127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural design and development of multilayered polymeric nanofibrous membrane for multifaceted air filtration/purification applications

&
Pages 1435-1451 | Received 02 Feb 2023, Accepted 31 May 2023, Published online: 05 Jun 2023

References

  • Tran, V. V.; Park, D.; Lee, Y. C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020. 2020; 17(8): 2927. doi: 10.3390/ijerph17082927.
  • Zhang, H.; Xie, Y.; Song, Y.; Qin, X. Preparation of high-temperature resistant poly (M-Phenylene Isophthalamide)/Polyacrylonitrile composite nanofibers membrane for air filtration. Colloids Surf. A: Physicochem. Eng. 2021; 624: 126831. doi: 10.1016/j.colsurfa.2021.126831.
  • Lee, K.; Choi, J. H.; Lee, S.; Park, H. J.; Oh, Y. J.; Kim, G. B.; Lee, W. S.; Son, B. S. Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea. PLoS One. 2018; 13(6): e0197495. doi: 10.1371/journal.pone.0197495.
  • Niu, Z.; Bian, Y.; Xia, T.; Zhang, L.; Chen, C. An optimization approach for fabricating electrospun nanofiber air filters with minimized pressure drop for indoor PM2. 5 control. Build. Environ. 2021; 188: 107449. doi: 10.1016/j.buildenv.2020.107449.
  • Robert, B.; Nallathambi, G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review. Environ. Chem. Lett. 2021; 19(3): 2551–2579. doi: 10.1007/s10311-020-01168-6.
  • Robert, B.; Nallathambi, G. A concise review on electrospun Nanofibres/Nanonets for filtration of gaseous and solid constituents (PM2. 5) from polluted air. Colloids Interface Sci. Commun. 2020; 37: 100275. doi: 10.1016/j.colcom.2020.100275.
  • Nallathambi, G.; Vijayalakshmi, E.; Robert, B.; Srinivasan, N. R. Development of PAN nano fibrous filter hybridized by SiO 2 nanoparticles electret for high efficiency air filtration. J. Polym. Mater. 2018; 35(3): 317–328. doi: 10.32381/JPM.2018.35.03.6.
  • Kang, K.; Kim, T.; Shin, C. W.; Kim, K.; Kim, J.; Lee, Y. G. Filtration efficiency and ventilation performance of window screen filters. Build. Environ. 2020; 178: 106878. doi: 10.1016/j.buildenv.2020.106878.
  • Zhang, S.; Liu, H.; Yu, J.; Luo, W.; Ding, B. Microwave structured polyamide-6 Nanofiber/Net membrane with embedded poly (M-Phenylene Isophthalamide) staple fibers for effective ultrafine particle filtration. J. Mater. Chem. A. 2016; 4(16): 6149–6157. doi: 10.1016/j.buildenv.2020.106878.
  • Liu, B.; Zhang, S.; Wang, X.; Yu, J.; Ding, B. Efficient and reusable polyamide-56 Nanofiber/Nets Membrane with bimodal structures for air filtration. J. Colloid. Interface. Sci. 2015; 457: 203–211. doi: 10.1016/j.jcis.2015.07.019.
  • Wan, H.; Wang, N.; Yang, J.; Si, Y.; Chen, K.; Ding, B.; Sun, G.; El-Newehy, M.; Al-Deyab, S. S.; Yu, J. Hierarchically structured Polysulfone/Titania fibrous membranes with enhanced air filtration performance. J. Colloid. Interface. Sci. 2014; 417: 18–26. doi: 10.1016/j.jcis.2013.11.009.
  • Oh, H. J.; Pant, H. R.; Kang, Y. S.; Jeon, K. S.; Pant, B.; Kim, C. S.; Kim, H. Y. Synthesis and characterization of spider‐web‐like electrospun mats of meta‐aramid. Polym. Int. 2012; 61(11): 1675–1682. doi: 10.1002/pi.4260.
  • Wang, N.; Raza, A.; Si, Y.; Yu, J.; Sun, G.; Ding, B. Tortuously structured polyvinyl Chloride/Polyurethane fibrous membranes for high-efficiency fine particulate filtration. J. Colloid. Interface. Sci. 2013; 398: 240–246. doi: 10.1016/j.jcis.2013.02.019.
  • Lee, J.; Yoon, J.; Kim, J. H.; Lee, T.; Byun, H. Electrospun PAN–GO composite nanofibers as water purification membranes. J. Appl. Polym. Sci. 2018; 135(7): 45858. doi: 10.1002/app.45858.
  • Huang, J. J.; Tian, Y.; Wang, R.; Tian, M.; Liao, Y. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Sep. Purif. Technol. 2020; 237: 116377. doi: 10.1016/j.seppur.2019.116377.
  • Wang, M.; Wang, K.; Yang, Y.; Liu, Y.; Yu, D. G. Electrospun environment remediation nanofibers using unspinnable liquids as the sheath fluids: a review. Polym. 2020; 12(1): 103. doi: 10.3390/polym12010103.
  • Robert, B.; Nallathambi, G. Highly oriented poly (M-Phenylene Isophthalamide)/Polyacrylonitrile based coaxial nanofibers integrated with electrospun polyacrylonitrile-silver nanoparticle: application in air filtration of particulate and microbial contaminants. J. Appl. Polym. Sci. 2022; 139(23): 52294. doi: 10.1002/app.52294.
  • Zhang, S.; Liu, H.; Yin, X.; Li, Z.; Yu, J.; Ding, B. Tailoring mechanically robust poly (M-Phenylene Isophthalamide) Nanofiber/Nets for ultrathin high-efficiency air filter. Sci. Rep. 2017; 7(1): 1–11. doi: 10.1038/srep40550.
  • Robert, B.; Nallathambi, G. Tailoring mechanically robust nanofibrous membrane for PM2. 5-0.3 filtration and evaluating their behavior using response surface box–behnken design. Sep. Sci. Technol. 2022; 57(16): 1–13. doi: 10.1080/01496395.2022.2075757.
  • Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S. K.; Zhang, F., et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017; 302(1): 1600353. doi: 10.1002/mame.201600353.
  • Wang, N.; Si, Y.; Wang, N.; Sun, G.; El-Newehy, M.; Al-Deyab, S. S.; Ding, B. Multilevel structured Polyacrylonitrile/Silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 2014; 126: 44–51. doi: 10.1016/j.seppur.2014.02.017.
  • Varghese, A. M.; Karanikolos, G. N. CO2 capture adsorbents functionalized by amine–bearing polymers: a review. Int. J. Greenh. Gas Control. 2020; 96: 103005. doi: 10.1016/j.ijggc.2020.103005.
  • Zhang, D.; Zhang, M.; Ding, F.; Liu, W.; Zhang, L.; Cui, L. Efficient removal of formaldehyde by polyethyleneimine modified activated carbon in a fixed bed. Environ. Sci. Pollut. Res. 2020; 27(15): 18109–18116. doi: 10.1007/s11356-020-08019-5.
  • Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J. Mater. Chem. B. 2020; 8(15): 2951–2973. doi: 10.1039/C9TB02271F.
  • Wang, X.; Ding, B.; Sun, M.; Yu, J.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B: Chem. 2010; 144: 11–17. doi: 10.1016/j.snb.2009.08.023.
  • Robert, B.; Nallathambi, G. Molecular entrapment of formaldehyde and filtering particulate matter using electrospun Polyacrylonitrile/Polyethylenimine nanofibers. J. Polym. Res. 2022; 29(12): 1–13. doi: 10.1007/s10965-022-03341-7.
  • Bhui, D. K.; Bar, H.; Sarkar, P.; Sahoo, G. P.; De, S. P.; Misra, A. Synthesis and UV–Vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J. Mol. Liq. 2009; 145(1): 33–37. doi: 10.1016/j.molliq.2008.11.014.
  • Souzandeh, H.; Wang, Y.; Zhong, W. H. “Green” nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. R.S.C. Adv. 2016; 6(107): 105948–105956. doi: 10.1039/C6RA24512A.
  • Wang, S.; Zhao, X.; Yin, X.; Yu, J.; Ding, B. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl. Mater. Interfaces. 2016; 8(36): 23985–23994. doi: 10.1021/acsami.6b08262.
  • Zhang, S.; Tang, N.; Cao, L.; Yin, X.; Yu, J.; Ding, B. Highly integrated Polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles. ACS Appl. Mater. Interfaces. 2016; 8(42): 29062–29072. doi: 10.1021/acsami.6b10094.
  • Souzandeh, H.; Johnson, K. S.; Wang, Y.; Bhamidipaty, K.; Zhong, W. H. Soy-Protein-Based nanofabrics for highly efficient and multifunctional air filtration. ACS Appl. Mater. Interfaces. 2016; 8(31): 20023–20031. doi: 10.1021/acsami.6b05339.
  • Noreña-Caro, D.; Álvarez-Láinez, M. Functionalization of polyacrylonitrile nanofibers with β-Cyclodextrin for the capture of formaldehyde. Mater. Des. 2016; 95: 632–640. doi: 10.1016/j.matdes.2016.01.106.
  • Celebioglu, A.; Sen, H. S.; Durgun, E.; Uyar, T. Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere. 2016; 144: 736–744. doi: 10.1016/j.chemosphere.2015.09.029.
  • Zhu, M.; Hua, D.; Pan, H.; Wang, F.; Manshian, B.; Soenen, S. J.; Xiong, R.; Huang, C. Green electrospun and crosslinked poly (Vinyl Alcohol)/Poly (Acrylic Acid) composite membranes for antibacterial effective air filtration. J. Colloid. Interface. Sci. 2018; 511: 411–423. 2018. doi: 10.1016/j.jcis.2017.09.101.
  • Nallathambi, G.; Robert, B.; Esmeralda, S. P.; Kumaravel, J.; Parthiban, V. Development of SPI/AC/PVA Nano-Composite for Air-Filtration and purification. Res. J. Text. Appar. 2019; 24(1): 72–83. 2019. doi: 10.1108/RJTA-09-2019-0044.
  • Patil, N. A.; Gore, P. M.; Prakash, N. J.; Govindaraj, P.; Yadav, R.; Verma, V.; Shanmugarajan, D.; Patil, S.; Kore, A.; Kandasubramanian, B. Needleless electrospun phytochemicals encapsulated nanofibre based 3-Ply biodegradable mask for combating COVID-19 pandemic. Chem. Eng. J. 2021; 416: 129152. doi: 10.1016/j.cej.2021.129152.
  • Zhu, Z.; Zhang, Y.; Bao, L.; Chen, J.; Duan, S.; Chen, S. C.; Xu, P.; Wang, W. N. Self-Decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation. Environ. Sci. 2021; 8(4): 1081–1095. doi: 10.1039/D0EN01230K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.