166
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Eco-friendly direct-current pulsed electropolymerization of polyaniline nanofibers on synthetic graphite substrate for counter electrode in dye-sensitized solar cells

, , , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 800-815 | Received 18 Jan 2022, Accepted 19 Nov 2022, Published online: 06 Dec 2022

References

  • Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J. A Perspective on the Production of Dye-Sensitized Solar Modules. Energy Environ. Sci. 2014, 7(12), 3952–3981. DOI: 10.1039/C4EE01724B.
  • Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on Dye-Sensitized Solar Cells (Dsscs): Advanced Techniques and Research Trends. Renewable Sustainable Energy Rev. 2017, 68, 234–246. 10.1016/j.rser.2016.09.097. 2016 September.
  • Saranya, K.; Rameez, M.; Subramania, A. Developments in Conducting Polymer Based Counter Electrodes for Dye-Sensitized Solar Cells - an Overview. Eur. Polym. J. 2015, 66, 207–227. DOI: 10.1016/j.eurpolymj.2015.01.049.
  • Gvozdenović, M. M.; Jugović, B. Z.; Stevanović, J. S.; Trišović, T. L.; Grgur, B. N. Electrochemical Polymerization of Aniline. InElectropolymerization; Schab-Balcerzak, E., Ed.; Intechopen: United Kingdom, 2011; pp. 77–96. DOI: 10.5772/28293.
  • Yunus, S.; Attout, A.; Bertrand, P. Controlled Aniline Polymerization Strategies for Polyaniline Micro- and Nano Self-Assembling into Practical Electronic Devices. Langmuir. 2009, 25(3), 1851–1854. DOI: 10.1021/la803034q.
  • Ahmed, U.; Alizadeh, M.; Rahim, N. A.; Shahabuddin, S.; Ahmed, M. S.; Pandey, A. K. A Comprehensive Review on Counter Electrodes for Dye Sensitized Solar Cells: A Special Focus on Pt-TCO Free Counter Electrodes. Solar Energy. 2018, 174(September), 1097–1125. DOI: 10.1016/j.solener.2018.10.010.
  • Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46(19), 5975–6023. DOI: 10.1039/c6cs00752j.
  • Wu, J.; Li, Y.; Tang, Q.; Yue, G.; Lin, J.; Huang, M.; Meng, L. Bifacial Dye-Sensitized Solar Cells: A Strategy to Enhance Overall Efficiency Based on Transparent Polyaniline Electrode. Sci. Rep. 2014, 4, 1–7. DOI: 10.1038/srep04028.
  • He, B.; Tang, Q.; Wang, M.; Chen, H.; Yuan, S. Robust Polyaniline-Graphene Complex Counter Electrodes for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces. 2014, 6(11), 8230–8236. DOI: 10.1021/am500981w.
  • Bahramian, A.; Vashaee, D. In-Situ Fabricated Transparent Conducting Nanofiber-Shape Polyaniline/Coral-like TiO2 Thin Film: Application in Bifacial Dye-Sensitized Solar Cells. Solar Energy Mater. Solar Cells. 2015, 143, 284–295. DOI: 10.1016/j.solmat.2015.07.011.
  • Mozaffari, S.; Nateghi, M. R.; Zarandi, M. B. An Overview of the Challenges in the Commercialization of Dye Sensitized Solar Cells. Renewable Sustainable Energy Rev. 2017, 71, 675–686. 10.1016/j.rser.2016.12.096. 2015 November.
  • Tang, Q.; Cai, H.; Yuan, S.; Wang, X. Counter Electrodes from Double-Layered Polyaniline Nanostructures for Dye-Sensitized Solar Cell Applications. J. Mater. Chem. A. 2013, 1(2), 317–323. DOI: 10.1039/c2ta00026a.
  • Salado, M.; Kazim, S.; Ahmad, S. Conductive Polymer Based Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells. In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells; Yun, S., Hagfeldt, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp 177–196. DOI: 10.1002/9783527813636.ch8.
  • Karami, H.; Asadi, M. G.; Mansoori, M. Pulse Electropolymerization and the Characterization of Polyaniline Nanofibers. Electrochim. Acta. 2012, 61, 154–164. DOI: 10.1016/j.electacta.2011.11.097.
  • Xia, J.; Chen, L.; Yanagida, S. Application of Polypyrrole as a Counter Electrode for a Dye-Sensitized Solar Cell. J. Mater. Chem. 2011, 21(12), 4644–4649. DOI: 10.1039/C0JM04116E.
  • Reza, M.; Utami, A. N.; Amalina, A. N.; Benu, D. P.; Fatya, A. I.; Agusta, M. K.; Yuliarto, B.; Kaneti, Y. V.; Ide, Y.; Yamauchi, Y., et al. Significant Role of Thorny Surface Morphology of Polyaniline on Adsorption of Triiodide Ions Towards Counter Electrode in Dye-Sensitized Solar Cells. New J. Chem. 2021, 45(13), 5958–5970. DOI: 10.1039/D0NJ06180H.
  • Utami, A. N.; Reza, M.; Benu, D. P.; Fatya, A. I.; Yuliarto, B.; Suendo, V. Reverse Micelle Facilitated Synthesis of Nanostructured Polyaniline as the Counter Electrode Materials in Dye-Sensitized Solar Cells. Polym.-Plast. Technol. Mater. 2020, 59(12), 1350–1358. DOI: 10.1080/25740881.2020.1738477.
  • Qin, Q.; Tao, J.; Yang, Y. Preparation and Characterization of Polyaniline Film on Stainless Steel by Electrochemical Polymerization as a Counter Electrode of DSSC. Synth. Met. 2010, 160(11–12), 1167–1172. DOI: 10.1016/j.synthmet.2010.03.003.
  • Gamero-Quijano, A.; Karman, C.; Vilà, N.; Herzog, G.; Walcarius, A. Vertically Aligned and Ordered One-Dimensional Mesoscale Polyaniline. Langmuir. 2017, 33(17), 4224–4234. DOI: 10.1021/acs.langmuir.7b00892.
  • Guo, H.; He, W.; Lu, Y.; Zhang, X. Self-Crosslinked Polyaniline Hydrogel Electrodes for Electrochemical Energy Storage. Carbon. 2015, 92, 133–141. DOI: 10.1016/j.carbon.2015.03.062.
  • Sunarya, R. R.; Hidayat, R.; Radiman, C. L.; Suendo, V. Electrocatalytic Activation of a DSSC Graphite Composite Counter Electrode Using in Situ Polymerization of Aniline in a Water/Ethanol Dispersion of Reduced Graphene Oxide. J. Electron. Mater. 2020, 49(5), 3182–3190. DOI: 10.1007/s11664-020-07977-3.
  • Morávková, Z.; Bober, P. Writing in A Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. Int. J. Polym. Sci. 2018, 2018, 1–8. DOI: 10.1155/2018/1797216.
  • Baniasadi, H.; Ramazani, S. A.; Mashayekhan, S.; Ghaderinezhad, F. Preparation of Conductive Polyaniline/Graphene Nanocomposites via in Situ Emulsion Polymerization and Product Characterization. Synth. Met. 2014, 196, 199–205. DOI: 10.1016/j.synthmet.2014.08.007.
  • Jabeen, N.; Xia, Q.; Yang, M.; Xia, H. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes. ACS Appl. Mater. Interfaces. 2016, 8(9), 6093–6100. DOI: 10.1021/acsami.6b00207.
  • Amalina, A. N.; Suendo, V.; Reza, M.; Milana, P.; Sunarya, R. R.; Adhika, D. R.; Tanuwijaya, V. V. Preparation of Polyaniline Emeraldine Salt for Conducting-Polymer-Activated Counter Electrode in Dye Sensitized Solar Cell (DSSC) Using Rapid-Mixing Polymerization at Various Temperature. Bull. Chem. React. Eng. Catal. 2019, 14(3), 521. DOI: 10.9767/bcrec.14.3.3854.521-528.
  • Shi, M.; Bai, M.; Li, B. Acid Red 27-Crosslinked Polyaniline with Nanofiber Structure as Electrode Material for Supercapacitors. Mater. Lett. 2018, 212, 259–262. DOI: 10.1016/j.matlet.2017.10.107.
  • Reza, M.; Steky, F. V.; Suendo, V. Effect of Acid Doping on Junction Characteristics of ITO/Polyaniline/N719/Ag Diode. J. Electron. Mater. 2020, 49(3), 1835–1840. DOI: 10.1007/s11664-019-07906-z.
  • Suendo, V.; Lau, Y.; Hidayat, F.; Reza, M.; Qadafi, A.; Rochliadi, A. Effect of Face-to-Face and Side-to-Side Interchain Interactions on the Electron Transport in Emeraldine Salt Polyaniline. Phys. Chem. Chem. Phys. 2021, 23(12), 7190–7199. DOI: 10.1039/D0CP06194H.
  • Xiao, Y.; Lin, J. Y.; Wang, W. Y.; Tai, S. Y.; Yue, G.; Wu, J. Enhanced Performance of Low-Cost Dye-Sensitized Solar Cells with Pulse-Electropolymerized Polyaniline Counter Electrodes. Electrochim. Acta. 2013, 90, 468–474. DOI: 10.1016/j.electacta.2012.12.055.
  • Fatya, A. I.; Reza, M.; Sunarya, R. R.; Suendo, V. Synthesis of Polyaniline/Electrochemically Exfoliated Graphene Composite as Counter-Electrode in Dye-Sensitized Solar Cell. Polym.-Plast. Technol. Mater. 2020, 59(12), 1370–1378. DOI: 10.1080/25740881.2020.1738479.
  • Reza, M.; Srikandi, N.; Amalina, A. N.; Benu, D. P.; Steky, F. V.; Rochliadi, A.; Suendo, V. Variation of Ammonium Persulfate Concentration Determines Particle Morphology and Electrical Conductivity in HCl Doped Polyaniline. IOP Conference Series: Materials Science and Engineering, Bandung, Indonesia, 2019, 599 (1). DOI: 10.1088/1757-899X/599/1/012002.
  • Geng, J.-W.; Ye, Y.-J.; Guo, D.; Liu, -X.-X. Concurrent Electropolymerization of Aniline and Electrochemical Deposition of Tungsten Oxide for Supercapacitor. J. Power Sources. 2017, 342, 980–989. DOI: 10.1016/j.jpowsour.2017.01.029.
  • Babaiee, M.; Pakshir, M.; Hashemi, B. Effects of Potentiodynamic Electropolymerization Parameters on Electrochemical Properties and Morphology of Fabricated PANI Nanofiber/Graphite Electrode. Synth. Met. 2015, 199, 110–120. DOI: 10.1016/j.synthmet.2014.11.012.
  • Chen, S.-A.; Hwang, G.-W. Synthesis of Water-Soluble Self-Acid-Doped Polyaniline. J. Am. Chem. Soc. 1994, 116(17), 7939–7940. DOI: 10.1021/ja00096a078.
  • Bilal, S.; Gul, S.; Holze, R.; Shah, A.-H. A. An Impressive Emulsion Polymerization Route for the Synthesis of Highly Soluble and Conducting Polyaniline Salts. Synth. Met. 2015, 206, 131–144. DOI: 10.1016/j.synthmet.2015.05.015.
  • Santos, L. M.; Ghilane, J.; Fave, C.; Lacaze, P. C.; Randriamahazaka, H.; Abrantes, L. M.; Lacroix, J. C. Electrografting Polyaniline on Carbon through the Electroreduction of Diazonium Salts and the Electrochemical Polymerization of Aniline. J. Phys. Chem. C. 2008, 112(41), 16103–16109. DOI: 10.1021/jp8042818.
  • Haque, I. U.;. Electropolymerization of Aniline; Pakistan: Science International (Lahore), 2008.
  • Wei, Y.; Sun, Y.; Tang, X. Autoacceleration and Kinetics of Electrochemical Polymerization of Aniline. J. Phys. Chem. 1989, 93(12), 4878–4881. DOI: 10.1021/j100349a039.
  • Xiao, Y.; Han, G.; Li, Y.; Li, M.; Chang, Y. High Performance of Pt-Free Dye-Sensitized Solar Cells Based on Two-Step Electropolymerized Polyaniline Counter Electrodes. J. Mater. Chem. A. 2014, 2(10), 3452–3460. DOI: 10.1039/c3ta14879c.
  • Sharma, K.; Sharma, V.; Sharma, S. S . Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13. DOI: 10.1186/s11671-018-2760-6.
  • Mutta, G. R.; Popuri, S. R.; Vasundhara, M.; Maciejczyk, M.; Racu, A. V.; Banica, R.; Robertson, N.; Wilson, J. I. B.; Bennett, N. S. Facile Hydrothermal Synthesis of Economically Viable VO2(M1) Counter Electrode for Dye Sensitized Solar Cells. Mater. Res. Bull. 2016, 83, 135–140. DOI: 10.1016/j.materresbull.2016.05.027.
  • Stejskal, J.; Trchová, M.; Bober, P.; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Shishov, M. A.; Varga, M. Encyclopedia of Polymer Science and Technology. Conducting Polymers: Polyaniline. 2015, DOI: 10.1002/0471440264.pst640.
  • Sapurina, I. Y.; Stejskal, J. Oxidation of Aniline with Strong and Weak Oxidants. Russ. J. Gen. Chem. 2012, 82(2), 256–275. DOI: 10.1134/S1070363212020168.
  • Jeon, J.-W.; Ma, Y.; Mike, J. F.; Shao, L.; Balbuena, P. B.; Lutkenhaus, J. L. Oxidatively Stable Polyaniline:Polyacid Electrodes for Electrochemical Energy Storage. Phys. Chem. Chem. Phys. 2013, 15(24), 9654. DOI: 10.1039/c3cp51620b.
  • Bláha, M.; Marek, F.; Morávkova, Z.; Svoboda, J.; Brus, J.; Dybal, J.; Prokes, J.; Varga, M.; Stejskal, J. Role of P-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline. ACS Omega. 2019, 4(4), 7128–7139. DOI: 10.1021/acsomega.9b00542.
  • Srinivasan, P.; Gottam, R. Infrared Spectra: Useful Technique to Identify the Conductivity Level of Emeraldine Form of Polyaniline and Indication of Conductivity Measurement either Two or Four Probe Technique. Mat. Sci. Res. India. 2018, 15(3), 209–217. DOI: 10.13005/msri/150302.
  • Gomes, C.; Oliveira, A. S. Chemical Polymerization of Aniline in Hydrochloric Acid (Hcl) and Formic Acid (HCOOH) Media. Differences between the Two Synthesized Polyanilines. Am. J. Polym. Sci. 2012, 2(2), 5–13. DOI: 10.5923/j.ajps.20120202.02.
  • Mitra, M.; Kulsi, C.; Chatterjee, K.; Kargupta, K.; Ganguly, S.; Banerjee, D.; Goswami, S. Reduced Graphene Oxide-Polyaniline Composites—Synthesis, Characterization and Optimization for Thermoelectric Applications. RSC Adv. 2015, 5(39), 31039–31048. DOI: 10.1039/C5RA01794G.
  • Trchová, M.; Šeděnková, I.; Tobolková, E.; Stejskal, J. FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Films. Polym. Degrad. Stab. 2004, 86(1), 179–185. DOI: 10.1016/j.polymdegradstab.2004.04.011.
  • Ping, Z.;. In Situ FTIR-Attenuated Total Reflection Spectroscopic Investigations on the Base-Acid Transitions of Polyaniline – Base Acid Transition in the Emeraldine Form of Polyaniline. J. Chem. Soc. Faraday Trans. 1996, 92(17), 3063–3067.
  • Lindfors, T.; Ivaska, A. Raman Based PH Measurements with Polyaniline. J. Electroanal. Chem. 2005, 580(2), 320–329. DOI: 10.1016/j.jelechem.2005.03.042.
  • Kolla, H. S.; Surwade, S. P.; Zhang, X.; MacDiarmid, A. G.; Manohar, S. K. Absolute Molecular Weight of Polyaniline. J. Am. Chem. Soc. 2005, 127(48), 16770–16771. DOI: 10.1021/ja055327k.
  • Wang, X.; Deng, J.; Duan, X.; Liu, D.; Guo, J.; Liu, P. Crosslinked Polyaniline Nanorods with Improved Electrochemical Performance as Electrode Material for Supercapacitors. J. Mater. Chem. A. 2014, 2(31), 12323–12329. DOI: 10.1039/c4ta02231a.
  • Lee, K.-M.; Chen, P.-Y.; Hsu, C.-Y.; Huang, J.-H.; Ho, W.-H.; Chen, H.-C.; Ho, K.-C. A High-Performance Counter Electrode Based on Poly(3,4-Alkylenedioxythiophene) for Dye-Sensitized Solar Cells. J. Power Sources. 2009, 188(1), 313–318. DOI: 10.1016/j.jpowsour.2008.11.075.
  • Zatirostami, A.;. A New Electrochemically Prepared Composite Counter Electrode for Dye-Sensitized Solar Cells. Thin Solid Films. 2020, 701, 137926. DOI: 10.1016/j.tsf.2020.137926.
  • Li, P.; Cai, H.; Tang, Q.; He, B.; Lin, L. Counter Electrodes from Binary Ruthenium Selenide Alloys for Dye-Sensitized Solar Cells. J. Power Sources. 2014, 271, 108–113. DOI: 10.1016/j.jpowsour.2014.07.175.
  • Proctor, C. M.; Nguyen, T. Q. Effect of Leakage Current and Shunt Resistance on the Light Intensity Dependence of Organic Solar Cells. Appl. Phys. Lett. 2015, 106, 8. DOI: 10.1063/1.4913589.
  • Chan, D. S. H.; Phang, J. C. H. A Method for the Direct Measurement of Solar Cell Shunt Resistance. IEEE Transactions on Electron Devices. 1984, 31(3), 381–383. DOI:10.1109/T-ED.1984.21532.
  • Nate, Z.; Gill, A. A. S.; Chauhan, R.; Karpoormath, R. Polyaniline-Cobalt Oxide Nanofibers for Simultaneous Electrochemical Determination of Antimalarial Drugs: Primaquine and Proguanil. Microchem. J. 2021, 160, 105709. DOI: 10.1016/j.microc.2020.105709.
  • Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency. Nature. 2012, 485(7399), 486–489. DOI: 10.1038/nature11067.
  • Milana, P.; Nurhayati, S.; V, F.; Ando, Y.; Simanullang, M.; Sugiyama, M.; Radiman, C. L.; Suendo, V. Effect of Anchoring Groups on Electron Transfer at Porphyrins-TiO2 Interfaces in Dye-Sensitized Solar Cell Application. Macromol. Symp. 2020, 391(1), 1–6. DOI: 10.1002/masy.201900126.
  • Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110(11), 6595–6663. DOI: 10.1021/cr900356p.
  • Raj, C. C.; Prasanth, R. A Critical Review of Recent Developments in Nanomaterials for Photoelectrodes in Dye Sensitized Solar Cells. J. Power Sources. 2016, 317, 120–132. DOI: 10.1016/j.jpowsour.2016.03.016.
  • Bockris, J. O.; Khan, S. U. M. Surface Electrochemistry; Springer US: Boston, MA, 1993. DOI: 10.1007/978-1-4615-3040-4.
  • Atkins, P.; de Paula, J.; Keeler, J. Physical Chemistry, 11th ed.; Oxford University Press, Oxford, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.