140
Views
0
CrossRef citations to date
0
Altmetric
Review

N-Doped Graphene and Polymer Sequent Nanocomposite—Nitty-Gritties and Scoping Insights

Pages 1347-1363 | Received 24 Nov 2022, Accepted 22 Apr 2023, Published online: 28 Apr 2023

References

  • Kausar, A. Technical Imprint of Polymer Nanocomposite Comprising Graphene Quantum Dot. Polym.-Plast. Technol. Mater. 2019, 58(6), 597–617. DOI: 10.1080/25740881.2018.1563110.
  • Kausar, A. Graphene Nanomesh and Polymeric Material at Cutting Edge. Polym.-Plast. Technol. Mater. 2019, 58(8), 803–820. DOI: 10.1080/25740881.2018.1563111.
  • Sarabiyan Nejad, S.; Rezaei, M.; Bagheri, M. Polyurethane/nitrogen-Doped Graphene Quantum Dot (N-GQD) Nanocomposites: Synthesis, Characterization, Thermal, Mechanical and Shape Memory Properties. Polym.-Plast. Technol. Mater. 2020, 59(4), 398–416. DOI: 10.1080/25740881.2019.1647243.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym.-Plast. Technol. Mater. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Kausar, A. Polymer/Graphene Nanocomposite for Corrosion Protection Application: From Design to Technical Trends. Polym.-Plast. Technol. Mater. 2022, 61(14), 1521–1543. DOI: 10.1080/25740881.2022.2071159.
  • Su, Y.; Li, T.; Mao, Y.; Liu, L.; Wen, S. High-Efficiency Antibacterial and Barrier Properties of Natural Rubber/Graphene Oxide@ag/Carboxymethyl Chitosan Composites. Polym.-Plast. Technol. Mater. 2022, 62(3), 1–11. DOI: 10.1080/25740881.2022.2113891.
  • Tiwari, S. K.; Chen, D.; Chen, Y.; Thummavichai, K.; Ola, O.; Ma, Z.; Liu, G.; Wang, N.; Zhu, Y. N-Doped Graphenelike Nanostructures from P-Nitro Aniline-Based Foam: Formation, Structure, and Applications as a Nanofiller. ACS Omega. 2022, 7(4), 3230–3239. DOI: 10.1021/acsomega.1c05139.
  • Kausar, A. Nanocarbon Nanocomposites of Polyaniline and Pyrrole for Electromagnetic Interference Shielding: Design and Effectiveness. Polym.-Plast. Technol. Mater. 2022, 61, 1988–2000.
  • Antil, B.; Kumar, L.; Das, M. R.; Deka, S. N-Doped Graphene Modulated N-Rich Carbon Nitride Realizing a Promising All-Solid-State Flexible Supercapacitor. J. Ener. Stor. 2022, 52, 104731. DOI: 10.1016/j.est.2022.104731.
  • Masemola, C.; Moloto, N.; Tetana, Z.; Gqoba, S.; Mubiayi, P.; Linganiso, E. N-Doped Graphene Quantum Dot-Modified Polyaniline for Room-Temperature Sensing of Alcohol Vapors. Mater. Chem. Phys. 2022, 287, 126229. DOI: 10.1016/j.matchemphys.2022.126229.
  • Kausar, A. Potential of Polymer/Graphene Nanocomposite in Electronics. Am. J. Nanosci. Nanotechnol. Res. 2018, 6, 55–63.
  • Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113(5), 3766–3798. DOI: 10.1021/cr300263a.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene: Nanoscience and Technology. Collect. Rev. Nat. J. World Sci. 2009, 2010, 11–19.
  • Edwards, R. S.; Coleman, K. S. Graphene Synthesis: Relationship to Applications. Nanoscale. 2013, 5(1), 38–51. DOI: 10.1039/C2NR32629A.
  • Li, M.; Yin, B.; Gao, C.; Guo, J.; Zhao, C.; Jia, C.; Guo, X. Graphene: Preparation, Tailoring, and Modification. Exploration. 2023, 3(1), 20210233. DOI: 10.1002/EXP.20210233.
  • Wang, X.; Wei, Y.; Zhou, H.; Liu, Q.; Zhu, L. Synthesis of Graphene Nanosheets by the Electrical Explosion of Graphite Powder Confined in a Tube. Ceram. Int. 2021, 47(15), 21934–21942. DOI: 10.1016/j.ceramint.2021.04.211.
  • Lang, B. A LEED Study of the Deposition of Carbon on Platinum Crystal Surfaces. Surf. Sci. 1975, 53(1), 317–329. DOI: 10.1016/0039-6028(75)90132-6.
  • Hamedani, Y.; Macha, P.; Bunning, T. J.; Naik, R. R.; Vasudev, M. C. Plasma-enhanced chemical vapor deposition: where we are and the outlook for the future. In Chemical Vapor Deposition-Recent Advances and Applications in Optical, Solar Cells and Solid State Devices, Intech Open Publisher, UK, 2016, pp. 243–280.
  • Ponnamma, D.; Yin, Y.; Salim, N.; Parameswaranpillai, J.; Thomas, S.; Hameed, N. Recent Progress and Multifunctional Applications of 3D Printed Graphene Nanocomposites. Compos. B Eng. 2021, 204, 108493. DOI: 10.1016/j.compositesb.2020.108493.
  • Zhang, F.; Yang, K.; Liu, G.; Chen, Y.; Wang, M.; Li, S.; Li, R. Recent Advances on Graphene: Synthesis, Properties, and Applications. Compos. A: Appl. Sci. Manufactur. 2022, 160, 107051. DOI: 10.1016/j.compositesa.2022.107051.
  • Sheini, A.; Taherpour, A. A.; Maghsudi, M.; Farajmand-Amirabadi, S.; Kouchak, M.; Rahbar, N.; Sabaeian, M.; Alidadi, H. N-Doped Graphene Quantum Dots from Graphene Oxide and Dendrimer and Application in Photothermal Therapy: An Experimental and Theoretical Study. Coll. Surf. A Physicochem. Eng. Asp. 2022, 636, 128066. DOI: 10.1016/j.colsurfa.2021.128066.
  • Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M. A Review of Strategies for the Synthesis of N-Doped Graphene-Like Materials. Nanomaterials. 2020, 10(11), 2286. DOI: 10.3390/nano10112286.
  • Kim, H. T.; Kim, C. -D.; Park, C. Reduction and Nitridation of Graphene Oxide (GO) Films at Room Temperature Using Inductively Coupled NH3 Plasma. Vacuum. 2014, 108, 35–38. DOI: 10.1016/j.vacuum.2014.05.018.
  • Zhang, X. -Y.; Sun, S. -H.; Sun, X. -J.; Zhao, Y. -R.; Chen, L.; Yang, Y.; Lü, W.; Li, D. -B. Plasma-Induced, Nitrogen-Doped Graphene-Based Aerogels for High-Performance Supercapacitors. Light: Sci. Applicat. 2016, 5(10), e16130. DOI: 10.1038/lsa.2016.130.
  • Bundaleska, N.; Henriques, J.; Abrashev, M.; Botelho Do Rego, A.; Ferraria, A.; Almeida, A.; Dias, F.; Valcheva, E.; Arnaudov, B.; Upadhyay, K., et al. Large-Scale Synthesis of Free-Standing N-Doped Graphene Using Microwave Plasma. Scientif. Rep. 2018, 8(1), 1–11. DOI: 10.1038/s41598-018-30870-3.
  • Terasawa, T. -O.; Saiki, K. Synthesis of Nitrogen-Doped Graphene by Plasma-Enhanced Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2012, 51(5R), 055101. DOI: 10.1143/JJAP.51.055101.
  • Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9(5), 1752–1758. DOI: 10.1021/nl803279t.
  • Plutnar, J.; Pumera, M.; Sofer, Z. The Chemistry of CVD Graphene. J. Mater. Chem. C. 2018, 6(23), 6082–6101. DOI: 10.1039/C8TC00463C.
  • Borand, G.; Akçamlı, N.; Uzunsoy, D. Structural Characterization of Graphene Nanostructures Produced via Arc Discharge Method. Ceram. Int. 2021, 47(6), 8044–8052. DOI: 10.1016/j.ceramint.2020.11.158.
  • Ghosh, A.; Late, D. J.; Panchakarla, L.; Govindaraj, A.; Rao, C. NO2 and Humidity Sensing Characteristics of Few-Layer Graphenes. J. Experimen. Nanosci. 2009, 4(4), 313–322. DOI: 10.1080/17458080903115379.
  • Chen, Y.; Zhao, H.; Sheng, L.; Yu, L.; An, K.; Xu, J.; Ando, Y.; Zhao, X. Mass-Production of Highly-Crystalline Few-Layer Graphene Sheets by Arc Discharge in Various H2–Inert Gas Mixtures. Chem. Phys. Lett. 2012, 538, 72–76. DOI: 10.1016/j.cplett.2012.04.020.
  • Sasikala, S. P.; Poulin, P.; Aymonier, C. Advances in Subcritical hydro‐/Solvothermal Processing of Graphene Materials. Adv. Mater. 2017, 29(22), 1605473. DOI: 10.1002/adma.201605473.
  • Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. -X.; Fu, Q.; Ma, X.; Xue, Q., et al. Toward N-Doped Graphene via Solvothermal Synthesis. Chem. Mater. 2011, 23(5), 1188–1193. DOI: 10.1021/cm102666r.
  • Sadri, R.; Zangeneh Kamali, K.; Hosseini, M.; Zubir, N.; Kazi, S.; Ahmadi, G.; Dahari, M.; Huang, N. M.; Golsheikh, A. Experimental Study on Thermo-Physical and Rheological Properties of Stable and Green Reduced Graphene Oxide Nanofluids: Hydrothermal Assisted Technique. J Dispers. Sci. Technol. 2017, 38(9), 1302–1310. DOI: 10.1080/01932691.2016.1234387.
  • Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S. -H. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir. 2010, 26(20), 16096–16102. DOI: 10.1021/la102425a.
  • Wang, H.; Xie, M.; Thia, L.; Fisher, A.; Wang, X. Strategies on the Design of Nitrogen-Doped Graphene. J. Phys. Chem. Lett. 2014, 5(1), 119–125. DOI: 10.1021/jz402416a.
  • Gao, H.; Song, L.; Guo, W.; Huang, L.; Yang, D.; Wang, F.; Zuo, Y.; Fan, X.; Liu, Z.; Gao, W., et al. A Simple Method to Synthesize Continuous Large Area Nitrogen-Doped Graphene. Carbon. 2012, 50(12), 4476–4482. DOI: 10.1016/j.carbon.2012.05.026.
  • Mananghaya, M. Understanding the Structure and Electronic Properties of N-Doped Graphene Nanoribbons Upon Hydrogen Saturation. J. Chem. Sci. 2014, 126(6), 1737–1742. DOI: 10.1007/s12039-014-0744-3.
  • Usachov, D. Y.; Fedorov, A.; Vilkov, O. Y.; Senkovskiy, B.; Adamchuk, V.; Andryushechkin, B.; Vyalikh, D. Synthesis and Electronic Structure of Nitrogen-Doped Graphene. Phys. Sol. Stat. 2013, 55(6), 1325–1332. DOI: 10.1134/S1063783413060310.
  • Sforzini, J.; Hapala, P.; Franke, M.; Van Straaten, G.; Stöhr, A.; Link, S.; Soubatch, S.; Jelínek, P.; Lee, T. -L.; Starke, U., et al. Structural and Electronic Properties of Nitrogen-Doped Graphene. Phys. Rev. Lett. 2016, 116(12), 126805. DOI: 10.1103/PhysRevLett.116.126805.
  • Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C., et al. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12(8), 4025–4031. DOI: 10.1021/nl301409h.
  • Miao, Q.; Wang, L.; Liu, Z.; Wei, B.; Xu, F.; Fei, W. Magnetic Properties of N-Doped Graphene with High Curie Temperature. Scientif. Rep. 2016, 6(1), 1–10. DOI: 10.1038/srep21832.
  • Luo, Z.; Lim, S.; Tian, Z.; Shang, J.; Lai, L.; MacDonald, B.; Fu, C.; Shen, Z.; Yu, T.; Lin, J. Pyridinic N Doped Graphene: Synthesis, Electronic Structure, and Electrocatalytic Property. J. Mater. Chem. 2011, 21(22), 8038–8044. DOI: 10.1039/c1jm10845j.
  • Kaur, M.; Kaur, M.; Sharma, V. K. Nitrogen-Doped Graphene and Graphene Quantum Dots: A Review Onsynthesis and Applications in Energy, Sensors and Environment. Adv. Coll. Interf. Sci. 2018, 259, 44–64. DOI: 10.1016/j.cis.2018.07.001.
  • Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in Hybrid Polymer/Nanocarbon Composites. A Review. Compos. A: Appl. Sci. Manufactur. 2015, 73, 204–231. DOI: 10.1016/j.compositesa.2015.02.021.
  • Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A Critical Review on the Development and Performance of Polymer/Graphene Nanocomposites. Sci. Engineer. Compos. Mater. 2018, 25(6), 1059–1073. DOI: 10.1515/secm-2017-0199.
  • Ghasemi, I.; Gomari, S. Polymeric Nanocomposites Including Graphene Nanoplatelets. In Handbook of Graphene; Edvige, C, Alexander, N. C., Tobias Stauber, S., Mei, Z., Cengiz, O., Umit, O., Sulaiman Wadi Harun, W. H., Eds.; Wiley, 2019; Vol. 1, pp. 481–515.
  • Phiri, J.; Gane, P.; Maloney, T. C. General Overview of Graphene: Production, Properties and Application in Polymer Composites. Mater. Sci. Eng.: B. 2017, 215, 9–28. DOI: 10.1016/j.mseb.2016.10.004.
  • Sham, A. Y.; Notley, S. M. A Review of Fundamental Properties and Applications of Polymer–Graphene Hybrid Materials. Soft. Matt. 2013, 9(29), 6645–6653. DOI: 10.1039/c3sm00092c.
  • Saeb, M. R.; Zarrintaj, P. Polyaniline/graphene-Based Nanocomposites. In Fundamentals and Emerging Applications of Polyaniline; Masoud, M., Chauhan, NPS., Eds.; Elsevier: Netherlands, 2019; pp. 165–175.
  • Dunlop, M. J.; Bissessur, R. Nanocomposites Based on Graphene Analogous Materials and Conducting Polymers: A Review. J. Mater. Sci. 2020, 55(16), 6721–6753. DOI: 10.1007/s10853-020-04479-9.
  • Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Hamadouche, M.; Hernáez, E.; Vilas-Vilela, J. L.; Ruiz-Rubio, L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers. 2020, 12(10), 2227. DOI: 10.3390/polym12102227.
  • Zhang, Y.; Wu, L.; Lei, W.; Xia, X.; Xia, M.; Hao, Q. Electrochemical Determination of 4-Nitrophenol at Polycarbazole/n-Doped Graphene Modified Glassy Carbon Electrode. Electrochim. Acta. 2014, 146, 568–576. DOI: 10.1016/j.electacta.2014.08.153.
  • Promsuwan, K.; Saichanapan, J.; Soleh, A.; Saisahas, K.; Phua, C. H.; Wangchuk, S.; Samoson, K.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Polyaniline-Coated Glassy Carbon Microspheres Decorated with Nano-Palladium as a New Electrocatalyst for Methanol Oxidation. J. Electroanal. Chem. 2022, 928, 116995. DOI: 10.1016/j.jelechem.2022.116995.
  • Ma, J.; Wang, M.; Lei, G.; Zhang, G.; Zhang, F.; Peng, W.; Fan, X.; Li, Y. Polyaniline Derived N‐doped Carbon‐coated Cobalt Phosphide Nanoparticles Deposited on N‐doped Graphene as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small. 2018, 14(2), 1702895. DOI: 10.1002/smll.201702895.
  • Wang, L.; Huang, Y.; Huang, H. N-Doped Graphene@ Polyaniline Nanorod Arrays Hierarchical Structures: Synthesis and Enhanced Electromagnetic Absorption Properties. Mater. Lett. 2014, 124, 89–92. DOI: 10.1016/j.matlet.2014.03.066.
  • Kemp, K. C.; Chandra, V.; Saleh, M.; Kim, K. S. Reversible CO2 Adsorption by an Activated Nitrogen Doped Graphene/Polyaniline Material. Nanotechnology. 2013, 24(23), 235703. DOI: 10.1088/0957-4484/24/23/235703.
  • Wu, L.; Chen, X.; Ding, C.; Wang, P.; Luo, H. Preparation and Electrochemical Performance of Porous Carbon Derived from Polypyrrole. Carbon. Lett. 2022, 1–12.
  • Sari, F. N. I.; Ting, J. -M. High Performance Asymmetric Supercapacitor Having Novel 3D Networked Polypyrrole Nanotube/n-Doped Graphene Negative Electrode and Core-Shelled MoO3/PPy Supported MoS2 Positive Electrode. Electrochim. Acta. 2019, 320, 134533. DOI: 10.1016/j.electacta.2019.07.044.
  • Mohmad, G.; Sarkar, S.; Biswas, A.; Roy, K.; Dey, R. S. Polymer‐assisted Electrophoretic Synthesis of N‐doped Graphene‐polypyrrole Demonstrating Oxygen Reduction with Excellent Methanol Crossover Impact and Durability. Chem. Eur. J. 2020, 26(55), 12664–12673. DOI: 10.1002/chem.202002526.
  • Gu, H.; Chen, F.; Liu, C.; Qian, J.; Ni, M.; Liu, T. Scalable Fabrication of Core-Shell Structured Li4Ti5O12/PPy Particles Embedded in N-Doped Graphene Networks as Advanced Anode for Lithium-Ion Batteries. J. Power Sour. 2017, 369, 42–49. DOI: 10.1016/j.jpowsour.2017.09.083.
  • Gavgani, J. N.; Dehsari, H. S.; Hasani, A.; Mahyari, M.; Shalamzari, E. K.; Salehi, A.; Taromi, F. A. A Room Temperature Volatile Organic Compound Sensor with Enhanced Performance, Fast Response and Recovery Based on N-Doped Graphene Quantum Dots and Poly (3, 4-Ethylenedioxythiophene)–poly (Styrenesulfonate) Nanocomposite. R.S.C. Adv. 2015, 5(71), 57559–57567. DOI: 10.1039/C5RA08158K.
  • Yan, Y.; Jamal, R.; Yu, Z.; Zhang, R.; Zhang, W.; Ge, Y.; Liu, Y.; Abdiryim, T. Composites of Thiol-Grafted PEDOT with N-Doped Graphene or Graphitic Carbon Nitride as an Electrochemical Sensor for the Detection of Paracetamol. J. Mater. Sci. 2020, 55(13), 5571–5586. DOI: 10.1007/s10853-020-04351-w.
  • Paterakis, G.; Raptis, D.; Ploumistos, A.; Belekoukia, M.; Sygellou, L.; Ramasamy, M. S.; Lianos, P.; Tasis, D. N-Doped Graphene/PEDOT Composite Films as Counter Electrodes in DSSCs: Unveiling the Mechanism of Electrocatalytic Activity Enhancement. Appl. Surf. Sci. 2017, 423, 443–450. DOI: 10.1016/j.apsusc.2017.06.180.
  • Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF Based Piezoelectric Nanogenerators. Nano Ener. 2020, 78, 105251. DOI: 10.1016/j.nanoen.2020.105251.
  • Huang, Y.; Shang, C.; Li, L. Novel N-Doped Graphene Enhanced Ultrafiltration Nano-Porous Polyvinylidene Fluoride Membrane with High Permeability and Stability for Water Treatment. Separat. Purificat. Technol. 2021, 267, 118622. DOI: 10.1016/j.seppur.2021.118622.
  • Zheng, W.; Li, Z.; Lu, G.; Yang, T.; Li, M.; Xu, C.; Wang, R. 3D Flexible N-Doped Carbonaceous Materials/PVDF-HFP Composite Frameworks for Quasi-Solid-State 4.5 V Li-Ion Capacitors. Chem. Engr. J. 2023, 451, 138581. DOI: 10.1016/j.cej.2022.138581.
  • Ilyas, R. A.; Aisyah, H. A.; Nordin, A. H.; Ngadi, N.; Zuhri, M. Y. M.; Asyraf, M. R. M.; Sapuan, S. M.; Zainudin, E. S.; Sharma, S.; Abral, H., et al. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers. 2022, 14(5), 874. DOI: 10.3390/polym14050874.
  • Mallakpour, S.; Khadem, E. Linear and Nonlinear Behavior of Crosslinked Chitosan/n-Doped Graphene Quantum Dot Nanocomposite Films in Cadmium Cation Uptake. Sci. Total Environ. 2019, 690, 1245–1253. DOI: 10.1016/j.scitotenv.2019.06.431.
  • Kumar, S.; Aziz, S. T.; Girshevitz, O.; Nessim, G. D. One-Step Synthesis of N-Doped Graphene Quantum Dots from Chitosan as a Sole Precursor Using Chemical Vapor Deposition. J. Phys. Chem. C. 2018, 122(4), 2343–2349. DOI: 10.1021/acs.jpcc.7b05494.
  • Jia, H.; Yang, T.; Zuo, Y.; Wang, W.; Xu, J.; Lu, L.; Li, P. Immunosensor for α-Fetoprotein Based on a Glassy Carbon Electrode Modified with Electrochemically Deposited N-Doped Graphene, Gold Nanoparticles and Chitosan. Microchim. Acta. 2017, 184(10), 3747–3753. DOI: 10.1007/s00604-017-2407-9.
  • Fan, H.; Li, Y.; Wu, D.; Ma, H.; Mao, K.; Fan, D.; Du, B.; Li, H.; Wei, Q. Electrochemical Bisphenol a Sensor Based on N-Doped Graphene Sheets. Anal. Chim. Acta. 2012, 711, 24–28. DOI: 10.1016/j.aca.2011.10.051.
  • Mirzaei, A.; Kim, J. -H.; Kim, H. W.; Kim, S. S. Resistive-Based Gas Sensors for Detection of Benzene, Toluene and Xylene (BTX) Gases: A Review. J. Mater. Chem. C. 2018, 6(16), 4342–4370. DOI: 10.1039/C8TC00245B.
  • Shi, G.; Meng, Q.; Zhao, Z.; Kuan, H. -C.; Michelmore, A.; Ma, J. Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Appl, Mater, Interf. 2015, 7(25), 13745–13757. DOI: 10.1021/am5091287.
  • Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano Carbon Black-Based Screen Printed Sensor for Carbofuran, Isoprocarb, Carbaryl and Fenobucarb Detection: Application to Grain Samples. Talanta. 2018, 186, 389–396. DOI: 10.1016/j.talanta.2018.04.082.
  • Nasresfahani, S.; Sheikhi, M.; Tohidi, M.; Zarifkar, A. Methane Gas Sensing Properties of Pd-Doped SnO2/Reduced Graphene Oxide Synthesized by a Facile Hydrothermal Route. Mater. Res. Bull. 2017, 89, 161–169. DOI: 10.1016/j.materresbull.2017.01.032.
  • Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress Toward a Novel Methane Gas Sensor Based on SnO2 Nanorods-Nanoporous Graphene Hybrid. Sens. Actuat. B Chem. 2019, 281, 96–106. DOI: 10.1016/j.snb.2018.10.032.
  • Hakimi, M.; Salehi, A.; Boroumand, F. A. Fabrication and Characterization of an Ammonia Gas Sensor Based on PEDOT-PSS with N-Doped Graphene Quantum Dots Dopant. IEEE Sens. J. 2016, 16(16), 6149–6154. DOI: 10.1109/JSEN.2016.2585461.
  • Hakimi, M.; Salehi, A.; Boroumand, F.; Mosleh, N. Fabrication of a Room Temperature Ammonia Gas Sensor Based on Polyaniline with N-Doped Graphene Quantum Dots. IEEE Sens. J. 2018, 18(6), 2245–2252. DOI: 10.1109/JSEN.2018.2797118.
  • Liu, D.; Li, H. J.; Lyu, B.; Cheng, S.; Zhu, Y.; Wang, P.; Wang, D.; Wang, X.; Yang, J. Efficient Performance Enhancement of GaN-Based Vertical Light-Emitting Diodes Coated with N-Doped Graphene Quantum Dots. Opt. Mater. 2019, 89, 468–472. DOI: 10.1016/j.optmat.2019.01.026.
  • Jun, G. H.; Jin, S. H.; Lee, B.; Kim, B. H.; Chae, W. -S.; Hong, S. H.; Jeon, S. Enhanced Conduction and Charge-Selectivity by N-Doped Graphene Flakes in the Active Layer of Bulk-Heterojunction Organic Solar Cells. Ener. Environ. Sci. 2013, 6(10), 3000–3006. DOI: 10.1039/c3ee40963e.
  • Sasabe, H.; Kido, J. Development of High Performance OLEDs for General Lighting. J. Mater. Chem. C. 2013, 1(9), 1699–1707. DOI: 10.1039/c2tc00584k.
  • Zhang, H.; Mischke, J.; Mertin, W.; Bacher, G. Graphene as a Transparent Conductive Electrode in GaN-Based LEDs. Materials. 2022, 15(6), 2203. DOI: 10.3390/ma15062203.
  • Tshangana, C. S.; Muleja, A. A.; Kuvarega, A. T.; Mamba, B. B. The Synergistic Effect of Peracetic Acid Activated by Graphene Oxide Quantum Dots in the Inactivation of E. Coli and Organic Dye Removal with LED Reactor Light. J. Environ. Sci. Heal. A. 2022, 2022(4), 1–14. DOI: 10.1080/10934529.2022.2056385.
  • Hwang, J. O.; Park, J. S.; Choi, D. S.; Kim, J. Y.; Lee, S. H.; Lee, K. E.; Kim, Y. -H.; Song, M. H.; Yoo, S.; Kim, S. O. Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes. ACS Nano. 2012, 6(1), 159–167. DOI: 10.1021/nn203176u.
  • Chen, G. Z. Supercapacitor and Supercapattery as Emerging Electrochemical Energy Stores. Int. Mater. Rev. 2017, 62(4), 173–202. DOI: 10.1080/09506608.2016.1240914.
  • Sen, P.; De, A.; Chowdhury, A. D.; Bandyopadhyay, S.; Agnihotri, N.; Mukherjee, M. Conducting Polymer Based Manganese Dioxide Nanocomposite as Supercapacitor. Electrochim. Acta. 2013, 108, 265–273. DOI: 10.1016/j.electacta.2013.07.013.
  • Poizot, P.; Dolhem, F. Clean Energy New Deal for a Sustainable World: From Non-CO 2 Generating Energy Sources to Greener Electrochemical Storage Devices. Ener. Environ. Sci. 2011, 4(6), 2003–2019. DOI: 10.1039/c0ee00731e.
  • Banerjee, J.; Dutta, K.; Kader, M. A.; Nayak, S. K. An Overview on the Recent Developments in Polyaniline‐based Supercapacitors. Polym. Adv. Technol. 2019, 30(8), 1902–1921. DOI: 10.1002/pat.4624.
  • Song, B.; Tuan, C. -C.; Huang, X.; Li, L.; Moon, K. -S.; Wong, C. -P. Sulfonated Polyaniline Decorated Graphene Nanocomposites as Supercapacitor Electrodes. Mater. Lett. 2016, 166, 12–15. DOI: 10.1016/j.matlet.2015.11.108.
  • Phattharasupakun, N.; Wutthiprom, J.; Ma, N.; Suktha, P.; Sawangphruk, M. High-Performance Supercapacitors of N-Doped Graphene Aerogel and Its Nanocomposites with Manganese Oxide and Polyaniline. J. Electrochem. Soc. 2018, 165(7), A1430. DOI: 10.1149/2.0981807jes.
  • Sardana, S.; Aggarwal, K.; Siwach, P.; Gaba, L.; Maan, A.; Singh, K.; Ohlan, A. Hierarchical Three Dimensional Polyaniline/N‐doped Graphene Nanocomposite Hydrogel for Energy Storage Applications. Ener. Stor. 2022, 5(2), e328. DOI: 10.1002/est2.328.
  • Ghasemi, M.; Daud, W. R. W.; Hassan, S. H.; Oh, S. -E.; Ismail, M.; Rahimnejad, M.; Jahim, J. M. Nano-Structured Carbon as Electrode Material in Microbial Fuel Cells: A Comprehensive Review. J. Alloys Comp. 2013, 580, 245–255. DOI: 10.1016/j.jallcom.2013.05.094.
  • Huang, J.; Zhu, N.; Yang, T.; Zhang, T.; Wu, P.; Dang, Z. Nickel Oxide and Carbon Nanotube Composite (NiO/CNT) as a Novel Cathode Non-Precious Metal Catalyst in Microbial Fuel Cells. Biosens. Bioelectron. 2015, 72, 332–339. DOI: 10.1016/j.bios.2015.05.035.
  • Kundu, A.; Sahu, J. N.; Redzwan, G.; Hashim, M. An Overview of Cathode Material and Catalysts Suitable for Generating Hydrogen in Microbial Electrolysis Cell. Int. J. Hydrog. Ener. 2013, 38(4), 1745–1757. DOI: 10.1016/j.ijhydene.2012.11.031.
  • Jung, H. -Y.; Roh, S. -H. Carbon Nanofiber/Polypyrrole Nanocomposite as Anode Material in Microbial Fuel Cells. J. Nanosci. Nanotechnol. 2017, 17(8), 5830–5833. DOI: 10.1166/jnn.2017.14149.
  • Wang, Q.; Song, H.; Li, W.; Wang, S.; Liu, L.; Li, T.; Han, Y. Facile Synthesis of Polypyrrole/Graphene Composite Aerogel with Alizarin Red S as Reactive Dopant for High-Performance Flexible Supercapacitor. J. Power Sour. 2022, 517, 230737. DOI: 10.1016/j.jpowsour.2021.230737.
  • Gnana Kumar, G.; Kirubaharan, C. J.; Udhayakumar, S.; Ramachandran, K.; Karthikeyan, C.; Renganathan, R.; Nahm, K. S. Synthesis, Structural, and Morphological Characterizations of Reduced Graphene Oxide-Supported Polypyrrole Anode Catalysts for Improved Microbial Fuel Cell Performances. ACS Sustain. Chem. Eng. 2014, 2(10), 2283–2290. DOI: 10.1021/sc500244f.
  • Yuan, H.; Deng, L.; Chen, Y.; Yuan, Y. MnO2/Polypyrrole/MnO2 Multi-Walled-Nanotube-Modified Anode for High-Performance Microbial Fuel Cells. Electrochim. Acta. 2016, 196, 280–285. DOI: 10.1016/j.electacta.2016.02.183.
  • Park, C.; Lee, E.; Lee, G.; Tak, Y. Superior Durability and Stability of Pt Electrocatalyst on N-Doped Graphene-TiO2 Hybrid Material for Oxygen Reduction Reaction and Polymer Electrolyte Membrane Fuel Cells. Appl. Catal. B. 2020, 268, 118414. DOI: 10.1016/j.apcatb.2019.118414.
  • Karuppanan, K. K.; Raghu, A. V.; Panthalingal, M. K.; Thiruvenkatam, V.; Karthikeyan, P.; Pullithadathil, B. 3D-Porous Electrocatalytic Foam Based on Pt@ N-Doped Graphene for High Performance and Durable Polymer Electrolyte Membrane Fuel Cells. Sustain. Ener. Fuels. 2019, 3(4), 996–1011. DOI: 10.1039/C8SE00552D.
  • Zhou, X.; Tang, S.; Yin, Y.; Sun, S.; Qiao, J. Hierarchical Porous N-Doped Graphene Foams with Superior Oxygen Reduction Reactivity for Polymer Electrolyte Membrane Fuel Cells. Appl. Energy. 2016, 175, 459–467. DOI: 10.1016/j.apenergy.2016.03.066.
  • González-Hernández, M.; Antolini, E.; Perez, J. CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Catalysts. 2020, 10(6), 597. DOI: 10.3390/catal10060597.
  • Ikram, R.; Mohamed Jan, B.; Atif Pervez, S.; Papadakis, V. M.; Ahmad, W.; Bushra, R.; Kenanakis, G.; Rana, M. Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review. Crystals. 2020, 10(12), 1080. DOI: 10.3390/cryst10121080.
  • Tian, S.; Zhu, G.; Tang, Y.; Xie, X.; Wang, Q.; Ma, Y.; Ding, G.; Xie, X. Three-Dimensional Cross-Linking Composite of Graphene, Carbon Nanotubes and Si Nanoparticles for Lithium Ion Battery Anode. Nanotechnology. 2018, 29(12), 125603. DOI: 10.1088/1361-6528/aaa84e.
  • Park, S. -H.; Kim, H. -K.; Ahn, D. -J.; Lee, S. -I.; Roh, K. C.; Kim, K. -B. Self-Assembly of Si Entrapped Graphene Architecture for High-Performance Li-Ion Batteries. Electrochem. Commun. 2013, 34, 117–120. DOI: 10.1016/j.elecom.2013.05.028.
  • Zhang, Y.; Cheng, Y.; Song, J.; Zhang, Y.; Shi, Q.; Wang, J.; Tian, F.; Yuan, S.; Su, Z.; Zhou, C., et al. Functionalization-Assistant Ball Milling Towards Si/Graphene Anodes in High Performance Li-Ion Batteries. Carbon. 2021, 181, 300–309. DOI: 10.1016/j.carbon.2021.05.024.
  • Xiong, D.; Li, X.; Bai, Z.; Shan, H.; Fan, L.; Wu, C.; Li, D.; Lu, S. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries. ACS Appl. Mater. Interfac. 2017, 9(12), 10643–10651. DOI: 10.1021/acsami.6b15872.
  • Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of Nitrogen-Doped Graphene Films for Lithium Battery Application. ACS Nano. 2010, 4(11), 6337–6342. DOI: 10.1021/nn101926g.
  • Na, R.; Liu, Y.; Wu, Z. P.; Cheng, X.; Shan, Z.; Zhong, C. J.; Tian, J. Nano-Silicon Composite Materials with N-Doped Graphene of Controllable and Optimal Pyridinic-To-Pyrrolic Structural Ratios for Lithium Ion Battery. Electrochim. Acta. 2019, 321, 134742. DOI: 10.1016/j.electacta.2019.134742.
  • Lian, Y.; Wang, D.; Hou, S.; Ban, C.; Zhao, J.; Zhang, H. Construction of T-Nb2O5 Nanoparticles On/In N-Doped Carbon Hollow Tubes for Li-Ion Hybrid Supercapacitors. Electrochim. Acta. 2020, 330, 135204. DOI: 10.1016/j.electacta.2019.135204.
  • Sun, F.; Gao, J.; Wu, H.; Liu, X.; Wang, L.; Pi, X.; Lu, Y. Confined Growth of Small ZnO Nanoparticles in a Nitrogen-Rich Carbon Framework: Advanced Anodes for Long-Life Li-Ion Batteries. Carbon. 2017, 113, 46–54. DOI: 10.1016/j.carbon.2016.11.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.