed.; Amsterdam, Netherlands: Elsevier, 2020; pp. 149–178.
  • Zhang, Q.; Wu, C.; Song, Y.; Zheng, Q. Rheology of Fumed Silica/polypropylene Glycol Dispersions. Polymer. 2018, 148, 400. DOI: 10.1016/j.polymer.2018.06.051.
  • Khumalo, V. M.; Karger–Kocsis, J.; Thomann, R. Polyethylene/synthetic Boehmite Alumina Nanocomposites: Structure, Thermal and Rheological Properties. Express Polym. Lett. 2010, 4(5), 264. DOI: 10.3144/expresspolymlett.2010.34.
  • Nawaz, M.; Maghfoor, S.; Waseem, M.; Bahader, A.; Bangesh, M. A.; Ullah, H. Morphological and Rheological Characteristics of PVP–CeO 2 Blends. Polym. Plast. Technol. Eng. 2017, 56(14), 1487.
  • Tao, R.; Simon, S. L. Bulk and Shear Rheology of Silica/polystyrene Nanocomposite: Reinforcement and Dynamics. J. Polym. Sci. B Polym. Phys. 2015, 53(9), 621. DOI: 10.1002/polb.23669.
  • Sakib, N.; Koh, Y. P.; Huang, Y.; Mongcopa, K. I. S.; Le, A. N.; Benicewicz, B. C.; Krishnamoorti, R.; Simon, S. L. Thermal and Rheological Analysis of Polystyrene–grafted Silica Nanocomposites. Macromolecules. 2020, 53(6), 2123.
  • Fonseca, C.; Ochoa, A.; Ulloa, M. T.; Alvarez, E.; Canales, D.; Zapata, P. A. Poly (Lactic acid)/TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater. Sci. Eng. C. 2015, 57, 314. DOI: 10.1016/j.msec.2015.07.069.
  • Wong, T.; Lau, K.; Tam, W.; Etches, J. A.; Kim, J. –. K.; Wu, Y. Effects of Silane Surfactant on Nano–ZnO and Rheology Properties of nano–ZnO/epoxy on the UV Absorbability of nano–ZnO/epoxy/micron–HGF Composite. Compos. B Eng. 2016, 90, 378. DOI: 10.1016/j.compositesb.2016.01.005.
  • Tan, H.; Lin, Y.; Zheng, J.; Gong, J.; Qiu, J.; Xing, H.; Tang, T. Particle-size Dependent Melt Viscosity Behavior and the Properties of Three-arm Star polystyrene–Fe 3 O 4 Composites. Soft Matter. 2015, 11(20), 3986.
  • Li, Y.; Sun, X. S. Preparation and Characterization of Polymer−Inorganic Nanocomposites by in Situ Melt Polycondensation of L -lactic Acid and Surface-Hydroxylated MgO. Biomacromolecules. 2010, 11(7), 1847. DOI: 10.1021/bm100320q.
  • Zhang, J.; Cao, C.; Wang, Y.; Xie, L.; Li, W.; Li, B. Magnesium Oxide/silver Nanoparticles Reinforced Poly(butylene Succinate–co–terephthalate) Biofilms for Food Packaging Applications. Food Packag. Shelf Life. 2021, 30, 100748. DOI: 10.1016/j.fpsl.2021.100748.
  • Alsaad, A. M.; Ahmad, A. A.; Dairy, A. R. A.; Al–anbar, A. S.; Al–Bataineh, Q. M. Spectroscopic Characterization of Optical and Thermal Properties of (PMMA–PVA) Hybrid Thin Films Doped with SiO2 Nanoparticles. Results. Phys. 2020, 19, 103463. DOI: 10.1016/j.rinp.2020.103463.
  • Chafi, F. Z. Thermosetting High–rate and High–safety Polymer/inorganic Composite Separator for Lithium–ion Battery through a Fast Scalable Photo Cross–linking Process. Energy Fuels. 2021, 35(22), 18746. DOI: 10.1021/acs.energyfuels.1c02553.
  • Boateng, B.; Zhu, G.; Lv, W.; Chen, D.; Feng, C.; Waqas, M. An Efficient, Scalable Route to Robust PVDF–co–HFP/SiO2 Separator for Long–cycle Lithium Ion Batteries. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800319.
  • Friederich, B.; Laachachi, A.; Ferriol, M.; Ruch, D.; Cochez, M.; Toniazzo, V. Tentative Links between Thermal Diffusivity and Fire–retardant Properties in Poly(methyl Methacrylate)–metal Oxide Nanocomposites. Polym. Degrad. Stab. 2010, 95(7), 1183. DOI: 10.1016/j.polymdegradstab.2010.04.008.
  • Goetz, V.; Gibot, P.; Spitzer, D. Spark Sensitivity and Light Signature Mitigation of an Al/SnO2 Nanothermite by the Controlled Addition of a Conductive Polymer. Chem. Eng. J. 2022, 427, 131611. DOI: 10.1016/j.cej.2021.131611.
  • Zhang, X.; Pan, S.; Song, H.; Guo, W.; Zhao, S.; Chen, G.; Zhang, Q.; Jin, H.; Zhang, L.; Chen, Y., et al. Polymer–inorganic Thermoelectric Nanomaterials: Electrical Properties, Interfacial Chemistry Engineering, and Devices. Front. Chem. 2021, 9, 677821. DOI: 10.3389/fchem.2021.677821.
  • Singh, R.; Ulrich, R. K. High and Low Dielectric Constant Materials. Electrochem. Soc. Interface. 1999, 8(2), 26. DOI: 10.1149/2.F06992IF.
  • Huang, X.; Jiang, P. Core-Shell Structured High- K Polymer Nanocomposites for Energy Storage and Dielectric Applications. Adv. Mater. 2015, 27(3), 546. DOI: 10.1002/adma.201401310.
  • Mahani, A. A.; Motahari, S.; Nayyeri, V. Synthesis, Characterization and Dielectric Properties of One–step Pyrolyzed/activated Resorcinol–formaldehyde Based Carbon Aerogels for Electromagnetic Interference Shielding Applications. Mater. Chem. Phys. 2018, 213, 492. DOI: 10.1016/j.matchemphys.2018.04.047.
  • Kaur, D.; Bharti, A.; Sharma, T.; Madhu, C. Dielectric Properties of ZnO–based Nanocomposites and Their Potential Applications. Int. J. Opt. 2021, 9950202. DOI: 10.1155/2021/9950202.
  • Pervaiz, S.; Kanwal, N.; Hussain, S. A.; Saleem, M.; Khan, I. A. Study of Structural, Optical and Dielectric Properties of ZnO/PVDF–based Flexible Sheets. J. Polym. Res. 2021, 28(8), 309. DOI: 10.1007/s10965-021-02640-9.
  • Wang, S. –. J.; Zha, J. –. W.; Li, W. –. K.; Dang, Z. –. M. Distinctive Electrical Properties in Sandwich-structured Al 2 O 3 /Low Density Polyethylene Nanocomposites. Appl. Phys. Lett. 2016, 108(9), 092902. DOI: 10.1063/1.4943247.
  • Pallon, L. K.; Olsson, R. T.; Liu, D.; Pourrahimi, A. M.; Hedenqvist, M. S.; Hoang, A.; Gubanski, S.; Gedde, U. W. Formation and the Structure of Freeze–dried MgO Nanoparticle Foams and Their Electrical Behaviour in Polyethylene. J. Mater. Chem. A. 2015, 3(14), 7523.
  • Peng, S.; He, J.; Hu, J.; Huang, X.; Jiang, P. Influence of Functionalized MgO Nanoparticles on Electrical Properties of Polyethylene Nanocomposites. IEEE Trans Dielectr. Electr. Insul. 2015, 22(3), 1512. DOI: 10.1109/TDEI.2015.7116346.
  • Hui, L.; Schadler, L. S.; Nelson, J. K. The Influence of Moisture on the Electrical Properties of Crosslinked Polyethylene/silica Nanocomposites. IEEE Trans Dielectr. Electr. Insul. 2013, 20(2), 641. DOI: 10.1109/TDEI.2013.6508768.
  • Ma, D.; Hugener, T. A.; Siegel, R. W.; Christerson, A.; Martensson, E.; Onneby, C.; Schadler, L. S. Influence of Nanoparticle Surface Modification on the Electrical Behaviour of Polyethylene Nanocomposites. Nanotechnology. 2005, 16(6), 724.
  • Tian, F.; Yao, J.; Li, P.; Wang, Y.; Wu, M.; Lei, Q. Stepwise Electric Field Induced Charging Current and Its Correlation with Space Charge Formation in LDPE/ZnO Nanocomposite. IEEE Trans Dielectr. Electr. Insul. 2015, 22(2), 1232. DOI: 10.1109/TDEI.2015.7076826.
  • Tian, F.; Lei, Q.; Wang, X.; Wang, Y. Effect of Deep Trapping States on Space Charge Suppression in polyethylene/ZnO Nanocomposite. Appl. Phys. Lett. 2011, 99(14), 142903. DOI: 10.1063/1.3646909.
  • Hong, J.; Schadler, L.; Siegel, R.; Martensson, E. Rescaled Electrical Properties of ZnO/low Density Polyethylene Nanocomposites. Appl. Phys. Lett. 2003, 82(12), 1956. DOI: 10.1063/1.1563306.
  • Fleming, R.; Ammala, A.; Casey, P. S.; Lang, S. Conductivity and Space Charge in LDPE Containing Nano–and Micro–sized ZnO Particles. IEEE Trans Dielectr. Electr. Insul. 2008, 15(1), 118. DOI: 10.1109/T-DEI.2008.4446742.
  • Pourrahimi, A. M.; Hoang, T. A.; Liu, D.; Pallon, L. K.; Gubanski, S.; Olsson, R. T.; Gedde, U. W.; Hedenqvist, M. S. Highly Efficient Interfaces in Nanocomposites Based on Polyethylene and ZnO Nano/hierarchical Particles: A Novel Approach toward Ultralow Electrical Conductivity Insulations. Adv. Mater. 2016, 28(39), 8651.
  • Pourrahimi, A. M.; Pallon, L. K.; Liu, D.; Hoang, T. A.; Gubanski, S.; Hedenqvist, M. S.; Olsson, R. T.; Gedde, U. W. Polyethylene Nanocomposites for the Next Generation of Ultralow–transmission–loss HVDC Cables: Insulation Containing Moisture–resistant MgO Nanoparticles. ACS Appl. Mater. Interfaces. 2016, 8(23), 14824.
  • Pallon, L.; Hoang, A.; Pourrahimi, A.; Hedenqvist, M. S.; Nilsson, F.; Gubanski, S.; Gedde, U. W.; Olsson, R. T. The Impact of MgO Nanoparticle Interface in Ultra–insulating Polyethylene Nanocomposites for High Voltage DC Cables. J. Mater. Chem. A. 2016, 4(22), 8590.
  • Dhawale, D.; More, A.; Latthe, S.; Rajpure, K.; Lokhande, C. Room Temperature Synthesis and Characterization of CdO Nanowires by Chemical Bath Deposition (CBD) Method. Appl. Surf. Sci. 2008, 254(11), 3269. DOI: 10.1016/j.apsusc.2007.11.013.
  • Rajput, J. K.; Pathak, T. K.; Kumar, V.; Purohit, L. Influence of Sol Concentration on CdO Nanostructure with Gas Sensing Application. Appl. Surf. Sci. 2017, 409, 8. DOI: 10.1016/j.apsusc.2017.03.019.
  • Rashmi, S.; Soumyashree, A.; Shrusti, S.; Shivani, S.; Aamir, D.; Kittur, A.; Sudhina, H. K.; Koteswararao, J.; Madhu, G. M. Structural Mechanical and Electrical Property Evaluation of Nano Cadmium Oxide Polyvinyl Alcohol Composites. Int. J. Plast. Technol. 2018, 22(1), 41.
  • Abd El–kader, F.; Osman, W.; Mahmoud, K.; Basha, M. Dielectric Investigations and Ac Conductivity of Polyvinyl Alcohol Films Doped with Europium and Terbium Chloride. Physica B Condensed Matter. 2008, 403(19–20), 3473. DOI: 10.1016/j.physb.2008.05.009.
  • Sampreeth, T.; Al–Maghrabi, M.; Bahuleyan, B.; Ramesan, M. Synthesis, Characterization, Thermal Properties, Conductivity and Sensor Application Study of Polyaniline/cerium–doped Titanium Dioxide Nanocomposites. J. Mater. Sci. 2018, 53(1), 591. DOI: 10.1007/s10853-017-1505-8.
  • Shubha, A.; Manohara, S.; Angadi, B. Influence of TiO2 Nanoparticles on Structural, Optical, Dielectric and Electrical Properties of Bio–compatible PEOX–PVP–TiO2 Nanocomposites. Polym. Bull. 2021, 1.
  • Ahmad, W.; Ahmad, Q.; Yaseen, M.; Ahmad, I.; Hussain, F.; Mohamed, J.; Ikram, R.; Stylianakis, M. M.; Kenanakis, G. Development of Waste Polystyrene–based Copper Oxide/reduced Graphene Oxide Composites and Their Mechanical, Electrical and Thermal Properties. Nanomaterials. 2021, 11(9), 2372. DOI: 10.3390/nano11092372.
  • Liu, B.; Wang, C.; Bazri, S.; Badruddin, I. A.; Orooji, Y.; Saeidi, S.; Wongwises, S.; Mahian, O. Optical Properties and Thermal Stability Evaluation of Solar Absorbers Enhanced by Nanostructured Selective Coating Films. Powder Technol. 2021, 377, 939. DOI: 10.1016/j.powtec.2020.09.040.
  • Madhuri, S. N.; Hemalatha, K. S.; Rukmani, K. Preparation and Investigation of Suitability of Gadolinium Oxide Nanoparticle Doped Polyvinyl Alcohol Films for Optoelectronic Applications. J. Mater. Sci. Mater. Electron. 2019, 30(9), 9051. DOI: 10.1007/s10854-019-01237-9.
  • Nketia‐Yawson, B.; Noh, Y. Y. Recent Progress on High‒capacitance Polymer Gate Dielectrics for Flexible Low‒voltage Transistors. Adv. Funct. Mater. 2018, 28(42), 1802201. DOI: 10.1002/adfm.201802201.
  • Kadham, A. J.; Hassan, D.; Mohammad, N.; Ah–yasari, A. H. Fabrication of (Polymer Blend–magnesium Oxide) Nanoparticle and Studying Their Optical Properties for Optoelectronic Applications. Bull. Electr. Eng. Inform. 2018, 7(1), 28. DOI: 10.11591/eei.v7i1.839.
  • Zebardastan, N.; Ramesh, S.; Ramesh, K. Performance Enhancement of Poly(vinylidene Fluoride–co–hexafluoro Propylene)/polyethylene Oxide Based Nanocomposite Polymer Electrolyte with ZnO Nanofiller for Dye–sensitized Solar Cell. Org. Electron. 2017, 49, 292. DOI: 10.1016/j.orgel.2017.06.062.
  • Dhatarwal, P.; Sengwa, R. Poly(vinyl Pyrrolidone) Matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 Nanofillers Comprise Biodegradable Nanocomposites of Controllable Optical Properties for Optoelectronic Applications. Optik. 2021, 241, 167215. DOI: 10.1016/j.ijleo.2021.167215.
  • Dhatarwal, P.; Sengwa, R. Investigation on the Optical Properties of (Pvp/pva)/al2o3 Nanocomposite Films for Green Disposable Optoelectronics. Phys. B Condens Matter. 2021, 613, 412989. DOI: 10.1016/j.physb.2021.412989.
  • Yadav, R.; Batra, R.; Bansal, P.; Purwar, R. N-type Silk Fibroin/ TiO 2 Nanocomposite Transparent Films: Electrical and Optical Properties. Polym. Int. 2022, 71(1), 74. DOI: 10.1002/pi.6285.
  • Kayis, A.; Kavgaci, M.; Yaykaslı, H.; Kerli, S.; Eskalen, H. Investigation of Structural, Morphological, Mechanical, Thermal and Optical Properties of PVA–ZnO Nanocomposites. Glass Phys. Chem. 2021, 47, 451.
  • Sevcik, J.; Urbanek, P.; Skoda, D.; Jamatia, T.; Nadazdy, V.; Urbanek, M.; Antos, J.; Munster, L.; Kuritka, I. Energy Resolved–electrochemical Impedance Spectroscopy Investigation of the Role of Al–doped ZnO Nanoparticles in Electronic Structure Modification of Polymer Nanocomposite LEDs. Mater. Des. 2021, 205, 109738. DOI: 10.1016/j.matdes.2021.109738.
  • Paul, S.; Balasubramanian, K. Charge Transfer Induced Excitons and Nonlinear Optical Properties of ZnO/PEDOT: PSS Nanocomposite Films. Spectrochim, Acta A Mol, Biomol, Spectrosc. 2021, 245, 118901. DOI: 10.1016/j.saa.2020.118901.
  • Madhuri, S.; Hemalatha, K.; Rukmani, K. Preparation and Investigation of Suitability of Gadolinium Oxide Nanoparticle Doped Polyvinyl Alcohol Films for Optoelectronic Applications. J. Mater. Sci. Mater. Electron. 2019, 30(9), 9051. DOI: 10.1007/s10854-019-01237-9.
  • Abd–Elnaiem, A. M.; Hamdalla, T. A.; Seleim, S. M.; Hanafy, T.; Aljouhani, M.; Rashad, M. Influence of Incorporation of Gallium Oxide Nanoparticles on the Structural and Optical Properties of Polyvinyl Alcohol Polymer. J. Inorg. Organomet. Polym. 2021, 31(10), 4141. DOI: 10.1007/s10904-021-02035-9.
  • Soliman, T.; Zaki, M.; Hessien, M.; Elkalashy, S. I. The Structure and Optical Properties of PVA–BaTiO3 Nanocomposite Films. Opt. Mater. 2021, 111, 110648. DOI: 10.1016/j.optmat.2020.110648.
  • Soliman, T. S.; Vshivkov, S. A.; Elkalashy, S. I. Structural, Thermal, and Linear Optical Properties of SiO 2 Nanoparticles Dispersed in Polyvinyl Alcohol Nanocomposite Films. Polym. Compos. 2020, 41(8), 3340. DOI: 10.1002/pc.25623.
  • Taha, T.; Hendawy, N.; El–Rabaie, S.; Esmat, A.; El–Mansy, M. Effect of NiO NPs Doping on the Structure and Optical Properties of PVC Polymer Films. Polym. Bull. 2019, 76(9), 4769. DOI: 10.1007/s00289-018-2633-2.
  • Hoffmann, R.; Baric, V.; Naatz, H.; Schopf, S. O.; Madler, L.; Hartwig, A. Inverse Nanocomposites Based on Indium Tin Oxide for Display Applications: Improved Electrical Conductivity via Polymer Addition. ACS Appl. Nano. Mater. 2019, 2(4), 2273–2282. DOI: 10.1021/acsanm.9b00191.
  • Ejeromedoghene, O.; Hu, Y. P.; Oderinde, O.; Yao, F.; Akinremi, C.; Akinyeye, R. Transparent and Photochromic Poly(hydroxyethyl Acrylate–acrylamide)/ WO 3 Hydrogel with Antibacterial Properties against Bacterial Keratitis in Contact Lens. J. Appl. Polym. Sci. 2022, 139(12), 51815.
  • Lalegul–Ulker, O.; Elçin, Y. M. Magnetic and Electrically Conductive Silica–coated Iron Oxide/polyaniline Nanocomposites for Biomedical Applications. Mater. Sci. Eng. C. 2021, 119, 111600. DOI: 10.1016/j.msec.2020.111600.
  • Golda, R. A.; Marikani, A.; Alex, E. J. Effect of Ceramic Fillers on the Dielectric, Ferroelectric and Magnetic Properties of Polymer Nanocomposites for Flexible Electronics. J. Electron. Mater. 2021, 50(6), 3652. DOI: 10.1007/s11664-021-08898-5.
  • Mousa, E.; Haroun, M. M.; Nasr, G. M. Effective Enhancement of Electric and Magnetic Properties of PMMA/LiFe5O8 Nanocomposites via Magnetic Treatment. J. Mater. Sci. Mater. Electron. 2021, 32(8), 10101–10111. DOI: 10.1007/s10854-021-05668-1.
  • Kaadhm, E. Q.; Salman, K. D.; Reja, A. H. Magnetic and Dielectric Properties of Epoxy Composites Reinforced with Hybrid Nanoparticle Iron Oxide (Fe 3 O 4) and Nickel (Ni). J. Phys. Confe. Ser. 2021, 1973(1), 012052. DOI: 10.1088/1742-6596/1973/1/012052.
  • Kuncser, V.; Chipara, D.; Martirosyan, K. S.; Schinteie, G. A.; Ibrahim, E.; Chipara, M. Magnetic Properties and Thermal Stability of Polyvinylidene fluoride—Fe2O3 Nanocomposites. J. Mater. Res. 2020, 35, 132.
  • Sas, W.; Jasiurkowska–Delaporte, M.; Czaja, P.; Zieliński, P. M.; Fitta, M. Magnetic Properties Study of Iron Oxide Nanoparticles-Loaded Poly(ε-caprolactone) Nanofibres. Magnetochemistry. 2021, 7(5), 61. DOI: 10.3390/magnetochemistry7050061.
  • Ganguly, S.; Margel, S. Remotely Controlled Magneto–regulation of Therapeutics from Magnetoelastic Gel Matrices. Biotechnol. Adv. 2020, 107611.
  • Ribeiro, M.; Boudoukhani, M.; Belmonte–Reche, E.; Genicio, N.; Sillankorva, S.; Gallo, J. Xanthan-Fe 3 O 4 Nanoparticle Composite Hydrogels for Non-Invasive Magnetic Resonance Imaging and Magnetically Assisted Drug Delivery. ACS Appl. Nano Mater. 2021, 4(8), 7712.
  • Stejskal, J.; Sapurina, I.; Vilcakova, J.; Jurča, M.; Trchova, M. One–pot Preparation of Conducting Melamine/polypyrrole/magnetite Ferrosponge. ACS Appl. Polym. Mater. 2021, 3, 1107.
  • Daniel, S. Biodegradable Polymeric Materials for Medicinal Applications, Green Composites: Springer, 2021.
  • Kannan, K.; Radhika, D.; Sadasivuni, K. K.; Reddy, K. R.; Raghu, A. V. Nanostructured Metal Oxides and Its Hybrids for Photocatalytic and Biomedical Applications. Adv. Colloid Interface Sci. 2020, 281, 102178. DOI: 10.1016/j.cis.2020.102178.
  • Kirillova, A.; Yeazel, T. R.; Asheghali, D.; Petersen, S. R.; Dort, S.; Gall, K. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem. Rev. 2021, 121(18), 11238.
  • Del Valle, L. J.; Diaz, A.; Puiggali, J. Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/peptide Derivatives. Gels. 2017, 3(3), 27. DOI: 10.3390/gels3030027.
  • Cao, Y.; Cheng, Y.; Zhao, G. Near-Infrared Light-, Magneto-, and pH-Responsive GO–Fe 3 O 4 /Poly(N -isopropylacrylamide)/alginate Nanocomposite Hydrogel Microcapsules for Controlled Drug Release. Langmuir. 2021, 37(18), 5522. DOI: 10.1021/acs.langmuir.1c00207.
  • Peng, W.; Ren, S.; Zhang, Y.; Fan, R.; Zhou, Y.; Li, L.; Xu, X.; Xu, Y. MgO Nanoparticles–incorporated PCL/gelatin–derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration. Front. Bioeng. Biotechnol. 2021, 9, 216. DOI: 10.3389/fbioe.2021.668428.
  • Wu, Y.; Zhang, R.; Tran, H. D.; Kurniawan, N. D.; Moonshi, S. S.; Whittaker, A. K.; Ta, H. T. Chitosan Nanococktails Containing Both Ceria and Superparamagnetic Iron Oxide Nanoparticles for Reactive Oxygen Species–related Theranostics. ACS Appl. Nano Mater. 2021, 4(4), 3604.
  • Rashedi, S. M.; Khajavi, R.; Rashidi, A.; Rahimi, M.; Bahador, A. Nanocomposite–coated Sterile Cotton Gas Based on Polylactic Acid and Nanoparticles (Zinc Oxide and Copper Oxide) and Tranexamic Acid Drug with the Aim of Wound Dressing. Regen Eng Transl Med, 2021, 1–18.
  • Smirnova, V. V.; Chausov, D. N.; Serov, D. A.; Kozlov, V. A.; Ivashkin, P. I.; Pishchalnikov, R. Y.; Uvarov, O. V.; Vedunova, M. V.; Semenova, A. A.; Lisitsyn, A. B., et al. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. Materials. 2021, 14(22), 6915.
  • Dhanalekshmi, K. I.; Umapathy, M. J.; Magesan, P.; Zhang, X. Biomaterial Biomaterial (Garlic and Chitosan)-Doped WO3-TiO2 Hybrid Nanocomposites: Their Solar Light Photocatalytic and Antibacterial Activities. ACS Omega. 2020, 5(49), 31673. DOI: 10.1021/acsomega.0c04154.
  • Chen, W.; Wang, J.; Cheng, L.; Du, W.; Wang, J.; Pan, W. Polypyrrole-Coated Mesoporous TiO2 Nanocomposites Simultaneously Loading DOX and Aspirin Prodrugs for a Synergistic Theranostic and Anti-Inflammatory Effect. ACS Appl. Bio Mater. 2021, 4(2), 1483.
  • Shang, H.; Ma, C.; Li, C.; Zhao, J.; Elmer, W.; White, J. C.; Xing, B. Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (Lactuca Sativa) Infected with Fusarium Oxysporum F. Sp. Lactucae. Environ. Sci. Technol. 2021, 55(20), 13432. DOI: 10.1021/acs.est.1c00777.
  • Ekanayake, S. A.; Godakumbura, P. I. Synthesis of a Dual–functional Nanofertilizer by Embedding ZnO and CuO Nanoparticles on an Alginate–based Hydrogel. ACS Omega. 2021, 6(40), 26262. DOI: 10.1021/acsomega.1c03271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.