455
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Molecularly Imprinted Polymers as Bioreceptors in Electrochemical Biosensor (ECBS) for Cholesterol Detection

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1477-1497 | Received 24 Mar 2023, Accepted 31 May 2023, Published online: 11 Jun 2023

References

  • Ertürk, G.; Mattiasson, B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors. 2017, 17(2), 288. DOI: https://doi.org/10.3390/s17020288.
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2018, 119(1), 94–119. DOI: https://doi.org/10.1021/acs.chemrev.8b00171.
  • Guan, G.; Liu, B.; Wang, Z.; Zhang, Z. Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors. 2008, 8(12), 8291–8320. DOI: https://doi.org/10.3390/s8128291.
  • Piletsky, S.; Piletsky, S.; Chianella, I. MIP-Based Sensors. Molecularly Imprinted Sensors. 2012, 339–354. DOI: https://doi.org/10.1016/b978-0-444-56331-6.00014-1.
  • Malhotra, B. D.; Ali, M. A. Nanomaterials in Biosensors. Nanomater. Biosensors. 2018, 1–74. DOI: https://doi.org/10.1016/b978-0-323-44923-6.00001-7.
  • Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical Sensor Based on Molecularly Imprinted Film at Au Nanoparticles-Carbon Nanotubes Modified Electrode for Determination of Cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. DOI: https://doi.org/10.1016/j.bios.2014.12.014.
  • Li, W.; Wang, F.; Shi, Y.; Yu, L. Polyaniline-Supported Tungsten-Catalyzed Oxidative Deoximation Reaction with High Catalyst Turnover Number. Chin. Chem. Lett. 2023, 34(1), 107505. DOI: https://doi.org/10.1016/j.cclet.2022.05.019.
  • Wang, L.; Gan, M.; Ma, L.; Hua, X.; Li, X.; Zhao, W.; Zhang, Y. One-Step Preparation of Polyaniline-Modified Three-Dimensional Multilayer Graphene Supported PtFeox for Methanol Oxidation. Synth. Met. 2022, 287, 117068. DOI: https://doi.org/10.1016/j.synthmet.2022.117068.
  • Lei, C.; Zhou, Z.; Chen, W.; Xie, J.; Huang, B. Polypyrrole Supported Pd/Fe Bimetallic Nanoparticles with Enhanced Catalytic Activity for Simultaneous Removal of 4-Chlorophenol and Cr(vi). Sci. Total Environ. 2022, 831, 154754. DOI: https://doi.org/10.1016/j.scitotenv.2022.154754.
  • Lera, I. L.; Khasnabis, S.; Wangatia, L. M.; Femi, O. E.; Ramamurthy, P. C. An Innovative Catalyst of PdNip Nanosphere Deposited PEDOT: PSS/rGO Hybrid Material as an Efficient Electrocatalyst for Alkaline Urea Oxidation. Polym. Bull. 2022, 80(2), 1265–1283. DOI: https://doi.org/10.1007/s00289-022-04100-w.
  • Xie, S.; Deng, L.; Huang, H.; Yuan, J.; Xu, J.; Yue, R. One-Pot Synthesis of Porous Pd-Polypyrrole/nitrogen-Doped Graphene Nanocomposite as Highly Efficient Catalyst for Electrooxidation of Alcohols. J. Coll. Interf. Sci. 2022, 608, 3130–3140. DOI: https://doi.org/10.1016/j.jcis.2021.11.039.
  • Sun, Y.; Hu, C.; Cui, J.; Shen, S.; Qiu, H.; Li, J. Electrodeposition of Polypyrrole Coatings Doped by Benzenesulfonic Acid-Modified Graphene Oxide on Metallic Bipolar Plates. Prog. Org. Coat. 2022, 170, 106995. DOI: https://doi.org/10.1016/j.porgcoat.2022.106995.
  • Han, R.; He, H.; Liu, X.; Zhao, L.; Yang, Y.; Liu, C.; Zeng, R.-C. Anti–Corrosion and Self-Healing Coatings with Polyaniline/Epoxy Copolymer–Urea–Formaldehyde Microcapsules for Rusty Steel Sheets. J. Coll. Interf. Sci. 2022, 616, 605–617. DOI: https://doi.org/10.1016/j.jcis.2022.02.088.
  • Wu, K.; Gui, T.; Dong, J.; Luo, J.; Liu, R. Synthesis of Robust Polyaniline Microcapsules via UV-Initiated Emulsion Polymerization for Self-Healing and Anti-Corrosion Coating. Prog. Org. Coat. 2022, 162, 106592. DOI: https://doi.org/10.1016/j.porgcoat.2021.106592.
  • Mobin, M.; Ansar, F. Polythiophene (PTh)–TiO2–Reduced Graphene Oxide (rGO) Nanocomposite Coating: Synthesis, Characterization, and Corrosion Protection Performance on Low-Carbon Steel in 3.5 Wt % NaCl Solution. ACS Omega. 2022, 7(50), 46717–46730. DOI: https://doi.org/10.1021/acsomega.2c05678.
  • Naysmith, A.; Mian, N. S.; Rana, S. Development of Conductive Textile Fabric Using Plackett–Burman Optimized Green Synthesized Silver Nanoparticles and in situ Polymerized Polypyrrole. Green Chem. Lett. Rev. 2022, 16(1), 16. DOI: https://doi.org/10.1080/17518253.2022.2158690.
  • Zhou, X.; Hu, C.; Lin, X.; Han, X.; Zhao, X.; Hong, J. Polyaniline-Coated Cotton Knitted Fabric for Body Motion Monitoring. Sens. Actuators A Phys. 2021, 321, 112591. DOI: https://doi.org/10.1016/j.sna.2021.112591.
  • Amorim, D. R. B.; Bellucci, F. S.; Job, A. E.; Guimarães, I. D. S.; da Cunha, H. N. Electrical, Structural and Thermal Properties of New Conductive Blends (PANICG) Based on Polyaniline and Cashew Gum for Organic Electronic. J. Therm. Anal. Calorim. 2018, 136(4), 1615–1629. DOI: https://doi.org/10.1007/s10973-018-7778-6.
  • Rebelo, A. M. R.; Liu, Y.; Liu, C.; Schäfer, K.-H.; Saumer, M.; Yang, G. Carbon Nanotube-Reinforced Poly(4-Vinylaniline)/polyaniline Bilayer-Grafted Bacterial Cellulose for Bioelectronic Applications. ACS Biomater. Sci. Eng. 2019, 5(5), 2160–2172. DOI: https://doi.org/10.1021/acsbiomaterials.9b00039.
  • Yang, X.; Cao, L.; Wang, J.; Chen, L. Sandwich-Like Polypyrrole/Reduced Graphene Oxide Nanosheets Integrated Gelatin Hydrogel as Mechanically and Thermally Sensitive Skinlike Bioelectronics. ACS Sustain. Chem. Eng. 2020. DOI: https://doi.org/10.1021/acssuschemeng.0c01998.
  • Halium, E. M. F. A. E.; Mansour, H.; Alrasheedi, N. F. H.; Al-Hossainy, A. F. High-Performance One and Two-Dimensional Doped Polypyrrole Nanostructure for Polymer Solar Cells Applications. J. Mater. Sci.: Mater. Electron. 2022, 33(13), 10165–10182. DOI: https://doi.org/10.1007/s10854-022-08006-1.
  • Khasim, S.; Pasha, A.; Lakshmi, M.; Chellasamy, P.; Kadarkarai, M.; Darwish, A. A. A.; Hamdalla, T. A.; Al-Ghamdi, S. A.; Alfadhli, S. Post Treated PEDOT-PSS Films with Excellent Conductivity and Optical Properties as Multifunctional Flexible Electrodes for Possible Optoelectronic and Energy Storage Applications. Opt. Mater. 2022, 125, 112109. DOI: https://doi.org/10.1016/j.optmat.2022.112109.
  • Fu, M.; Zhuang, Q.; Yu, H.; Chen, W. MnCo2s4 Nanosheet Arrays Modified with Vermicular Polypyrrole for Advanced Free-Standing Flexible Electrodes. Electrochim. Acta. 2023, 447, 142167. DOI: https://doi.org/10.1016/j.electacta.2023.142167.
  • Solazzo, M.; Monaghan, M. G. Structural Crystallisation of Crosslinked 3D PEDOT: PSS Anisotropic Porous Biomaterials to Generate Highly Conductive Platforms for Tissue Engineering Applications. Biomater. Sci. 2021, 9(12), 4317–4328. DOI: https://doi.org/10.1039/d0bm02123g.
  • Zhou, J.; Thaiboonrod, S.; Fang, J.; Cao, S.; Miao, M.; Feng, X. In-Situ Growth of Polypyrrole on Aramid Nanofibers for Electromagnetic Interference Shielding Films with High Stability. Nano Res. 2022, 15(9), 8536–8545. DOI: https://doi.org/10.1007/s12274-022-4628-4.
  • Zou, L.; Lan, C.; Yang, L.; Xu, Z.; Chu, C.; Liu, Y.; Qiu, Y. The Optimization of Nanocomposite Coating with Polyaniline Coated Carbon Nanotubes on Fabrics for Exceptional Electromagnetic Interference Shielding. Diamond Relat. Mater. 2020, 104, 107757. DOI: https://doi.org/10.1016/j.diamond.2020.107757.
  • Ahamed, M. I.; Inamuddin; Asiri, A. M.; Luqman, M.; Lutfullah. Preparation, Physicochemical Characterization, and Microrobotics Applications of Polyvinyl Chloride- (PVC-) Based PANI/PEDOT: PSS/ZrP Composite Cation-Exchange Membrane. Adv. Mater. Sci. Eng. 2019, 2019, 1–11. DOI: https://doi.org/10.1155/2019/4764198.
  • George, P. M.; LaVan, D. A.; Burdick, J. A.; Chen, C.-Y.; Liang, E.; Langer, R. Electrically Controlled Drug Delivery from Biotin-Doped Conductive Polypyrrole. Adv.Mate. 2006, 18(5), 577–581. DOI: https://doi.org/10.1002/adma.200501242.
  • Saltan, F.; Murat Saltan, G. Preparation of Expanded-Graphite Reinforced Poly(Vinyl Alcohol)/Polyvinyl Pyrrolidone/Poly(Acrylic Acid-Co-Maleic Acid) Hydrogel Films, Investigation of Swelling, Metal Adsorption, and Thermal Properties. Polym. Plast. Technol. Eng. 2023, 62(8), 960–973. DOI: https://doi.org/10.1080/25740881.2023.2175221.
  • Karthikeyan, M.; Satheesh Kumar, K. K.; Elango, K. P. Conducting Polymer/Alumina Composites as Viable Adsorbents for the Removal of Fluoride Ions from Aqueous Solution. J. Fluorine Chem. 2009, 130(10), 894–901. DOI: https://doi.org/10.1016/j.jfluchem.2009.06.024.
  • Li, B.; Sun, D.; Li, B.; Tang, W.; Ren, P.; Yu, J.; Zhang, J. One-Step Electrochemically Prepared Graphene/Polyaniline Conductive Filter Membrane for Permeation Enhancement by Fouling Mitigation. Langmuir. 2020, 36(9), 2209–2222. DOI: https://doi.org/10.1021/acs.langmuir.9b03114.
  • Kandulna, R.; Choudhary, R. B.; Singh, R. Free Exciton Absorptions and Quasi-Reversible Redox Actions in Polypyrrole–Polyaniline–Zinc Oxide Nanocomposites as Electron Transporting Layer for Organic Light Emitting Diode and Electrode Material for Supercapacitors. J. Inorg. Organomet. Polym. 2019, 29(3), 730–744. DOI: https://doi.org/10.1007/s10904-018-1047-9.
  • Choi, J.; Lee, J.; Lim, J.; Park, S.; Piao, Y. PEDOT/Cobalt Hexacyanoferrate Free-Standing Films for High-Performance Quasi-Solid-State Asymmetric Supercapacitor. J. Alloys Compound. 2022, 914, 165365. DOI: https://doi.org/10.1016/j.jallcom.2022.165365.
  • Zhu, Y.; Xu, H.; Chen, P.; Bao, Y.; Jiang, X.; Chen, Y. Electrochemical Performance of Polyaniline-Coated γ-MnO2 on Carbon Cloth as Flexible Electrode for Supercapacitor. Electrochim. Acta. 2022, 413, 140146. DOI: https://doi.org/10.1016/j.electacta.2022.140146.
  • Wang, H.; Xie, Y. Hydrogen Bond Enforced Polyaniline Grown on Activated Carbon Fibers Substrate for Wearable Bracelet Supercapacitor. J. Energy Storage. 2022, 52, 105042. DOI: https://doi.org/10.1016/j.est.2022.105042.
  • Farea, M. A.; Bhanuse, G. B.; Mohammed, H. Y.; Farea, M. O.; Sallam, M.; Shirsat, S. M.; Tsai, M.-L.; Shirsat, M. D. Ultrahigh Sensitive and Selective Room-Temperature Carbon Monoxide Gas Sensor Based on Polypyrrole/Titanium Dioxide Nanocomposite. J. Alloys Compound. 2022, 917, 165397. DOI: https://doi.org/10.1016/j.jallcom.2022.165397.
  • Ahmed, J.; Faisal, M.; Jalalah, M.; Alsareii, S. A.; Harraz, F. A. Novel Polypyrrole-Carbon Black Doped ZnO Nanocomposite for Efficient Amperometric Detection of Hydroquinone. J. Electroanal. Chem. 2021, 898, 115631–115631. DOI: https://doi.org/10.1016/j.jelechem.2021.115631.
  • Kaladevi, G.; Wilson, P.; Pandian, K. Silver Nanoparticle–Decorated PANI/Reduced Graphene Oxide for Sensing of Hydrazine in Water and Inhibition Studies on Microorganism. Ionics. 2020, 26(6), 3123–3133. DOI: https://doi.org/10.1007/s11581-020-03457-0.
  • Abdallah, A. B.; Ghaith, E. A.; Mortada, W. I.; Fathi Salem Molouk, A. Electrochemical Sensing of Sodium Dehydroacetate in Preserved Strawberries Based Onin Situ Pyrrole Electropolymerization at Modified Carbon Paste Electrodes. Food Chem. 2023, 401, 134058. DOI: https://doi.org/10.1016/j.foodchem.2022.134058.
  • Poudel, A.; Shyam Sunder, G. S.; Rohanifar, A.; Adhikari, S.; Kirchhoff, J. R. Electrochemical Determination of Pb2+ and Cd2+ with a Poly(Pyrrole-1-Carboxylic Acid) Modified Electrode. J. Electroanal. Chem. 2022, 911, 116221. DOI: https://doi.org/10.1016/j.jelechem.2022.116221.
  • Yin, F.; Mo, Y.; Liu, X.; Yang, H.; Zhou, D.; Cao, H.; Ye, T.; Xu, F. An Ultra-Sensitive and Selective Electrochemical Sensor Based on GOCS Composite and Ion Imprinted Polymer for the Rapid Detection of Cd2+ in Food Samples. Food Chem. 2023, 410, 135293–135293. DOI: https://doi.org/10.1016/j.foodchem.2022.135293.
  • Rebolledo-Perales, L. E.; Ibarra, I. S.; Franco Guzman, M.; Islas Guerrero, G.; Álvarez, A. A Novel Ion-Imprinted Polymer Based on Pyrrole as Functional Monomer for the Voltammetric Determination of Hg(II) in Water Samples. Electrochim. Acta. 2022, 434, 141258–141258. DOI: https://doi.org/10.1016/j.electacta.2022.141258.
  • Al-Graiti, W.; Foroughi, J.; Liu, Y.; Chen, J. Hybrid Graphene/Conducting Polymer Strip Sensors for Sensitive and Selective Electrochemical Detection of Serotonin. ACS Omega. 2019, 4(26), 22169–22177. DOI: https://doi.org/10.1021/acsomega.9b03456.
  • Harraz, F. A.; Faisal, M.; Jalalah, M.; Almadiy, A. A.; Al-Sayari, S. A.; Al-Assiri, M. S. Conducting Polythiophene/α-Fe2O3 Nanocomposite for Efficient Methanol Electrochemical Sensor. Appl. Surf. Sci. 2020, 508, 145226–145226. DOI: https://doi.org/10.1016/j.apsusc.2019.145226.
  • Matar, H. A.; Ibrahim, M. A.; El-Hagary, M. Simple and Cost-Effective Route for PANI-ZnO-RGO Nanocomposite as a Biosensor for L-Arginine Detection. Diamond Relat. Mater. 2023, 133, 109703–109703. DOI: https://doi.org/10.1016/j.diamond.2023.109703.
  • Hryniewicz, B. M.; Volpe, J.; Bach-Toledo, L.; Kurpel, K. C.; Deller, A. E.; Paula Soares, A.; Marie Nardin, J.; Pitchaimuthu, S.; Fogagnoli Simas, F.; Oliveira, C. G., et al. Development of Polypyrrole (Nano)Structures Decorated with Gold Nanoparticles toward Immunosensing for COVID-19 Serological Diagnosis. Mater. Today Chem. 2022, 24, 100817–100817. DOI: https://doi.org/10.1016/j.mtchem.2022.100817.
  • Faisal Umar, M.; Nasar, A.; Reddy, C. V. Polythiophene/Multiwalled Carbon Nanotubes/Nitrate Reductase Deposited Glassy Carbon Electrode (GCE/PTH/MWCNT/NR): A Novel Biosensor for the Detection of Nitrate in Aqueous Solution. Water Supply. 2022, 22(11), 8023–8035. DOI: https://doi.org/10.2166/ws.2022.334.
  • Nurdin, M.; Arham, Z.; Ode Irna, W.; Maulidiyah, M.; Kurniawan, K.; Salim, L. O. A.; Irwan, I.; Ali Umar, A. Enhanced-Charge Transfer over Molecularly Imprinted Polyaniline Modified Graphene/TiO2 Nanocomposite Electrode for Highly Selective Detection of Fipronil Insecticide. Mater. Sci. Semicond. Process. 2022, 151, 106994–106994. DOI: https://doi.org/10.1016/j.mssp.2022.106994.
  • Nguyen, D.-H.-N.; Le, Q.-H.; Nguyen, T.-L.; Dinh, V.-T.; Nguyen, H.-N.; Pham, H.-N.; Nguyen, T.-A.; Nguyen, L.-L.; Dinh, T.-M.-T.; Nguyen, V.-Q. Electrosynthesized Nanostructured Molecularly Imprinted Polymer for Detecting Diclofenac Molecule. J. Electroanal. Chem. 2022, 921, 116709. DOI: https://doi.org/10.1016/j.jelechem.2022.116709.
  • Cho, S. J.; Noh, H.-B.; Won, M.-S.; Cho, C.-H.; Kim, K. B.; Shim, Y.-B. A Selective Glucose Sensor Based on Direct Oxidation on a Bimetal Catalyst with a Molecular Imprinted Polymer. Biosens. Bioelectron. 2018, 99, 471–478. DOI: https://doi.org/10.1016/j.bios.2017.08.022.
  • Tong, Y.; Li, H.; Guan, H.; Zhao, J.; Majeed, S.; Anjum, S.; Liang, F.; Xu, G. Electrochemical Cholesterol Sensor Based on Carbon Nanotube@molecularly Imprinted Polymer Modified Ceramic Carbon Electrode. Biosens. Bioelectron. 2013, 47, 553–558. DOI: https://doi.org/10.1016/j.bios.2013.03.072.
  • El-Schich, Z.; Abdullah, M.; Shinde, S.; Dizeyi, N.; Rosén, A.; Sellergren, B.; Wingren, A. G. Different Expression Levels of Glycans on Leukemic Cells—a Novel Screening Method with Molecularly Imprinted Polymers (MIP) Targeting Sialic Acid. Tumor Biol. 2016, 37(10), 13763–13768. DOI: https://doi.org/10.1007/s13277-016-5280-y.
  • Soliman, G. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients. 2018, 10(6), 780. DOI: https://doi.org/10.3390/nu10060780.
  • Friedewald, W. T.; Levy, R. I.; Fredrickson, D. S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18(6), 499–502. PubMed ID: 4337382. DOI: 10.1093/clinchem/18.6.499.
  • Gouvea, C. Biosensors for Health Applications. Biosensors for Health, Environment and Biosecurity. 2011. DOI: https://doi.org/10.5772/16983.
  • Chen, A.; Zhang, J.; Zhao, L.; Rhoades, R. D.; Kim, D.-Y.; Wu, N.; Liang, J.; Chae, J. Machine-Learning Enabled Wireless Wearable Sensors to Study Individuality of Respiratory Behaviors. Biosens. Bioelectron. 2021, 173, 112799. DOI: https://doi.org/10.1016/j.bios.2020.112799.
  • Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60(1), 1–8. DOI: https://doi.org/10.1042/ebc20150001.
  • Alagappan, M.; Immanuel, S.; Sivasubramanian, R.; Kandaswamy, A. Development of Cholesterol Biosensor Using Au Nanoparticles Decorated F-MWCNT Covered with Polypyrrole Network. Arabian J. Chem. 2020, 13(1), 2001–2010. DOI: https://doi.org/10.1016/j.arabjc.2018.02.018.
  • Yıldırımoğlu, F.; Arslan, F.; Çete, S.; Yaşar, A. Preparation of a Polypyrrole-Polyvinylsulphonate Composite Film Biosensor for Determination of Cholesterol Based on Entrapment of Cholesterol Oxidase. Sensors. 2009, 9(8), 6435–6445. DOI: https://doi.org/10.3390/s90806435.
  • Arya, S. K.; Datta, M.; Malhotra, B. D. Recent Advances in Cholesterol Biosensor. Biosens. Bioelectron. 2008, 23(7), 1083–1100. DOI: https://doi.org/10.1016/j.bios.2007.10.018.
  • Pollegioni, L.; Wels, G.; Pilone, M. S.; Ghisla, S. Kinetic Mechanisms of Cholesterol Oxidase from Streptomyces Hygroscopicus and Brevibacterium Sterolicum. Eur.J. Biochem. 1999, 264(1), 140–151. DOI: https://doi.org/10.1046/j.1432-1327.1999.00586.x.
  • Kieslich, K. Industrial Aspects of Biotechnoloqical Production of Steroids. Biotechnol. Lett. 1980, 2(5), 211–217. DOI: https://doi.org/10.1007/bf01209435.
  • Ahmad, S.; Roy, P. K.; Basu, S. K.; Johri, B. N. Cholesterol side-chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133. Indian J. Exp. Biol. 1993, 31(4), 319–322.
  • Molchanova, M. A.; Andryushina, V. A.; Savinova, T. S.; Stytsenko, T. S.; Rodina, N. V.; Voishvillo, N. E. Preparation of Androsta-1,4-Diene-3,17-Dione from Sterols Using Mycobacterium Neoaurum VKPM Ac-1656 Strain. Russ. J. Bioorg. Chem. 2007, 33(3), 354–358. DOI: https://doi.org/10.1134/s1068162007030132.
  • Ali, M. A.; Singh, N.; Srivastava, S.; Agrawal, V. V.; John, R.; Onoda, M.; Malhotra, B. D. Chitosan-Modified Carbon Nanotubes-Based Platform for Low-Density Lipoprotein Detection. Appl. Biochem. Biotechnol. 2014, 174(3), 926–935. DOI: https://doi.org/10.1007/s12010-014-1179-5.
  • Rudewicz-Kowalczyk, D.; Grabowska, I. Detection of Low Density Lipoprotein—Comparison of Electrochemical Immuno- and Aptasensor. Sensors. 2021, 21(22), 7733. DOI: https://doi.org/10.3390/s21227733.
  • Chauhan, R.; Solanki, P. R.; Singh, J.; Mukherjee, I.; Basu, T.; Malhotra, B. D. A Novel Electrochemical Piezoelectric Label Free Immunosensor for Aflatoxin B1 Detection in Groundnut. Food Control. 2015, 52, 60–70. DOI: https://doi.org/10.1016/j.foodcont.2014.12.009.
  • Sonuç, M. N.; Sezgintürk, M. K. Ultrasensitive Electrochemical Detection of Cancer Associated Biomarker HER3 Based on Anti-HER3 Biosensor. Talanta. 2014, 120, 355–361. DOI: https://doi.org/10.1016/j.talanta.2013.11.090.
  • Cebula, Z.; Żołędowska, S.; Dziąbowska, K.; Skwarecka, M.; Malinowska, N.; Białobrzeska, W.; Czaczyk, E.; Siuzdak, K.; Sawczak, M.; Bogdanowicz, R., et al. Detection of the Plant Pathogen Pseudomonas Syringae Pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy. Sensors. 2019, 19(24), 5411.
  • Matharu, Z.; Sumana, G.; Gupta, V.; Malhotra, B. D. Langmuir–Blodgett Films of Polyaniline for Low Density Lipoprotein Detection. Thin Solid films. 2010, 519(3), 1110–1114. DOI: https://doi.org/10.1016/j.tsf.2010.08.053.
  • Dervisevic, M.; Çevik, E.; Şenel, M.; Nergiz, C.; Abasiyanik, M. F. Amperometric Cholesterol Biosensor Based on Reconstituted Cholesterol Oxidase on Boronic Acid Functional Conducting Polymers. J. Electroanal. Chem. 2016, 776, 18–24. DOI: https://doi.org/10.1016/j.jelechem.2016.06.033.
  • Ahmad, M.; Pan, C.; Gan, L.; Nawaz, Z.; Zhu, J. Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres. J. Phys. Chem. C. 2010, 114(1), 243–250. DOI: https://doi.org/10.1021/jp9089497.
  • Li, G.; Zeng, J.; Zhao, L.; Wang, Z.; Dong, C.; Liang, J.; Zhou, Z.; Huang, Y. Amperometric Cholesterol Biosensor Based on Reduction Graphene Oxide-Chitosan-Ferrocene/Platinum Nanoparticles Modified Screen-Printed Electrode. J. Nanopart. Res. 2019, 21(7), 21. DOI: https://doi.org/10.1007/s11051-019-4602-6.
  • Tığ, G. A.; Zeybek, D. K.; Pekyardımcı, Ş. Fabrication of Amperometric Cholesterol Biosensor Based on SnO2 Nanoparticles and Nafion-Modified Carbon Paste Electrode. Chem. Pap. 2016, 70(6), 70. DOI: https://doi.org/10.1515/chempap-2016-0005.
  • Psychoyios, V. N.; Nikoleli, G.-P.; Tzamtzis, N.; Nikolelis, D. P.; Psaroudakis, N.; Danielsson, B.; Israr, M. Q.; Willander, M. Potentiometric Cholesterol Biosensor Based on ZnO Nanowalls and Stabilized Polymerized Lipid Film. Electroanalysis. 2012, 25(2), 367–372. DOI: https://doi.org/10.1002/elan.201200591.
  • Israr, M. Q.; Sadaf, J. R.; Asif, M. H.; Nur, O.; Willander, M.; Danielsson, B. Potentiometric Cholesterol Biosensor Based on ZnO Nanorods Chemically Grown on Ag Wire. Thin Solid films. 2010, 519(3), 1106–1109. DOI: https://doi.org/10.1016/j.tsf.2010.08.052.
  • Assaifan, A. K.; Alqahtani, F. A.; Alnamlah, S.; Almutairi, R.; Alkhammash, H. I. Detection and Real-Time Monitoring of LDL-Cholesterol by Redox-Free Impedimetric Biosensors. BioChip J. 2022, 16(2), 197–206. DOI: https://doi.org/10.1007/s13206-022-00058-z.
  • Singh, K.; Chauhan, R.; Solanki, P. R.; Basu, T. Development of Impedimetric Biosensor for Total Cholesterol Estimation Based on Polypyrrole and Platinum Nanoparticle Multi Layer Nanocomposite. IJOC. 2013, 03(04), 262–274. DOI: https://doi.org/10.4236/ijoc.2013.34038.
  • Derina, K. V.; Korotkova, E. I.; Dorozhko, E. V.; Voronova, O. A.; Vishenkova, D. A. Voltammetric Sensor for Total Cholesterol Determination. Procedia Chem. 2014, 10, 513–518. DOI: https://doi.org/10.1016/j.proche.2014.10.087.
  • Mokwebo, K.; Oluwafemi, O.; Arotiba, O. An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer. Sensors. 2018, 18(10), 3368. DOI: https://doi.org/10.3390/s18103368.
  • Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified Graphene Based Molecular Imprinted Polymer for Electrochemical Non-Enzymatic Cholesterol Biosensor. Eur. Polym. J. 2017, 86, 106–116. DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.024.
  • Julita, E.; Ulianas, A.; Ahmad, M. S.; Isa, I. M.; Yulkifli; Ling, T. L.; Yolanda, Y.; Nurlely; Rezayi, M. MOLECULARLY IMPRINTED POLYMERIC MICROSPHERES FOR ELECTROCHEMICAL SENSING OF CHOLESTEROL. RJC. 2021, 14(03), 14. DOI: https://doi.org/10.31788/rjc.2021.1436251.
  • Jalalvand, A. R. Fabrication of a Novel Molecularly Imprinted Biosensor Assisted by Multi-Way Calibration for Simultaneous Determination of Cholesterol and Cholestanol in Serum Samples. Chemom. Intell. Lab. Syst. 2022, 226, 104587. DOI: https://doi.org/10.1016/j.chemolab.2022.104587.
  • Lusina, A.; Cegłowski, M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers. 2022, 14(3), 640. DOI: https://doi.org/10.3390/polym14030640.
  • Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40(5), 2922. DOI: https://doi.org/10.1039/c0cs00084a.
  • Yan, H.; Row, K. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int. J. Mol. Sci. 2006, 7(5), 155–178. DOI: https://doi.org/10.3390/i7050155.
  • Wang, S.; Xu, J.; Tong, Y.; Wang, L.; He, C. Cholesterol-Imprinted Polymer Receptor Prepared by a Hybrid Imprinting Method. Polym. Int. 2005, 54(9), 1268–1274. DOI: https://doi.org/10.1002/pi.1841.
  • Yang, H.; Li, L.; Ding, Y.; Ye, D.; Wang, Y.; Cui, S.; Liao, L. Molecularly Imprinted Electrochemical Sensor Based on Bioinspired Au Microflowers for Ultra-Trace Cholesterol Assay. Biosens. Bioelectron. 2017, 92, 748–754. DOI: https://doi.org/10.1016/j.bios.2016.09.081.
  • Jalalvand, A. R.; Zangeneh, M. M.; Jalili, F.; Soleimani, S.; Díaz-Cruz, J. M. An Elegant Technology for Ultrasensitive Impedimetric and Voltammetric Determination of Cholestanol Based on a Novel Molecularly Imprinted Electrochemical Sensor. Chem. Phys. Lipids. 2020, 229, 104895. DOI: https://doi.org/10.1016/j.chemphyslip.2020.104895.
  • Yarman, A.; Scheller, F. W. How Reliable Is the Electrochemical Readout of MIP Sensors?. Sensors. 2020, 20(9), 2677. DOI: https://doi.org/10.3390/s20092677.
  • Rezaei, B.; Foroughi-Dehnavi, S.; Ensafi, A. A. Fabrication of Electrochemical Sensor Based on Molecularly Imprinted Polymer and Nanoparticles for Determination Trace Amounts of Morphine. Ionics. 2015, 21(10), 2969–2980. DOI: https://doi.org/10.1007/s11581-015-1458-3.
  • Salajegheh, M.; Kazemipour, M.; Foroghi, M. M.; Ansari, M. Morphine Sensing by a Green Modified Molecularly Imprinted Poly L-Lysine/Sodium Alginate-Activated Carbon/Glassy Carbon Electrode Based on Computational Design. Electroanalysis. 2018, 31(3), 468–476. DOI: https://doi.org/10.1002/elan.201800395.
  • Li, J.; Jiang, F.; Li, Y.; Chen, Z. Fabrication of an Oxytetracycline Molecular-Imprinted Sensor Based on the Competition Reaction via a GOD-Enzymatic Amplifier. Biosens. Bioelectron. 2011, 26(5), 2097–2101. DOI: https://doi.org/10.1016/j.bios.2010.09.013.
  • Anirudhan, T. S.; Deepa, J. R.; Binussreejayan. Electrochemical Sensing of Cholesterol by Molecularly Imprinted Polymer of Silylated Graphene Oxide and Chemically Modified Nanocellulose Polymer. Mater. Sci. Eng. C. 2018, 92, 942–956. DOI: https://doi.org/10.1016/j.msec.2018.07.041.
  • Holland, E. R.; Pomfret, S. J.; Adams, P. N.; Monkman, A. P. Conductivity Studies of Polyaniline Doped with CSA. J. Phys. Condens. Matter. 1996, 8(17), 2991–3002. DOI: https://doi.org/10.1088/0953-8984/8/17/011.
  • Macdiarmid, A. G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L. D.; Wu, S. W.; Yaniger, S. I. “Polyaniline”: Interconversion of Metallic and Insulating Forms. Mol. Cryst. Liq. Cryst. 1985, 121(1–4), 173–180. DOI: https://doi.org/10.1080/00268948508074857.
  • Lee, Y. W.; Do, K.; Lee, T. H.; Jeon, S. S.; Yoon, W. J.; Kim, C.; Ko, J.; Im, S. S. Iodine Vapor Doped Polyaniline Nanoparticles Counter Electrodes for Dye-Sensitized Solar Cells. Synth. Met. 2013, 174, 6–13. DOI: https://doi.org/10.1016/j.synthmet.2013.04.009.
  • Palaniappan, S.; Devi, S. L. Novel Chemically Synthesized Polyaniline Electrodes Containing a Fluoroboric Acid Dopant for Supercapacitors. J. Appl. Polym. Sci. 2008, 107(3), 1887–1892. DOI: https://doi.org/10.1002/app.27228.
  • Gupta, S. Template-Free Synthesis of Conducting-Polymer Polypyrrole Micro/Nanostructures Using Electrochemistry. Appl. Phys. Lett. 2006, 88(6), 063108. DOI: https://doi.org/10.1063/1.2168688.
  • Brie, M.; Turcu, R.; Neamtu, C.; Pruneanu, S. The Effect of Initial Conductivity and Doping Anions on Gas Sensitivity of Conducting Polypyrrole Films to NH3. Sens. Actuators B Chem. 1996, 37(3), 119–122. DOI: https://doi.org/10.1016/s0925-4005(97)80125-6.
  • Arribas, C.; Rueda, D. Preparation of Conductive Polypyrrole-Polystyrene Sulfonate by Chemical Polymerization. Synth. Met. 1996, 79(1), 23–26. DOI: https://doi.org/10.1016/0379-6779(96)80125-1.
  • Lee, J. E.; Lee, Y.; Ahn, K.-J.; Huh, J.; Shim, H. W.; Sampath, G.; Im, W. B.; Huh, Y.; Yoon, H. Role of Co-Vapors in Vapor Deposition Polymerization. Sci. Rep. 2015, 5(1), 5. DOI: https://doi.org/10.1038/srep08420.
  • Navale, S. T.; Mane, A. T.; Ghanwat, A. A.; Mulik, A. R.; Patil, V. B. Camphor Sulfonic Acid (CSA) Doped Polypyrrole (PPy) Films: Measurement of Microstructural and Optoelectronic Properties. Measurement. 2014, 50, 363–369. DOI: https://doi.org/10.1016/j.measurement.2014.01.012.
  • Taunk, M.; Kapil, A.; Chand, S. Chemical Synthesis and Low Temperature Electrical Transport in Polypyrrole Doped with Sodium Bis(2-Ethylhexyl) Sulfosuccinate. J. Mater. Sci. Mater. Electron. 2010, 22(2), 136–142. DOI: https://doi.org/10.1007/s10854-010-0102-2.
  • Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. Influence of Doped Anions on Poly(3,4-Ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2008, 130(4), 1258–1263. DOI: https://doi.org/10.1021/ja075704o.
  • Sehit, E.; Drzazgowska, J.; Buchenau, D.; Yesildag, C.; Lensen, M.; Altintas, Z. Ultrasensitive Nonenzymatic Electrochemical Glucose Sensor Based on Gold Nanoparticles and Molecularly Imprinted Polymers. Biosens. Bioelectron. 2020, 165, 112432. DOI: https://doi.org/10.1016/j.bios.2020.112432.
  • Amatatongchai, M.; Sroysee, W.; Sodkrathok, P.; Kesangam, N.; Chairam, S.; Jarujamrus, P. Novel Three-Dimensional Molecularly Imprinted Polymer-Coated Carbon Nanotubes (3D-CNTs@MIP) for Selective Detection of Profenofos in Food. Anal. Chim. Acta. 2019, 1076, 64–72. DOI: https://doi.org/10.1016/j.aca.2019.04.075.
  • Zengin, A.; Yildirim, E.; Tamer, U.; Caykara, T. Molecularly Imprinted Superparamagnetic Iron Oxide Nanoparticles for Rapid Enrichment and Separation of Cholesterol. Analyst. 2013, 138(23), 7238. DOI: https://doi.org/10.1039/c3an01458d.
  • Farid, M. M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular Imprinting Method for Fabricating Novel Glucose Sensor: Polyvinyl Acetate Electrode Reinforced by MnO2/CuO Loaded on Graphene Oxide Nanoparticles. Food Chem. 2016, 194, 61–67. DOI: https://doi.org/10.1016/j.foodchem.2015.07.128.
  • Fan, L.; Lou, D.; Wu, H.; Zhang, X.; Zhu, Y.; Gu, N.; Zhang, Y. Enzyme Mimics: A Novel AuNP‐Based Glucose Oxidase Mimic with Enhanced Activity and Selectivity Constructed by Molecular Imprinting and O 2 ‐Containing Nanoemulsion Embedding (Adv. Mater. Interfaces 22/2018). Adv Mater Interfaces. 2018, 5(22), 1870107. DOI: https://doi.org/10.1002/admi.201870107.
  • Das, D.; Biswas, D.; Hazarika, A. K.; Sabhapondit, S.; Roy, R. B.; Tudu, B.; Bandyopadhyay, R. CuO Nanoparticles Decorated MIP-Based Electrode for Sensitive Determination of Gallic Acid in Green Tea. IEEE Sen. J. 2021, 21(5), 5687–5694. DOI: https://doi.org/10.1109/jsen.2020.3036663.
  • Huang, W. Molecularly Imprinted Electrochemical Based on NiO Nanostructured Modified Glassy Carbon Electrode for the Electrochemical Determination of Penicillin in Urine of Pregnant Women Infected with Group B Streptococcal. Int. J. Electrochem. Sci. 2022. ArticleID:221040. ArticleID:221040, DOI: https://doi.org/10.20964/2022.10.37.
  • Shumyantseva, V. V.; Bulko, T. V.; Sigolaeva, L. V.; Kuzikov, A. V.; Pogodin, P. V.; Archakov, A. I. Molecular Imprinting Coupled with Electrochemical Analysis for Plasma Samples Classification in Acute Myocardial Infarction Diagnostic. Biosens. Bioelectron. 2018, 99, 216–222. DOI: https://doi.org/10.1016/j.bios.2017.07.026.
  • Faradilla, P.; Setiyanto, H.; Manurung, R. V.; Saraswaty, V. Electrochemical Sensor Based on Screen Printed Carbon Electrode–Zinc Oxide Nano Particles/Molecularly Imprinted-Polymer (SPCE–ZnONPs/MIP) for Detection of Sodium Dodecyl Sulfate (SDS). Rsc. Adv. 2022, 12(2), 743–752. DOI: https://doi.org/10.1039/d1ra06862h.
  • Fu, J. Sensitive Acetylcholinesterase Biosensor Based on Screen- Printed Carbon Electrode Modified with Cerium Oxide- Chitosan/Mesoporous Carbon-Chitosan for Organophosphorus Pesticide Residue Detection. Int. J. Electrochem. Sci. 2018, 9231–9241. doi: https://doi.org/10.20964/2018.09.146.
  • Wu, H.; Tian, Q.; Zheng, W.; Jiang, Y.; Xu, J.; Li, X.; Zhang, W.; Qiu, F. Non-Enzymatic Glucose Sensor Based on Molecularly Imprinted Polymer: A Theoretical, Strategy Fabrication and Application. J. Solid State Electrochem. 2019, 23(5), 1379–1388. DOI: https://doi.org/10.1007/s10008-019-04237-1.
  • Chatterjee, T. N.; Mukherjee, S.; Pal, S.; Sarkar, S.; Roy, R. B.; Bandyopadhyay, R.; Bhattacharyya, N. A Molecularly Imprinted Polymer Conjugated Cobalt Oxide Nanoparticle Based Screen Printed Sensor for Enhanced Sensing of Chlorpyrifos. 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 2019. https://doi.org/10.1109/isoen.2019.8823168.
  • Schirhagl, R. Bioapplications for Molecularly Imprinted Polymers. Anal. Chem. 2013, 86(1), 250–261. DOI: https://doi.org/10.1021/ac401251j.
  • Anh, T. T. N.; Van Thu, V.; Dang, H.-S.; Pham, V.-H.; Tam, P. D. Cerium Oxide/Polypyrrole Nanocomposite as the Matrix for Cholesterol Biosensor. Adv. Polym. Technol. 2021, 2021, 1–10. DOI: https://doi.org/10.1155/2021/6627645.
  • de Jesus Rodrigues Santos, W.; Lima, P. R.; Tarley, C. R. T.; Kubota, L. T. A Catalytically Active Molecularly Imprinted Polymer That Mimics Peroxidase Based on Hemin: Application to the Determination of p-Aminophenol. Anal. Bioanal. Chem. 2007, 389(6), 1919–1929. DOI: https://doi.org/10.1007/s00216-007-1601-8.
  • Cai, D.; Ren, L.; Zhao, H.; Xu, C.; Zhang, L.; Yu, Y.; Wang, H.; Lan, Y.; Roberts, M. F.; Chuang, J. H., et al. A Molecular-Imprint Nanosensor for Ultrasensitive Detection of Proteins. Nat. Nanotechnol. 2010, 5(8), 597–601.
  • Okhokhonin, A. V.; Stepanova, M. I.; Svalova, T. S.; Kozitsina, A. N. A New Electrocatalytic System Based on Copper (II) Chloride and Magnetic Molecularly Imprinted Polymer Nanoparticles in 3D Printed Microfluidic Flow Cell for Enzymeless and Low-Potential Cholesterol Detection. J. Electroanal. Chem. 2022, 924, 116853. DOI: https://doi.org/10.1016/j.jelechem.2022.116853.
  • Jalalvand, A. R. Chemometrics-Assisted Electrochemical Biosensing of Cholesterol as the Sole Precursor of Steroids by a Novel Electrochemical Biosensor. Steroids. 2023, 190, 109159. DOI: https://doi.org/10.1016/j.steroids.2022.109159.
  • Kumar, A.; Gupta, G. H.; Singh, G.; More, N.; M, K.; Sharma, A.; Jawade, D.; Balu, A.; Kapusetti, G. Ultrahigh Sensitive Graphene Oxide/Conducting Polymer Composite Based Biosensor for Cholesterol and Bilirubin Detection. Biosens. Bioelectron.: X. 2023, 13, 100290. DOI: https://doi.org/10.1016/j.biosx.2022.100290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.