288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of citric acid crosslinked biodegradable chitosan/hydroxyethyl cellulose/organo-modified nanoclay composite films as sustainable food packaging materials

Pages 1138-1156 | Received 01 Dec 2022, Accepted 23 Mar 2023, Published online: 28 Mar 2023

References

  • Alavi, S.; Thomas, S.; Sandeep, K. P.; Kalarikkal, N.; Varghese, J.; Yaragalla, S. Polymers for Packaging Applications, First ed.; CRC Press: New Jersey, 2021.
  • Gopinathar, P.; Prabha, G.; Ravichandra, D. K. The Role of Packaging in Manufacturing-A Brief Understanding. IOSR J. of Busin. and Mang. 2016, 18(12), 01–07. DOI: 10.9790/0661-15010010107-12.
  • Dutta, J.; Tripathi, S.; Dutta, P. K. Progress in Antimicrobial Activities of Chitin, Chitosan and Its Oligosaccharides: A Systematic Study Needs for Food Applications. Food Sci. Technol. Int. 2012, 18(1), 3–34. DOI: 10.1177/1082013211399195.
  • Krochta, J. M.; Mulder-Johnston, C. D. Edible and Biodegradable Polymer Films: Challenges and Opportunities. Food Technol. 1997, 51(2), 61–74.
  • Magnier, L.; Crié, D.; Wiese, A. Communicating Packaging Eco-Friendliness. J. Ret. Distribut. Manag. 2015, 43(4/5), 350–366. DOI: 10.1108/IJRDM-04-2014-0048.
  • Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food. Chem. 2018, 66(2), 395–413. DOI: 10.1021/acs.jafc.7b04528.
  • Geueke, B.; Groh, K.; Muncke, J. Food Packaging in the Circular Economy: Overview of Chemical Safety Aspects for Commonly Used Materials. J. Clean. Prod. 2018, 193, 491–505. DOI: 10.1016/j.jclepro.2018.05.005.
  • Ji, M.; Li, J.; Li, F.; Wang, X.; Man, J.; Li, J.; Zhang, C.; Peng, S. A Biodegradable Chitosan-Based Composite Film Reinforced by Ramie Fibre and Lignin for Food Packaging. Carbohyd. Polym. 2022, 281, 119078. DOI: 10.1016/j.carbpol.2021.119078.
  • Kanatt, S. R.; Makwana, S. H. Development of Active, Water-Resistant Carboxymethyl Cellulose-Poly Vinyl Alcohol-Aloe Vera Packaging Film. Carbohydr. Polym. 2020, 227, 115303. DOI: 10.1016/j.carbpol.2019.115303.
  • El Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethyl cellulose and ZnO for Food Packaging Application, Food Pack. Shelf Life. 2020, 23, 100462. DOI: 10.1016/j.fpsl.2020.100462.
  • Wihodo, M.; Moraru, C. I. Physical and Chemical Methods Used to Enhance the Structure and Mechanical Properties of Protein Films: A Review. J. Food Eng. 2013, 114(3), 292–302. DOI: 10.1016/j.jfoodeng.2012.08.021.
  • Tabassum, N.; Khan, M. A. Modified Atmosphere Packaging of Fresh-Cut Papaya Using Alginate Based Edible Coating: Quality Evaluation and Shelf-Life Study. Sci. Hortic-Amsterdam. 2020, 259, 108853. DOI: 10.1016/j.scienta.2019.108853.
  • Cazon, P.; Velazquez, G.; Ramirez, J. A.; Vazquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocolloid. 2017, 68, 136–148. DOI: 10.1016/j.foodhyd.2016.09.009.
  • Indumathi, M. P.; Sarojini, K. S.; Rajarajeswari, G. R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int. J. Biol. Macromol. 2019, 132, 1112–1120. DOI: 10.1016/j.ijbiomac.2019.03.171.
  • Park, S. H.; Lee, H. S.; Choi, J. H.; Jeong, C. M.; Sung, M. H.; Park, H. J. Improvements in Barrier Properties of Polylactic Acid Films Coated with Chitosan/Clay Nanocomposite. J. Appl. Polym. Sci. 2012, 125(S1), 675–680. DOI: 10.1002/app.36405.
  • Akyuz, L.; Kaya, M.; Ilk, S.; Cakmak, Y. S.; Salaberria, A. M.; Labidi, J.; Sargin, I. Effect of Different Animal Fat and Plant Oil Additives on Physicochemical, Mechanical, Antimicrobial and Antioxidant Properties of Chitosan Films. Int. J. Biol. Macromol. 2018, 111, 475–484. DOI: 10.1016/j.ijbiomac.2018.01.045.
  • Rennukka, M.; Sipaut, C. S.; Amirul, A. A. Synthesis of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate)/chitosan/silver Nanocomposite Material with Enhanced Antimicrobial Activity. Biotechnol. Prog. 2014, 30(6), 1469–1479. DOI: 10.1002/btpr.1986.
  • Tripathi, S.; Mehrotra, G. K.; Dutta, P. K. Physicochemical and Bioactivity of Cross-Linked Chitosan–PVA Film for Food Packaging Applications. Int. J. Biol. Macromol. 2009, 45(4), 372–376. DOI: 10.1016/j.ijbiomac.2009.07.006.
  • El-Hefian, E. A.; Nasef, M. M.; Yahaya, A. H. Chitosan-Based Polymer Blends: Current Status and Applications. J. Chem. Soc. Pak. 2014, 36(1), 11–27.
  • Zivanovic, S.; Li, J.; Davidson, P. M.; Kit, K. Physical, Mechanical and Antibacterial Properties of Chitosan/PEO Blend Films. Biomacromolecules. 2007, 8(5), 1505–1510. DOI: 10.1021/bm061140p.
  • Yang, J.; Kwon, G. J.; Hwang, K.; Kim, D. Y. Cellulose–Chitosan Antibacterial Composite Films Prepared from LiBr Solution. Polymers. 2018, 10(10), 1058. DOI: 10.3390/polym10101058.
  • Şen, F.; Kahraman, M. V. Preparation and Characterization of Hybrid Cationic Hydroxyethyl Cellulose/Sodium Alginate Polyelectrolyte Antimicrobial Films. Polym. Adv. Technol. 2018, 29(7), 1895–1901. DOI: 10.1002/pat.4298.
  • Zhang, X. Q.; Guo, H. Q.; Xiao, N. Y.; Ma, X. Y.; Liu, C. F.; Zhong, L.; Xiao, G. S. Preparation and Properties of Epichlorohydrin-Cross-Linked Chitosan/Hydroxyethyl Cellulose Based CuO Nanocomposite Films. Cellulose. 2022, 29(8), 4413–4426. DOI: 10.1007/s10570-022-04511-y.
  • Joubert, F.; Yeo, R. P.; Sharples, G. J.; Musa, O. M.; Hodgson, D. R. W.; Cameron, N. R. Preparation of an Antibacterial Poly(ionic Liquid) Graft Copolymer of Hydroxyethyl Cellulose. Biomacromolecules. 2015, 16(12), 3970–3979. DOI: 10.1021/acs.biomac.5b01300.
  • Noreen, A.; Zia, K. M.; Tabasum, S.; Aftab, W.; Shahid, M.; Zuber, M. Hydroxyethyl cellulose-G-Poly(lactic Acid) Blended Polyurethanes: Preparation, Characterization and Biological Studies. Int. J. Biol. Macromol. 2020, 151, 993–1003. DOI: 10.1016/j.ijbiomac.2019.10.254.
  • Casariego, A.; Souza, B.; Cerqueira, M. A.; Teixeira, J. A.; Cruz, L.; Díaz, R. Chitosan/Clay films’ Properties as Affected by Biopolymer and Clay Micro/nanoparticles’ Concentrations. Food Hydrocolloid. 2009, 23(7), 1895–1902. DOI: 10.1016/j.foodhyd.2009.02.007.
  • Abdurrahim, I. Water Sorption, Antimicrobial Activity, and Thermal and Mechanical Properties of Chitosan/Clay/Glycerol Nanocomposite Films. Heliyon. 2019, 5(8), 02342. DOI: 10.1016/j.heliyon.2019.e02342.
  • Benucci, I.; Liburdi, K.; Cacciotti, I.; Lombardelli, C.; Zappino, M.; Nanni, F.; Esti, M. Chitosan/Clay Nanocomposite Films as Supports for Enzyme Immobilization: An Innovative Green Approach for Winemaking Applications. Food Hydrocolloid. 2018, 74, 124–131. DOI: 10.1016/j.foodhyd.2017.08.005.
  • Ghelejlu, S. B.; Esmaiili, M.; Almasi, H. Characterization of Chitosan–Nanoclay Bionanocomposite Active Films Containing Milk Thistle Extract. Int. J. Biol. Macromol. 2016, 86, 613–621. DOI: 10.1016/j.ijbiomac.2016.02.012.
  • De Cuadro, P.; Belt, T.; Kontturi, K. S.; Reza, M.; Kontturi, E.; Vuorinen, T.; Hughes, M. Cross-Linking of Cellulose and Poly(ethylene Glycol) with Citric Acid. React. Funct. Polym. 2015, 90, 21–24. DOI: 10.1016/j.reactfunctpolym.2015.03.007.
  • Ponnusamy, P. G.; Sundaram, J.; Mani, S. Preparation and Characterization of Citric Acid Crosslinked Chitosan-Cellulose Nanofibrils Composite Films for Packaging Applications. J Appl. Poly. Sci. 2022, 139(17), 52017. DOI: 10.1002/app.52017.
  • Alhanish, A.; Ghalia, M. A. Developments of Biobased Plasticizers for Compostable polymers in the Green Packaging Applications: A Review. Biotech. Progress. 2021, 37(3210), 1–17. DOI: 10.1002/btpr.3210.
  • Mani-Lopez, E.; Garcia, H. S.; Lopez-Malo, A. Organic Acids as Antimicrobials to Control Salmonella in Meat and Poultry Products. Food. Res. Int. 2012, 45(2), 713–721. DOI: 10.1016/j.foodres.2011.04.043.
  • Wang, N.; Zhang, X.; Han, N.; Bai, S. Effect of Citric Acid and Processing on the Performance of Thermoplastic Starch/Montmorillonite Nanocomposites. Carbohydr. Polym. 2009, 76(1), 68–73. DOI: 10.1016/j.carbpol.2008.09.021.
  • Abdullah, Z. W.; Dong, Y. Biodegradable and Water Resistant Poly(vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6, 58. DOI: 10.3389/fmats.2019.00058.
  • Nguyen, A. T.; Parker, L.; Brennan, L.; Lockrey, S. A Consumer Definition of Eco-Friendly Packaging. J. Clean. Prod. 2020, 252, 119792. DOI: 10.1016/j.jclepro.2019.119792.
  • Cazón, P.; Morales-Sanchez, E.; Velazquez, G.; Vázquez, M. Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. J. Chem. Educ. 2022, 99(6), 2403–2408. DOI: 10.1021/acs.jchemed.2c00449.
  • Debandi, M. V.; Bernal, C.; Francois, N. J. Development of Biodegradable Films Based on Chitosan/Glycerol Blends Suitable for Biomedical Applications. J. Tissue. Sci. Eng. 2016, 7, 2.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6(2), 71–79. DOI: 10.1016/j.jpha.2015.11.005.
  • Banik, N.; Jahan, S. A.; Mostofa, S.; Kabir, H.; Sharmin, N.; Rahman, M.; Ahmed, S. Synthesis and Characterization of Organoclay Modified with Cetylpyridinium Chloride. Bangladesh J. Sci. Ind. Res. 2015, 50(1), 65–70. DOI: 10.3329/bjsir.v50i1.23812.
  • Dankova, Z.; Mockovciakova, A.; Dolinska, S. Influence of Ultrasound Irradiation on Cadmium Cations Adsorption by Montmorillonite. Desalin. Water. Treat. 2014, 52(28–30), 28–30. DOI: 10.1080/19443994.2013.814006.
  • Melro, E.; Antunes, F. E.; Da Silva, G. J.; Cruz, I.; Ramos, P. E.; Carvalho, F.; Alves, L. Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers. 2021, 13(1), 1. DOI: 10.3390/polym13010001.
  • Tanpichai, S.; Srimarut, Y.; Woraprayote, W.; Malila, Y. Chitosan Coating for the Preparation of Multilayer Coated Paper for Food-Contact Packaging: Wettability, Mechanical Properties, and Overall Migration. Int. J. Biol. Macromol. 2022, 213, 534–545. DOI: 10.1016/j.ijbiomac.2022.05.193.
  • Zhang, Z.; Yang, R. Novel Nanocomposites Based on Hydroxyethyl Cellulose and Graphene Oxide. Fiber. Polym. 2017, 18(2), 334–341. DOI: 10.1007/s12221-017-6901-9.
  • Mianehrow, H.; Afshari, R.; Mazinani, S.; Sharif, F.; Abdouss, M. Introducing a Highly Dispersed Reduced Graphene Oxide Nano-Biohybrid Employing Chitosan/Hydroxyethyl Cellulose for Controlled Drug Delivery. Int. J. Pharm. 2016, 509(1–2), 400–407. DOI: 10.1016/j.ijpharm.2016.06.015.
  • Kasirga, Y.; Oral, A.; Caner, C. Preparation and Characterization of Chitosan/montmorillonite-K10 Nanocomposites Films for Food Packaging Applications. Polym. Composite. 2012, 33(11), 1874–1882. DOI: 10.1002/pc.22310.
  • Rao, M. S.; Kanatt, S. R.; Chawla, S. P.; Sharma, A. Chitosan and Guar Gum Composite Films: Preparation, Physical, Mechanical and Antimicrobial Properties. Carbohydr. Polym. 2010, 82(4), 1243–1247. DOI: 10.1016/j.carbpol.2010.06.058.
  • Azevedo, V. M.; Dias, M. V.; Borges, S. V.; Costa, A. L. R.; Silva, E. K.; Medeiros, E. A. A.; Soares, N. F. F. Development of Whey Protein Isolate Bio-Nanocomposites: Effect of Montmorillonite and Citric Acid on Structural, Thermal, Morphological and Mechanical Properties. Food Hydrocolloid. 2015, 48, 179–188. DOI: 10.1016/j.foodhyd.2015.02.014.
  • Kusmono, I. A. Water Sorption, Antimicrobial Activity, and Thermal and Mechanical Properties of Chitosan/Clay/Glycerol Nanocomposite Film. Heliyon. 2019, 5(8), 2342. DOI: 10.1016/j.heliyon.2019.e02342.
  • Alekseeva, O. V.; Rodionova, A. N.; Bagrovskaya, N. A.; Agafonov, A. V.; Noskov, A. V. Effect of the Bentonite Filler on Structure and Properties of Composites Based on Hydroxyethyl Cellulose. Arab J. Chem. 2019, 12(3), 398–404. DOI: 10.1016/j.arabjc.2015.07.011.
  • Giannakas, A.; Vlacha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H.; Barkoula, N. M.; Ladavos, A. Preparation, Characterization, Mechanical, Barrier and Antimicrobial Properties of Chitosan/PVOH/Clay Nanocomposites. Carbohydr. Polym. 2016, 140, 408–415. DOI: 10.1016/j.carbpol.2015.12.072.
  • Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, Z. H.; Zhao, D.; Liu, X. Characterization and Antibacterial Activity of Edible Films Based on Carboxymethyl Cellulose, Dioscorea Opposita Mucilage, Glycerol and ZnO Nanoparticles. Food Chem. 2021, 349, 129208. DOI: 10.1016/j.foodchem.2021.129208.
  • Fawal, G. E.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethyl cellulose and ZnO for Food Packaging Application, Food Pack. Shelf Life. 2020, 23, 100462. DOI: 10.1016/j.fpsl.2020.100462.
  • Othman, S. H.; Edwal, S. A. M.; Risyon, N. P.; Basha, R. K.; Talib, R. A. Water Sorption and Water Permeability Properties of Edible Film Made from Potato Peel Waste. Food Sci. Technol. 2017, 37(1), 63–70. DOI: 10.1590/1678-457x.30216.
  • Alipoormazandarani, N.; Ghazihoseini, S.; Nafchi, A. M. Preparation and Characterization of Novel Bionanocomposite Based on Soluble Soybean Polysaccharide and Halloysite Nanoclay. Carbohyd. Polym. 2015, 134, 745–751. DOI: 10.1016/j.carbpol.2015.08.059.
  • Grunlan, J. C.; Grigorian, A.; Hamilton, C. B.; Mehrabi, A. R. Effect of Clay Concentration on the Oxygen Permeability and Optical Properties of a Modified Poly(vinyl Alcohol). J. Appl. Polym. Sci. 2003, 93(3), 1102–1109. DOI: 10.1002/app.20564.
  • Wang, C.; Chang, T.; Dong, S.; Zhang, D.; Ma, C.; Chen, S.; Li, H. Biopolymer Films Based on Chitosan/Potato Protein/Linseed Oil/ZnO NPs to Maintain the Storage Quality of Raw Meat. Food Chem. 2020, 332, 127375. DOI: 10.1016/j.foodchem.2020.127375.
  • Vlacha, M.; Giannakas, A.; Katapodis, P.; Stamatis, H.; Ladavos, A.; Barkoula, N. M. On the Efficiency of Oleic Acid as Plasticizer of Chitosan/Clay Nanocomposites and Its Role on Thermo-Mechanical, Barrier and Antimicrobial Properties-Comparison with Glycerol. Food Hydrocolloid. 2016, 57, 10–19. DOI: 10.1016/j.foodhyd.2016.01.003.
  • Müller, C. M. O.; Laurindo, J. B.; Yamashita, F. Effect of Nanoclay Incorporation Method on Mechanical and Water Vapor Barrier Properties of Starch-Based Films. Ind. Crops Prod. 2011, 33(3), 605–610. DOI: 10.1016/j.indcrop.2010.12.021.
  • Rhim, J.; Hong, S.; Park, H.; Perry, K. W. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. J. Agr. Food. Chem. 2006, 54(16), 5814–5822. DOI: 10.1021/jf060658h.
  • Qu, B.; Luo, Y. A Review on the Preparation and Characterization of Chitosan-Clay Nanocomposite Films and Coatings for Food Packaging Applications. Carbohydr. Polym. Techn. Appl. 2021, 2, 100102. DOI: 10.1016/j.carpta.2021.100102.
  • Ressutte, J. B.; Da Silva Saranti, T. F.; De Moura, M. R.; Dos Santos Pozza, M. S.; Da Silva Scapim, M. R.; Stafussa, A. P.; Madrona, G. S. Citric Acid Incorporated in a Chitosan Film as an Active Packaging Material to Improve the Quality and Duration of Matured Cheese Shelf Life. J. Dairy Res. 2022, 89(2), 201–207. DOI: 10.1017/S0022029922000383.
  • Giannakas, A.; Grigoriadi, K.; Leontiou, A.; Barkoula, N. M.; Ladavos, A. Preparation, Characterization, Mechanical and Barrier Properties Investigation of Chitosan–Clay Nanocomposites. Carbohydr. Polym. 2014, 108, 103–111. DOI: 10.1016/j.carbpol.2014.03.019.
  • Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020, 25(6), 1340. DOI: 10.3390/molecules25061340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.