548
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of recent advances in bio-based polymer composite filaments for 3D printing

& ORCID Icon
Pages 1077-1095 | Received 23 Nov 2022, Accepted 10 Mar 2023, Published online: 17 Mar 2023

References

  • Karagöz, İ.; Danış Bekdemir, A.; Tuna, Ö. 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2021, 9, 1186–1213. DOI: 10.29130/dubited.877423.
  • Jiang, R.; Kleer, R.; Piller, F. T. Predicting the Future of Additive Manufacturing: A Delphi Study on Economic and Societal Implications of 3D Printing for 2030. Technol. Forecasting Social Change. 2017, 117, 84–97. DOI: 10.1016/j.techfore.2017.01.006.
  • Attaran, M. The Rise of 3-D Printing: The Advantages of Additive Manufacturing Overtraditional Manufacturing. Bus. Horiz. 2017, 60(5), 677–688. DOI: 10.1016/j.bushor.2017.05.011.
  • Xhang, K.; Ketterle, L.; Järvinen, T.; Hong, S.; Liimatainen, H. Conductive Hybrid Filaments of Carbon Nanotubes, Chitin Nanocrystals and Cellulose Nanofibers Formed by Interfacial Nanoparticle Complexation. Mater. Des. 2020, 191, 108594. DOI: 10.1016/j.matdes.2020.108594.
  • Cali, M.; Pascoletti, G.; Gaeta, M.; Milazzo, G.; Ambu, R. New Filaments with Natural Fillers for FDM 3D Printing and Their Applications in Biomedical Field. Procedia Manuf. 2020, 51, 698–703. DOI: 10.1016/j.promfg.2020.10.098.
  • Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C. B.; Wang, C. C. L.; Shin, Y. C.; Zhang, S.; Zavattieri, P. D. The Status, Challenges, and Future of Additive Manufacturing in Engineering. Comput. Aided Des. 2015, 69, 65–89. DOI: 10.1016/j.cad.2015.04.001.
  • Daver, F.; Lee, K. P. M.; Brandt, M.; Shanks, R. Cork-PLA Composite Filaments for Fused Deposition Modelling. Compos. Sci. Technol. 2018, 168, 230–237. DOI: 10.1016/j.compscitech.2018.10.008.
  • Karagöz, İ. An Effect of Mold Surface Temperature on Final Product Properties in the Injection Molding of High-Density Polyethylene Materials. Polym. Bull. 2021, 78(5), 2627–2644. DOI: 10.1007/s00289-020-03231-2.
  • Karagöz, İ.; Tuna, Ö. Effect of Melt Temperature on Product Properties of Injection-Molded High-Density Polyethylene. Polym. Bull. 2021, 78(10), 6073–6091. DOI: 10.1007/s00289-021-03695-w.
  • Melnikova, R.; Ehrmann, A.; Finsterbusch, K. 3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials. Mater. Sci. Eng. 2014, 62, Art 012018. DOI: 10.1088/1757-899X/62/1/012018.
  • Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G. B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A. W. Fabrication of Controlled-Release Budesonide Tablets via Desktop (FDM) 3D Printing. Int. J. Pharmaceutics. 2015, 496, 414–420. DOI: 10.1016/j.ijpharm.2015.10.039.
  • Fico, D.; Rizzo, D.; Casciaro, R.; Corcione, C. E. A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers. 2022, 14(3), 465. DOI: 10.3390/polym14030465.
  • Gibson, I.; Rosen, D.; Stucker, B. Ekstrusion-Based Systems. In Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd.; Springer: New York, 2015; pp. 147–173.
  • Weng, Z.; Wang, J.; Senthil, T.; Wu, L. Mechanical and Thermal Properties Pf ABS/Montmorillonite Nanocomposites for Used Deposition Modeling 3D Printing. Mater. Des. 2016, 102, 276–283. DOI: 10.1016/j.matdes.2016.04.045.
  • Akhoundi, B.; Behravesh, A. H.; Saed, A. B. Improving Mechanical Properties of Continuous Fiber-Reinforced Thermoplastic Composites Produced by FDM 3D Printer. J. Reinf. Plast. Compos. 2019, 38(3), 99–116. DOI: 10.1177/0731684418807300.
  • Akhoundi, B.; Behravesh, A. H. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Exp. Mech. 2019, 59(6), 883–897. DOI: 10.1007/s11340-018-00467-y.
  • Cao, D.; Malakooti, S.; Kulkarni, V. -N.; Ren, Y.; Lu, H. Nanoindentation Measurement of Core–Skin Interphase Viscoelastic Properties in a Sandwich Glass Composite. Mech. Time-Depend. Mater. 2021, 25(3), 353–361. DOI: 10.1007/s11043-020-09448-y.
  • Cao, D.; Malakooti, S.; Kulkarni, V. -N.; Ren, Y.; Liu, Y.; Nie, X.; Qian, D.; Griffith, D. -T.; Lu, H. The Effect of Resin Uptake on the Flexural Properties of Compression Molded Sandwich Composites. Wind Energy. 2022, 25(1), 71–93. DOI: 10.1002/we.2661.
  • Wang, X., Xu T., de Andrade M. J., Rampalli I., Cao D., Haque M., Roy S., Baughman R. H., Lu H. The Interfacial Shear Strength of Carbon Nanotube Sheet Modified Carbon Fiber Composites. In Challenges in Mechanics of Time Dependent Materials, Conference Proceedings of the Society for Experimental Mechanics Series; Silberstein, M. Amirkhizi, A. Eds.; Springer, Cham: New York, 2021; Vol. 2, pp 25. DOI: 10.1007/978-3-030-59542-5_4
  • Gregor-Svetec, D.; Leskovšek, M.; Brodnjak, U. V.; Elesini, U. S.; Muck, D.; Urbas, R. Characteristics of HDPE/Cardboard Dust 3D Printable Composite Filaments. J. Mater. Process. Tech. 2020, 276, 116379. DOI: 10.1016/j.jmatprotec.2019.116379.
  • Badouard, C.; Traon, F.; Denoual, C.; Mayer-Laigle, C.; Paës, G.; Bourmaud, A. Exploring Mechanical Properties of Fully Compostable Flax Reinforced Composite Filament for 3D Printing Applications. Ind. Crops Prod. 2019, 135, 246–250. DOI: 10.1016/j.indcrop.2019.04.049.
  • Zhang, Q.; Li, Y.; Cai, H.; Lin, X.; Yi, W.; Zhang, J. Properties Comparison of High Density Polyethylene Composites Filled with Three Kinds of Sheell Fibers. Results Phys. 2019, 12, 1542–1546. DOI: 10.1016/j.rinp.2018.09.054.
  • Hyvärinen, M.; Kärki, T. Tensile Properties of Cellulose-Filled Recycled Thermoplastic Composite Filaments for 3D Printing. Key Eng. Mater. 2020, 841, 87–93. DOI: https://doi.org/10.4028/www.scientific.net/KEM.841.87.
  • Hooshmand, S.; Aitomäki, Y.; Berglund, L.; Mathew, A. P.; Oksman, K. Enhanced Alignment and Mechanical Properties Through the Use of Hydroxyethyl Cellulose in Solvent-Free Native Cellulose Spun Filaments. Compos. Sci. Technol. 2017, 150, 79e86. DOI: 10.1016/j.compscitech.2017.07.011.
  • Nuñez, A. J.; Sturm, P. C.; Kenny, J. M.; Aranguren, M. I.; Marcovich, N. E.; Reboredo, M. M. Mechanical Characterization of Polypropylene–Wood Flour Composites. J. Appl. Polym. Sci. 2003, 88(6), 1420–1428. DOI: 10.1002/app.11738.
  • Aranguren, M. I.; Reboredo, M. M.; Demma, G.; Kenny, J. Oak Sawdust and Hazelnut Shells as Fillers for a Polyester Thermoset. Holz als Roh- und Werkstoff. 1999, 57(5), 325–330. DOI: 10.1007/s001070050352.
  • Oladele, I. O.; Ibrahim, I. O.; Akinwekomi, A. D.; Talabi, S. I. Effect of Mercerization on the Mechanical and Thermal Response of Hybrid Bagasse Fiber/CaCo3 Reinforced Polypropylene Composites. Polym. Test. 2019, 76, 192–198. DOI: 10.1016/j.polymertesting.2019.03.021.
  • Basboga, İ. H.; Atar, İ.; Karakus, K.; Mengeloglu, F. Determination of Selected Properties of PP Based Composites Filled Aggplant (Solanum Melongena) Stalks. Pro Ligno. 2017, 13(4), 276–282.
  • Tufan, M.; Ayrılmış, N. Potential Use of Hazelnut Husk in Recycled High-Density Polyethylene Composites. Bio. Resources. 2016, 11(3), 7476–7489. DOI: 10.15376/biores.11.3.7476-7489.
  • Demirer, H.; Kartal, İ.; Yıldırım, A.; Büyükkaya, K. The Utilisability of Ground Hazelnut Shell as Filler in Polypropylene Composites. Acta Phys. Polonica A. 2018, 134(1), 254–256. DOI: 10.12693/APhysPolA.134.254.
  • Aydinli, B.; Çağlar, A. The Investigation of the Effects of Two Different Polymers and Three Catalysts on Pyrolysis of Hazelnut Shell. Fuel Process. Technol. 2012, 93(1), 1–7. DOI: 10.1016/j.fuproc.2011.07.009.
  • Balart, J. F.; Fombuena, V.; Fenollar, O.; Boronat, I.; Nacher, L. S. Processing and Characterization of High Environmental Efficiency Composites Based on PLA and Hazelnut Shell Flour (HSF) with Biobased Plasticizers Derived from Epoxidized Linseed Oil (ELO). Compos. Part B. DOI: 10.1016/J.compositesb.2015.09.063.
  • Salasinska, K.; Ryszkowska, J. Natural Fibre Composites from Polyethylene Waste and Hazelnut Shell: Dimensional Stability, Physical, Mechanical and Thermal Properties. Compos. Interfaces. 2012, 19(5), 321–332. DOI: 10.1080/15685543.2012.726156.
  • Barczewski, M.; Sałasiñska, K.; Szulc, J. Application of Sunflower Husk, Hazelnut Shell and Walnut Shell as Waste Agricultural Fillers for Epoxy-Based Composites: A Study into Mechanical Behavior Related to Structural and Rheological Properties. Polym. Test. 2019, 75, 1–11. DOI: 10.1016/j.polymertesting.2019.01.017.
  • Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M. O.; Arrakhiz, F. Z.; Qaiss, A.; Bouhfid, R. Bio-Composites Based on Polypropylene Reinforced with Almond Shells Particles: Mechanical and Thermal Properties. Mater. Des. 2013, 51, 225–230. DOI: 10.1016/j.matdes.2013.04.031.
  • Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A. Plasticizers, Antioxidants and Reinforcement Fillers from Hazelnut Skin and Cocoa By-Products: Extraction and Use PLA and PP. Polym. Degrad. Stab. 2014, 108, 297–306. DOI: 10.1016/j.polymdegradstab.2014.03.003.
  • Catto, A. L.; Stefani, B. V.; Ribeiro, V. F.; Santana, R. M. C. Influence of Coupling Agent in Compatibility of Post-Consumer HDPE in Thermoplastic Composites Reinforced with Eucalyptus Fiber. Mater. Res. 2014, 17(1), 203–209. DOI: 10.1590/S1516-14392014005000036.
  • Avella, M.; Buzarovska, A.; Errico, M. E.; Gentile, G.; Grozdanov, A. Eco-Challenges of Bio-Based Polymer Composites. Materials. 2009, 2(3), 911–925. DOI: 10.3390/ma2030911.
  • Mandala, R.; Bannoth, A. P.; Akella, S.; Rangari, V. K.; Kodali, D. A Short Review on Fused Deposition Modeling 3D Printing of Bio‐based Polymer Nanocomposites. J. Appl. Polym. Sci. 2022, 139(14), 51904. DOI: 10.1002/app.51904.
  • Ayrilmis, N.; Kariž, M.; Kitek Kuzman, M. Effect of Wood Flour Content on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Int. J. Polym. Anal. Charact. 2019, 24(7), 659–666. DOI: 10.1080/1023666X.2019.1651547.
  • Gomez-Maldonado, D.; Peresin, M.; Verdi, C.; Velarde, G.; Saloni, D. Thermal, Structural, and Mechanical Effects of Nanofibrillated Cellulose in Polylactic Acid Filaments for Additive Manufacturing. BioResources. 2020, 15(4), 7954. DOI: 10.15376/biores.15.4.7954-7964.
  • Pal, A.; Mohanty, A.; Misra, M. Additive Manufacturing Technology of Polymeric Materials for Customized Products: Recent Developments and Future Prospective. Rsc. Adv. 2021, 11(58), 36398–36438. DOI: 10.1039/D1RA04060J.
  • Sabbatini, B.; Cambriani, A.; Cespi, M.; Palmieri, G. F.; Perinelli, D. R.; Bonacucina, G. An Overview of Natural Polymers as Reinforcing Agents for 3D Printing. Chem. Eng. 2021, 5(4), 78. DOI: 10.3390/chemengineering5040078.
  • Ahmed, W.; Alnajjar, F.; Zaneldin, E.; Al-Marzouqi, A. H.; Gochoo, M.; Khalid, S. Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. 2020, 13 18, 4065. DOI: 10.3390/ma13184065.
  • Fayomi, O.; Babaremu, K.; Akande, I.; Agboola, O.; Anyanwu, B. Potential of Bio-Wastes in the Development of Composites for Manufacturing Application. Mater. Today Proc. 2021, 38, 2353–2357. DOI: 10.1016/j.matpr.2020.06.539.
  • Pakkanen, J.; Manfredi, D.; Minetola, P.; Iuliano, L. About the use of recycled or biodegradable filaments for sustainability of 3D printing: State of the art and research opportunities. Sustainable Design and Manufacturing 2017: Selected papers on Sustainable Design and Manufacturing 4, 2017; pp. 776–785.
  • Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D Printing Filament as a Second Life of Waste Plastics—a Review. Environ. Sci. Pollut. Res. 2021, 28(10), 12321–12333. DOI: 10.1007/s11356-020-10657-8.
  • Vaes, D.; Van Puyvelde, P. J. P. I. P. S. Semi-Crystalline Feedstock for Filament-Based 3D Printing of Polymers. 2021, 118, 101411. DOI: 10.1016/j.progpolymsci.2021.101411.
  • Alagoz, A. S.; Hasirci, V. 3D Printing of Polymeric Tissue Engineering Scaffolds Using Open-Source Fused Deposition Modeling. Emergent Mater. 2020, 3(4), 429–439. DOI: 10.1007/s42247-019-00048-2.
  • Yusoff, N. H. M.; Chong, C. H.; Wan, Y. K.; Cheah, K. H.; Wong, V. L. Optimization Strategies and Emerging Application of Functionalized 3D-Printed Materials in Water Treatment: A Review. J. Water Process Eng. 2023, 51, 103410. DOI: 10.1016/j.jwpe.2022.103410.
  • Hong, S. -H.; Park, J. H.; Kim, O. Y.; Hwang, S. -H. Preparation of Chemically Modified Lignin-Reinforced PLA Biocomposites and Their 3D Printing Performance. Polymers. 2021, 13(4), 667. DOI: 10.3390/polym13040667.
  • González-López, M.; Robledo-Ortíz, J.; Manríquez-González, R.; Silva-Guzmán, J.; Pérez-Fonseca, A. Polylactic Acid Functionalization with Maleic Anhydride and Its Use as Coupling Agent in Natural Fiber Biocomposites: A Review. Compos. Interfaces. 2018, 25(5–7), 515–538. DOI: 10.1080/09276440.2018.1439622.
  • Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C. G.; Zhao, X.; Kunc, V. Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries. Appl. Mater. Today. 2021, 24, 101078. DOI: 10.1016/j.apmt.2021.101078.
  • Rafiee, M.; Abidnejad, R.; Ranta, A.; Ojha, K.; Karakoc, A.; Paltakari, J. Exploring the Possibilities of Fdm Filaments Comprising Natural Fiber-Reinforced Biocomposites for Additive Manufacturing. AIMS Mater. Sci. 2021, 8(4), 524–537. DOI: 10.3934/matersci.2021032.
  • Calì, M.; Pascoletti, G.; Gaeta, M.; Milazzo, G.; Ambu, R. New Filaments with Natural Fillers for FDM 3D Printing and Their Applications in Biomedical Field. Procedia Manuf. 2020, 51, 698–703. DOI: 10.1016/j.promfg.2020.10.098.
  • Tokoro, R.; Vu, D. M.; Okubo, K.; Tanaka, T.; Fujii, T.; Fujiura, T. How to Improve Mechanical Properties of Polylactic Acid with Bamboo Fibers. J. Mater. Sci. 2008, 43(2), 775–787. DOI: 10.1007/s10853-007-1994-y.
  • Travieso-Rodriguez, J. A.; Zandi, M. D.; Jerez-Mesa, R.; Llumà, J. Fatigue Behavior of PLA-Wood Composite Manufactured by Fused Filament Fabrication. J. Mater. Res. Technol. 2020, 9(4), 8507–8516. DOI: 10.1016/j.jmrt.2020.06.003.
  • Aliotta, L.; Vannozzi, A.; Bonacchi, D.; Coltelli, M. -B.; Lazzeri, A. Analysis, Development, and Scaling-Up of Poly (Lactic Acid)(pla) Biocomposites with Hazelnuts Shell Powder (HSP). Polymers. 2021, 13(23), 4080. DOI: 10.3390/polym13234080.
  • Hamad, W. Y.; Miao, C.; Beck, S. Growing the Bioeconomy: Advances in the Development of Applications for Cellulose Filaments and Nanocrystals. Ind. Biotechnol. 2019, 15(3), 133–137. DOI: 10.1089/ind.2019.29172.qyh.
  • Isikgor, F. H.; Becer, C. R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6(25), 4497–4559. DOI: 10.1039/C5PY00263J.
  • Zhang, H.; Bourell, D. L.; Guo, Y. Analysis and Optimization of Mechanical Properties of Laser-Sintered Cellulose/PLA Mixture. Materials. 2021, 14(4), 750. DOI: 10.3390/ma14040750.
  • Shao, H.; Sun, H.; Yang, B.; Zhang, H.; Hu, Y. Facile and Green Preparation of Hemicellulose-Based Film with Elevated Hydrophobicity via Cross-Linking with Citric Acid. Rsc. Adv. 2019, 9(5), 2395–2401. DOI: 10.1039/C8RA09937E.
  • Zhang, X.; Wang, H.; Liu, C.; Zhang, A.; Ren, J. Synthesis of Thermoplastic Xylan-Lactide Copolymer with Amidine-Mediated Organocatalyst in Ionic Liquid. Sci. Rep. 2017, 7(1). DOI: 10.1038/s41598-017-00464-6.
  • Xu, W.; Pranovich, A.; Uppstu, P.; Wang, X.; Kronlund, D.; Hemming, J.; Öblom, H.; Moritz, N.; Preis, M.; Sandler, N. Novel Biorenewable Composite of Wood Polysaccharide and Polylactic Acid for Three Dimensional Printing. Carbohydr. Polym. 2018, 187, 51–58. DOI: 10.1016/j.carbpol.2018.01.069.
  • Mimini, V.; Sykacek, E.; Syed Hashim, S. N. A.; Holzweber, J.; Hettegger, H.; Fackler, K.; Potthast, A.; Mundigler, N.; Rosenau, T. Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate with PLA in 3D Printing. J. Wood Chem. Technol. 2019, 39(1), 14–30. DOI: 10.1080/02773813.2018.1488875.
  • Obielodan, J.; Delwiche, M.; Clark, D.; Downing, C.; Huntoon, D.; Wu, T. Comparing the Mechanical and Thermal Properties of Polylactic Acid/Organosolv Lignin Biocomposites Made of Different Biomass for 3D Printing Applications. J. Eng. Mater. Technol. 2022, 144(2). DOI: 10.1115/1.4052922.
  • Sekar, V.; Zarrouq, M.; Namasivayam, S. N. Development and Characterization of Oil Palm Empty Fruit Bunch Fibre Reinforced Polylactic Acid Filaments for Fused Deposition Modeling. J. Mech. Eng. 2021, 18(1), 89–107. DOI: 10.24191/jmeche.v18i1.15167.
  • Chandra Dubey, S.; Mishra, V.; Sharma, A. A Review on Polymer Composite with Waste Material as Reinforcement. Mater. Today Proc. 2021, 47, 2846–2851. DOI: 10.1016/j.matpr.2021.03.611.
  • Zheng, H.; Sun, Z.; Zhang, H. Effects of Walnut Shell Powders on the Morphology and the Thermal and Mechanical Properties of Poly (Lactic Acid. J. Thermoplast. Compos. Mater. 2020, 33(10), 1383–1395. DOI: 10.1177/0892705719828801.
  • Song, X.; He, W.; Yang, S.; Huang, G.; Yang, T. Fused Deposition Modeling of Poly (Lactic Acid)/Walnut Shell Biocomposite Filaments—surface Treatment and Properties. Appl. Sci. 2019, 9(22), 4892. DOI: 10.3390/app9224892.
  • Song, X.; He, W.; Chen, P.; Wei, Q.; Wen, J.; Xiao, G. Fused Deposition Modeling of Poly (Lactic Acid)/Almond Shell Composite Filaments. Polym. Compos. 2021, 42(2), 899–913. DOI: 10.1002/pc.25874.
  • Fouladi, M. H.; Namasivayam, S. N.; Sekar, V.; Marappan, P.; Choo, H. L.; Ong, T. K.; Walvekar, R.; Baniotopoulos, C. Pretreatment Studies and Characterization of Bio-Degradable and 3d-Printable Filaments from Coconut Waste. Int. J. Nanoelectron. Mater. 2020, 13(Special Issue), 137–148.
  • Umerah, C. O.; Kodali, D.; Head, S.; Jeelani, S.; Rangari, V. K. Synthesis of Carbon from Waste Coconutshell and Their Application as Filler in Bioplast Polymer Filaments for 3D Printing. Compos. B Eng. 2020, 202, 108428. DOI: 10.1016/j.compositesb.2020.108428.
  • Silva, M. M.; Lopes, P. E.; Li, Y.; Pötschke, P.; Ferreira, F. N.; Paiva, M. C. Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing. Appl. Sci. 2021, 11(6), 2580. DOI: 10.3390/app11062580.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—a Comprehensive Review. Adv. Drug Delivery Rev. 2016, 107, 367–392. DOI: 10.1016/j.addr.2016.06.012.
  • Wasti, S.; Triggs, E.; Farag, R.; Auad, M.; Adhikari, S.; Bajwa, D.; Li, M.; Ragauskas, A. Influence of Plasticizers on Thermal and Mechanical Properties of Biocomposite Filaments Made from Lignin and Polylactic Acid for 3D Printing. Compos. B Eng. 2021, 205, 108483. DOI: 10.1016/j.compositesb.2020.108483.
  • Abd Rahman, N. A.; Anuar, H.; Nordin, N. M.; Asri, S. E. A. M.; Ali, F.; Suhr, J. Mechanical and Thermal Properties of Polylactic Acid Filled Lignin Powder Biocomposite Filaments with Epoxidized Palm Oil for Sustainable 3d Printing Application. Perintis eJournal. 2021, 11(1), 23–39.
  • Montava-Jordà, S.; Quiles-Carrillo, L.; Richart, N.; Torres-Giner, S.; Montanes, N. Enhanced Interfacial Adhesion of Polylactide/Poly (ε-Caprolactone)/walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers. 2019, 11(5), 758. DOI: 10.3390/polym11050758.
  • Tran, T. N.; Bayer, I. S.; Heredia‐guerrero, J. A.; Frugone, M.; Lagomarsino, M.; Maggio, F.; Athanassiou, A. Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromol. Mater. Eng. 2017, 302(11), 1700219. DOI: 10.1002/mame.201700219.
  • Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M. K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018, 14, 135–140. DOI: 10.1016/j.mtcomm.2017.12.016.
  • Gkartzou, E.; Koumoulos, E. P.; Charitidis, C. A. Production and 3D Printing Processing of Bio-Based Thermoplastic Filament. Manuf. Rev. 2017, 4, 2016020. DOI: 10.1051/mfreview/2016020.
  • Milosevic, M.; Stoof, D.; Pickering, K. L. Characterizing the Mechanical Properties of Fused Deposition Modelling Natural Fiber Recycled Polypropylene Composites. J. Compos. Sci. 2017, 1(1), 7. DOI: 10.3390/jcs1010007.
  • Bi, H.; Ren, Z.; Guo, R.; Xu, M.; Song, Y. Fabrication of Flexible Wood Flour/Thermoplastic Polyurethane Elastomer Composites Using Fused Deposition Molding. Ind. Crops Prod. 2018, 122, 76–84. DOI: 10.1016/j.indcrop.2018.05.059.
  • Tarrés, Q.; Melbø, J. K.; Delgado-Aguilar, M.; Espinach, F. X.; Mutjé, P.; Chinga-Carrasco, G. Bio-Polyethylene Reinforced with Thermomechanical Pulp Fibers: Mechanical and Micromechanical Characterization and Its Application in 3D-Printing by Fused Deposition Modelling. Compos.: Part B. 2018, 153, 70–77. DOI: 10.1016/j.compositesb.2018.07.009.
  • Abdullah, A. M.; Rahim, T. N. A. T.; Mohamad, D.; Akil, H.; Rajion, Z. A. Mechanical and Physical Properties of Highly ZrO2 /β-TCP Filled Polyamide 12 Prepared via Fused Deposition Modelling (FDM) 3D Printer for Potential Craniofacial Reconstruction Application. Mater. Lett. 2017, 189, 307–309. DOI: 10.1016/j.matlet.2016.11.052.
  • Paul, U. C.; Fragouli, D.; Bayer, I. S.; Zych, A.; Athanassiou, A. Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites. ACS Appl. Polym. Mater. 2021, 3(6), 3071–3081. DOI: 10.1021/acsapm.1c00281.
  • Wang, J.; Li, H.; Liu, R.; Li, L.; Lin, Y. -H.; Nan, C. -W. Thermoelectric and Mechanical Properties of PLA/Bi0· 5Sb1· 5te3 Composite Wires Used for 3D Printing. Compos. Sci. Technol. 2018, 157, 1–9. DOI: 10.1016/j.compscitech.2018.01.013.
  • Ahmad, A. F.; Aziz, S. A.; Abbas, Z.; Obaiys, S. J.; Matori, K. A.; Zaid, M. H. M.; Raad, H. K.; Aliyu, U. S. A. Chemically Reduced Graphene Oxide-Reinforced Poly (Lactic Acid)/Poly (Ethylene Glycol) Nanocomposites: Preparation, Characterization, and Applications in Electromagnetic Interference Shielding. Polymers. 2019, 11(4), 661. DOI: 10.3390/polym11040661.
  • Sun, Y. C.; Chu, M.; Huang, M.; Hegazi, O.; Naguib, H. E. Hybrid Electroactive Shape Memory Polymer Composites with Room Temperature Deformability. Macromol. Mater. Eng. 2019, 304(10), 1900196. DOI: 10.1002/mame.201900196.
  • Risyon, N. P.; Othman, S. H.; Basha, R. K.; Talib, R. A. Effect of Halloysite Nanoclay Concentration and Addition of Glycerol on Mechanical Properties of Bionanocomposite Films. Polym. Polym. Composites. 2016, 24(9), 795–802. DOI: 10.1177/096739111602400917.
  • Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Properties and Characterization of Biodegradable Poly (Lactic Acid) (PLA)/Poly (Ethylene Glycol)(peg) and PLA/PEG/Organoclay: A Study of Crystallization Kinetics, Rheology, and Compostability. J. Thermoplast. Compos. Mater. 2016, 29(4), 443–463. DOI: 10.1177/0892705713518812.
  • Brounstein, Z.; Yeager, C. M.; Labouriau, A. Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Polymers. 2021, 13(4), 580. DOI: 10.3390/polym13040580.
  • Maurel, A.; Courty, M.; Fleutot, B.; Tortajada, H.; Prashantha, K.; Armand, M.; Grugeon, S.; Panier, S.; Dupont, L. Highly Loaded Graphite–Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing. Chem. Mater. 2018, 30(21), 7484–7493. DOI: 10.1021/acs.chemmater.8b02062.
  • Xie, G.; Zhang, Y.; Lin, W. Plasticizer Combinations and Performance of Wood Flour–Poly(lactic Acid) 3D Printing Filaments. J. BioResour. 2017, 12(3), 13. DOI: 10.15376/biores.12.3.6736-6748.
  • Bajwa, D.; Eichers, M.; Shojaeiarani, J.; Kallmeyer, A. Influence of Biobased Plasticizers on 3D Printed Polylactic Acid Composites Filled with Sustainable Biofiller. Ind. Crops Prod. 2021, 173, 114132. DOI: 10.1016/j.indcrop.2021.114132.
  • Oz, O.; Ozturk, F. H.; Gulec, C. Effect of Fiber Content and Plasticizer on Mechanical and Joint Properties of Carbon Fiber Powder Reinforced PLA Manufactured by 3D Printing Process. J. Adhes. Sci. Technol. 2022, 1–24. DOI: 10.1080/01694243.2022.2121195.
  • Ghasemi, S.; Behrooz, R.; Ghasemi, I.; Yassar, R. S.; Long, F. Development of Nanocellulose-Reinforced PLA Nanocomposite by Using Maleated PLA (PLA-G-MA. J. Thermoplast. Compos. Mater. 2018, 31(8), 1090–1101. DOI: 10.1177/0892705717734600.
  • Kumar, A.; Tumu, V. R.; Chowdhury, S. R.; Svs, R. R. A Green Physical Approach to Compatibilize a Bio-Based Poly (Lactic Acid)/Lignin Blend for Better Mechanical, Thermal and Degradation Properties. Int. J. Biol. Macromol. 2019, 121, 588–600. DOI: 10.1016/j.ijbiomac.2018.10.057.
  • Peltola, H.; Immonen, K.; Johansson, L. S.; Virkajärvi, J.; Sandquist, D. Influence of Pulp Bleaching and Compatibilizer Selection on Performance of Pulp Fiber Reinforced PLA Biocomposites. J. Appl. Polym. Sci. 2019, 136(37), 47955. DOI: 10.1002/app.47955.
  • Wang, Y. -N.; Weng, Y. -X.; Wang, L. Characterization of Interfacial Compatibility of Polylactic Acid and Bamboo Flour (PLA/BF) in Biocomposites. Polym. Test. 2014, 36, 119–125. DOI: 10.1016/j.polymertesting.2014.04.001.
  • Zhang, L.; Lv, S.; Sun, C.; Wan, L.; Tan, H.; Zhang, Y. Effect of MAH-G-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers. 2017, 9(11), 591. DOI: 10.3390/polym9110591.
  • da Silva, S. M.; Antunes, T.; Costa, M.; Oliveira, J. Cork-Like Filaments for Additive Manufacturing. Additive Manuf. 2020, 34, 101229. DOI: 10.1016/j.addma.2020.101229.
  • Sun, Y.; Yang, L.; Lu, X.; He, C. Biodegradable and Renewable Poly (Lactide)–Lignin Composites: Synthesis, Interface and Toughening Mechanism. J. Mater. Chem. A. 2015, 3(7), 3699–3709. DOI: 10.1039/C4TA05991C.
  • Sun, Y.; Ma, Z.; Xu, X.; Liu, X.; Liu, L.; Huang, G.; Liu, L.; Wang, H.; Song, P. Grafting Lignin with Bioderived Polyacrylates for Low-Cost, Ductile, and Fully Biobased Poly (Lactic Acid) Composites. ACS Sustainable Chem. Eng. 2020, 8(5), 2267–2276. DOI: 10.1021/acssuschemeng.9b06593.
  • Mora, A.; Verma, P.; Kumar, S. Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling. Compos. B Eng. 2020, 183, 107600. DOI: 10.1016/j.compositesb.2019.107600.
  • Seng, C.; Eh Noum, S. Y.; Sivanesan, S.; Yu, L. J. Reduction of Hygroscopicity of PLA Filament for 3D Printing by Introducing Nano Silica as Filler. In AIP Conference Proceedings. AIP Publishing LLC, 2020; Vol. 2233, p 020024.
  • Lendvai, L.; Fekete, I. Preparation and Characterization of Poly (Lactic Acid)/Boehmite Alumina Composites for Additive Manufacturing. IOP Conference Series: Materials Science and Engineering. Balatonkenese, Hungary: IOP Publishing, 2020; Vol. 903, p 012057.
  • Valvez, S.; Santos, P.; Parente, J. M.; Silva, M. P.; Reis, P. N. B. 3D Printed Continuous Carbon Fiber Reinforced PLA Composites: A Short Review. Procedia Struct. Integr. 2020, 25, 394–399. DOI: 10.1016/j.prostr.2020.04.056.
  • Arockiam, A. J.; Subramanian, K.; Padmanabhan, R. G.; Selvaraj, R.; Bagal, D. K.; Rajesh, S. A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Mater. Today Proc. 2022, 50, 2057–2064. DOI: 10.1016/j.matpr.2021.09.413.
  • Ferreira, R. T. L.; Amatte, I. C.; Dutra, T. A.; Bürger, D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Compos. B Eng. 2017, 124, 88–100. DOI: 10.1016/j.compositesb.2017.05.013.
  • Dou, H.; Cheng, Y.; Ye, W.; Zhang, D.; Li, J.; Miao, Z.; Rudykh, S. Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites. Materials. 2020, 13(17), 3850. DOI: 10.3390/ma13173850.
  • Kamaal, M.; Anas, M.; Rastogi, H.; Bhardwaj, N.; Rahaman, A. Effect of FDM Process Parameters on Mechanical Properties of 3D-Printed Carbon Fibre–PLA Composite. Prog. Addit. Manuf. 2021, 6(1), 63–69. DOI: 10.1007/s40964-020-00145-3.
  • Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A. M. Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites. Compos. B Eng. 2019, 175, 107147. DOI: 10.1016/j.compositesb.2019.107147.
  • Camargo, J. C.; Machado, Á. R.; Almeida, E. C.; Silva, E. F. M. S. Mechanical Properties of PLA-Graphene Filament for FDM 3D Printing. Int. J. Adv. Manuf. Technol. 2019, 103(5), 2423–2443. DOI: 10.1007/s00170-019-03532-5.
  • Batakliev, T.; Georgiev, V.; Kalupgian, C.; Muñoz, P. A.; Ribeiro, H.; Fechine, G. J.; Andrade, R. J.; Ivanov, E.; Kotsilkova, R. Physico-Chemical Characterization of PLA-Based Composites Holding Carbon Nanofillers. Appl. Compos. Mater. 2021, 28(4), 1175–1192. DOI: 10.1007/s10443-021-09911-0.
  • Yu, W. W.; Zhang, J.; Wu, J. R.; Wang, X. Z.; Deng, Y. H. Incorporation of Graphitic Nano-Filler and Poly(lactic Acid) in Fused Deposition Modeling. J. Appl. Polym. Sci. 2017, 134(15). DOI: 10.1002/app.44703.
  • Kotsilkova, R.; Petrova-Doycheva, I.; Menseidov, D.; Ivanov, E.; Paddubskaya, A.; Kuzhir, P. Exploring Thermal Annealing and Graphene-Carbon Nanotube Additives to Enhance Crystallinity, Thermal, Electrical and Tensile Properties of Aged Poly(lactic) Acid-Based Filament for 3D Printing. Compos. Sci. Technol. 2019, 181, 107712. DOI: 10.1016/j.compscitech.2019.107712.
  • Adami, R.; Lamberti, P.; Bychanok, D.; Kuzhir, P.; Tucci, V. Electromagentic Properties of Filaments Containing Nanofillers for 3D Printing. Chem. Eng. Trans. 2021, 84, 109–114.
  • Cardoso, P. H. M.; de Oliveira, M. F. L.; de Oliveira, M. G.; da Silva Moreira Thiré, R. M. 3D Printed Parts of Polylactic Acid Reinforced with Carbon Black and Alumina Nanofillers for Tribological Applications. Macromol. Symp. 2020, 394(1), 2000155. DOI: 10.1002/masy.202000155.
  • Vidakis, N.; Petousis, M.; Kourinou, M.; Velidakis, E.; Mountakis, N.; Fischer-Griffiths, P. E.; Grammatikos, S.; Tzounis, L. Additive Manufacturing of Multifunctional Polylactic Acid (Pla)—multiwalled Carbon Nanotubes (MWCNTs) Nanocomposites. Nanocomposites. 2021, 7(1), 184–199. DOI: 10.1080/20550324.2021.2000231.
  • Podstawczyk, D.; Skrzypczak, D.; Połomska, X.; Stargała, A.; Witek-Krowiak, A.; Guiseppi-Elie, A.; Galewski, Z. Preparation of Antimicrobial 3D Printing Filament. Situ Therm. Formation Silver Nanopart. During Materi. Extrusion. 2020, 41(11), 4692–4705. DOI: 10.1002/pc.25743.
  • Abeykoon, C.; Sri-Amphorn, P.; Fernando, A. Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. Int. J. Lightweight Mater. Manuf. 2020, 3(3), 284–297. DOI: 10.1016/j.ijlmm.2020.03.003.
  • Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers. 2019, 11(7), 1094. DOI: 10.3390/polym11071094.
  • Coughlin, N.; Drake, B.; Fjerstad, M.; Schuster, E.; Waege, T.; Weerakkody, A.; Letcher, T. Development and Mechanical Properties of Basalt Fiber-Reinforced Acrylonitrile Butadiene Styrene for In-Space Manufacturing Applications. J. Compos. Sci. 2019, 3(3), 89. DOI: 10.3390/jcs3030089.
  • Selvamani, S.; Samykano, M.; Subramaniam, S.; Ngui, W.; Kadirgama, K.; Kanagaraj, G.; Idris, M. 3D printing: Overview of ABS evolvement. AIP Conference Proceedings. Kuantan, Malaysia: AIP Publishing LLC, 2019; Vol. 2059, p 020041.
  • Osman, M. A.; Atia, M. R. Investigation of ABS-Rice Straw Composite Feedstock Filament for FDM. Rapid Prototyp. J. 2018, 24(6), 1067–1075. DOI: 10.1108/RPJ-11-2017-0242.
  • Nguyen, N. A.; Bowland, C. C.; Naskar, A. K. A General Method to Improve 3D-Printability and Inter-Layer Adhesion in Lignin-Based Composites. Appl. Mater. Today. 2018, 12, 138–152. DOI: 10.1016/j.apmt.2018.03.009.
  • Aumnate, C.; Pongwisuthiruchte, A.; Pattananuwat, P.; Potiyaraj, P. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Adv. Mater. Sci. Eng. 2018, 2018, 1–9. DOI: 10.1155/2018/2830437.
  • Dickson, A. N.; Abourayana, H. M.; Dowling, D. P. 3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—a Review. Polymers. 2020, 12(10), 2188. DOI: 10.3390/polym12102188.
  • Yang, Y.; Wu, H.; Fu, Q.; Xie, X.; Song, Y.; Xu, M.; Li, J. 3D-Printed Polycaprolactone-Chitosan Based Drug Delivery Implants for Personalized Administration. Mater. Des. 2022, 214, 110394. DOI: 10.1016/j.matdes.2022.110394.
  • Sezer, H. K.; Eren, O. FDM 3D Printing of MWCNT Re-Inforced ABS Nano-Composite Parts with Enhanced Mechanical and Electrical Properties. J. Manuf. Processes. 2019, 37, 339–347. DOI: 10.1016/j.jmapro.2018.12.004.
  • Ning, F.; Cong, W.; Hu, Z.; Huang, K. Additive Manufacturing of Thermoplastic Matrix Composites Using Fused Deposition Modeling: A Comparison of Two Reinforcements. J. Compos. Mater. 2017, 51(27), 3733–3742. DOI: 10.1177/0021998317692659.
  • Alberts, E.; Ballentine, M.; Barnes, E.; Kennedy, A. Impact of Metal Additives on Particle Emission Profiles from a Fused Filament Fabrication 3D Printer. Atmos. Environ. 2021, 244, 117956. DOI: 10.1016/j.atmosenv.2020.117956.
  • Stefaniak, A.; Johnson, A.; Du Preez, S.; Hammond, D.; Wells, J.; Ham, J.; LeBouf, R.; Menchaca, K.; Martin, S., Jr; Duling, M. Evaluation of Emissions and Exposures at Workplaces Using Desktop 3-Dimensional Printers. J. Chem. Health Saf. 2019, 26(2), 19–30. DOI: 10.1016/j.jchas.2018.11.001.
  • Byrley, P.; Wallace, M. A. G.; Boyes, W. K.; Rogers, K. Particle and Volatile Organic Compound Emissions from a 3D Printer Filament Extruder. Sci. Total Environ. 2020, 736, 139604. DOI: 10.1016/j.scitotenv.2020.139604.
  • Potter, P. M.; Al-Abed, S. R.; Hasan, F.; Lomnicki, S. M. Influence of Polymer Additives on Gas-Phase Emissions from 3D Printer Filaments. Chemosphere. 2021, 279, 130543. DOI: 10.1016/j.chemosphere.2021.130543.
  • Wojtyła, S.; Klama, P.; Śpiewak, K.; Baran, T. 3D Printer as a Potential Source of Indoor Air Pollution. Int. J. Environ. Sci. Technol. 2020, 17(1), 207–218. DOI: 10.1007/s13762-019-02444-x.
  • Deopura, B. Polyamide Fibers. In Polyesters and Polyamides; Woodhead Publishing Series in Textiles, 2008; pp. 41–61.
  • Farina, I.; Singh, N.; Colangelo, F.; Luciano, R.; Bonazzi, G.; Fraternali, F. High-Performance Nylon-6 Sustainable Filaments for Additive Manufacturing. Materials. 2019, 12(23), 3955. DOI: 10.3390/ma12233955.
  • Zhang, X.; Fan, W.; Liu, T. Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and Its Applications. Compos. Commun. 2020, 21, 100413. DOI: 10.1016/j.coco.2020.100413.
  • Yao, X.; Luan, C.; Zhang, D.; Lan, L.; Fu, J. J. M. Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring. Mater. Des. 2017, 114, 424–432. DOI: 10.1016/j.matdes.2016.10.078.
  • Dickson, A. N.; Barry, J. N.; McDonnell, K. A.; Dowling, D. P. Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing. Additive Manuf. 2017, 16, 146–152. DOI: 10.1016/j.addma.2017.06.004.
  • Mei, H.; Ali, Z.; Ali, I.; Cheng, L. Tailoring Strength and Modulus by 3D Printing Different Continuous Fibers and Filled Structures into Composites. Adv. Compos. Hybrid Mater. 2019, 2(2), 312–319. DOI: 10.1007/s42114-019-00087-7.
  • Han, J. Y.; Chen, T.; Baird, D. G. Generation of Nylon Copolymer Reinforced with Carbon Nanotubes and Thermotropic Liquid Crystalline Polymers for Use in Fused Filament Fabrication. Polym. Compos. 2021, 42(9), 4328–4341. DOI: 10.1002/pc.26151.
  • Saeed, K.; McIlhagger, A.; Harkin-Jones, E.; Kelly, J.; Archer, E. Predication of the In-Plane Mechanical Properties of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites Using Classical Laminated-Plate Theory. Compos. Struct. 2021, 259, 113226. DOI: 10.1016/j.compstruct.2020.113226.
  • Yasa, E. Anisotropic Impact Toughnness of Chopped Carbon Fiber Reinforced Nylon Fabricated by Material-Extrusion-Based Additive Manufacturing. Anadolu Univ. Sci. Technol.-A: Appl. Sci. Eng. 2019, 20(2). DOI: 10.18038/aubtda.498606.
  • Chevali, V. S.; Dean, D. R.; Janowski, G. M. Effect of Environmental Weathering on Flexural Creep Behavior of Long Fiber-Reinforced Thermoplastic Composites. Polym. Degrad. Stab. 2010, 95(12), 2628–2640. DOI: 10.1016/j.polymdegradstab.2010.07.019.
  • Arhant, M.; Le Gac, P. -Y.; Le Gall, M.; Burtin, C.; Briançon, C.; Davies, P. Effect of Sea Water and Humidity on the Tensile and Compressive Properties of Carbon-Polyamide 6 Laminates. Compos. Part A Appl. Sci. Manuf. 2016, 91, 250–261. DOI: 10.1016/j.compositesa.2016.10.012.
  • Chabaud, G.; Castro, M.; Denoual, C.; Le Duigou, A. Hygromechanical Properties of 3D Printed Continuous Carbon and Glass Fibre Reinforced Polyamide Composite for Outdoor Structural Applications. Additive Manuf. 2019, 26, 94–105. DOI: 10.1016/j.addma.2019.01.005.
  • Kikuchi, B. C.; Bussamra, F. L. D. S.; Donadon, M. V.; Ferreira, R. T. L.; Sales, R. D. C. M. Moisture Effect on the Mechanical Properties of Additively Manufactured Continuous Carbon Fiber‐reinforced Nylon‐based Thermoplastic. Polym. Compos. 2020, 41(12), 5227–5245. DOI: 10.1002/pc.25789.
  • Eftekhari, M.; Fatemi, A. Tensile Behavior of Thermoplastic Composites Including Temperature, Moisture, and Hygrothermal Effects. Polym. Test. 2016, 51, 151–164. DOI: 10.1016/j.polymertesting.2016.03.011.
  • Papon, E. A.; Haque, A.; Spear, S. K. Effects of Functionalization and Annealing in Enhancing the Interfacial Bonding and Mechanical Properties of 3D Printed Fiber-Reinforced Composites. Mater. Today Commun. 2020, 25, 101365. DOI: 10.1016/j.mtcomm.2020.101365.
  • Bhandari, S.; Lopez-Anido, R. A.; Gardner, D. J. Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing. Additive Manuf. 2019, 30, 100922. DOI: 10.1016/j.addma.2019.100922.
  • Jain, P. A. K.; Sattar, S.; Mulqueen, D.; Pedrazzoli, D.; Kravchenko, S.; Kravchenko, O. Role of Annealing and Isostatic Compaction on Mechanical Properties of 3D Printed Short Glass Fiber Nylon Composites. Additive Manuf. 2022, 51, 102599. DOI: 10.1016/j.addma.2022.102599.
  • Wasti, S.; Adhikari, S. Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Front Chem. 2020, 8, 315. DOI: 10.3389/fchem.2020.00315.
  • Nguyen, N. A.; Barnes, S. H.; Bowland, C. C.; Meek, K. M.; Littrell, K. C.; Keum, J. K.; Naskar, A. K. A Path for Lignin Valorization via Additive Manufacturing of High-Performance Sustainable Composites with Enhanced 3D Printability. Science Advances. 2018, 4(12), eaat4967. DOI: 10.1126/sciadv.aat4967.
  • Muthuraj, R.; Horrocks, A.; Kandola, B. K. Hydroxypropyl-Modified and Organosolv Lignin/bio-Based Polyamide Blend Filaments as Carbon Fibre Precursors. J. Mater. Sci. 2020, 55(16), 7066–7083. DOI: 10.1007/s10853-020-04486-w.
  • McKeen, L. 12 - Renewable Resource and Biodegradable Polymers. In The Effect of Sterilization on Plastics and Elastomers, Third ed.; McKeen, L., Ed.; William Andrew Publishing: Boston, 2012; pp. 305–317.
  • Amni, C.; Aprilia, S.; Indarti, E. Current Research in Development of Polycaprolactone Filament for 3D Bioprinting: A Review. IOP Conference Series: Earth and Environmental Science. Bangka Belitung, Indonesia: IOP Publishing, 2021; Vol. 926, p 012080.
  • Viidik, L.; Vesala, J.; Laitinen, R.; Korhonen, O.; Ketolainen, J.; Aruväli, J.; Kirsimäe, K.; Kogermann, K.; Heinämäki, J.; Laidmäe, I. Preparation and Characterization of Hot-Melt Extruded Polycaprolactone-Based Filaments Intended for 3D-Printing of Tablets. Eur. J. Pharm. Sci. 2021, 158, 105619. DOI: 10.1016/j.ejps.2020.105619.
  • Pavon, C.; Aldas, M.; López-Martínez, J.; Ferrándiz, S. New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers. 2020, 12(2), 334. DOI: 10.3390/polym12020334.
  • Liakos, I. L.; Mondini, A.; Del Dottore, E.; Filippeschi, C.; Pignatelli, F.; Mazzolai, B. 3D Printed Composites from Heat Extruded Polycaprolactone/Sodium Alginate Filaments and Their Heavy Metal Adsorption Properties. Mater. Chem. Front. 2020, 4(8), 2472–2483. DOI: 10.1039/D0QM00159G.
  • Zhao, Y. -Q.; Yang, J. -H.; Ding, X.; Ding, X.; Duan, S.; Xu, F. -J. Polycaprolactone/Polysaccharide Functional Composites for Low-Temperature Fused Deposition Modelling. Bioactive Mater. 2020, 5(2), 185–191. DOI: 10.1016/j.bioactmat.2020.02.006.
  • Joseph, B.; James, J.; Grohens, Y.; Kalarikkal, N.; Thomas, S. Additive Manufacturing of Poly (ε-Caprolactone) for Tissue Engineering. JOM. 2020, 72(11), 4127–4138. DOI: 10.1007/s11837-020-04382-3.
  • Soufivand, A. A.; Abolfathi, N.; Hashemi, A.; Lee, S. J. The Effect of 3D Printing on the Morphological and Mechanical Properties of Polycaprolactone Filament and Scaffold. Polym. Adv. Technol. 2020, 31(5), 1038–1046. DOI: 10.1002/pat.4838.
  • Zhang, W.; Ullah, I.; Shi, L.; Zhang, Y.; Ou, H.; Zhou, J.; Ullah, M. W.; Zhang, X.; Li, W. Fabrication and Characterization of Porous Polycaprolactone Scaffold via Extrusion-Based Cryogenic 3D Printing for Tissue Engineering. Materials. 2019, 180, Design 107946. DOI: 10.1016/j.matdes.2019.107946.
  • Jiao, Z.; Luo, B.; Xiang, S.; Ma, H.; Yu, Y.; Yang, W. 3D Printing of HA/PCL Composite Tissue Engineering Scaffolds. Adv. Ind. Eng. Polym. Res. 2019, 2(4), 196–202. DOI: 10.1016/j.aiepr.2019.09.003.
  • Kim, C. G.; Han, K. S.; Lee, S.; Kim, M. C.; Kim, S. Y.; Nah, J. Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. Appl. Sci. 2021, 11(14), 6351. DOI: 10.3390/app11146351.
  • Radhakrishnan, S.; Nagarajan, S.; Belaid, H.; Farha, C.; Iatsunskyi, I.; Coy, E.; Soussan, L.; Huon, V.; Bares, J.; Belkacemi, K. Fabrication of 3D Printed Antimicrobial Polycaprolactone Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng.: C. 2021, 118, 111525. DOI: 10.1016/j.msec.2020.111525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.