217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The properties investigations of PLA/TiO2 and PLA/doped-TiO2 composites films

, , , &
Pages 1576-1586 | Received 12 Mar 2023, Accepted 05 Jun 2023, Published online: 09 Jun 2023

References

  • Hasso von Pogrell. Bioplastics. https://www.european-bioplastics.org/ (Accessed 25 December 2022).
  • Khankrua, R.; Wiriya-Amornchai, A.; Triamnak, N.; Suttiruengwong, S. Biopolymer Blends Based on Poly(lactic Acid) and Polyamide for Durable Applications. Polym. Plast. Technol. Mater. 2023, 62, 131–144. DOI: 10.1080/25740881.2022.2096470.
  • Garlotta, D. A Literature Review of Poly(lactic Acid). J Polym. Environ. 2001, 9(2), 63–84. DOI: 10.1023/A:1020200822435.
  • Shi, X.; Dai, X.; Cao, Y.; Li, J.; Huo, C.; Wang, X. Degradable Poly(lactic Acid)/metal–Organic Framework Nanocomposites Exhibiting Good Mechanical, Flame Retardant, and Dielectric Properties for the Fabrication of Disposable Electronics. Ind. Eng. Chem. Res. 2017, 56(14), 3887–3894. DOI: 10.1021/acs.iecr.6b04204.
  • Wu, W.; Han, S.-T.; Venkatesh, S.; Sun, Q.; Peng, H.; Zhou, Y.; Yeung, C.; Li, R. K. Y.; Roy, V. A. L. Biodegradable Skin-Inspired Nonvolatile Resistive Switching Memory Based on Gold Nanoparticles Embedded Alkali Lignin. Org. Electron. 2018, 59, 382–388. DOI: 10.1016/j.orgel.2018.05.051.
  • Badia, J. D.; Reig-Rodrigo, P.; Teruel-Juanes, R.; Kittikorn, T.; Strömberg, E.; Ek, M.; Karlsson, S.; Ribes-Greus, A. Effect of Sisal and Hydrothermal Ageing on the Dielectric Behaviour of Polylactide/Sisal Biocomposites. Compos. Sci. Technol. 2017, 149, 1–10. DOI: 10.1016/j.compscitech.2017.05.026.
  • Pirzada, B. M.; Sabir, S. 5 - Polymer-Based Nanocomposites for Significantly Enhanced Dielectric Properties and Energy Storage Capability. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Jawaid, M. Khan, M. M.Eds;Woodhead Publishing:2018; pp. 131–183. 10.1016/B978-0-08-102262-7.00005-2
  • Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H. J.; Zur Loye, H.-C. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Mater. 2009, 2(4), 1697–1733. DOI: 10.3390/ma2041697.
  • Kukli, K.; Ritala, M.; Leskelä, M. Development of Dielectric Properties of Niobium Oxide, Tantalum Oxide, and Aluminum Oxide Based Nanolayered Materials. J. Electrochem. Soc. 2001, 148(2), F35. DOI: 10.1149/1.1343106.
  • Cava, R. J.; Krajewski, J. J.; Peck, W. F.; Roberts, G. L. Dielectric Properties of TiO2–Nb2O5 Crystallographic Shear Structures. J. Mater. Res. 1996, 11(6), 1428–1432. DOI: 10.1557/JMR.1996.0179.
  • Wu, W.; Liu, T.; Zhang, D.; Sun, Q.; Cao, K.; Zha, J.; Lu, Y.; Wang, B.; Cao, X.; Feng, Y., et al. Significantly Improved Dielectric Properties of Polylactide Nanocomposites via TiO2 Decorated Carbon Nanotubes. Compos. Part A. 2019, 127, 105650. DOI: 10.1016/j.compositesa.2019.105650.
  • Wilk, G. D.; Wallace, R. M.; Anthony, J. M. High-κ Gate Dielectrics: Current Status and Materials Properties Considerations. J. Appl. Phys. 2001, 89, 5243–5275. DOI: 10.1063/1.1361065.
  • Kaseem, M.; Hamad, K.; Ur Rehman, Z. Review of Recent Advances in Polylactic Acid/TiO2 Composites. Mater. 2019, 12(22), 3659. DOI: 10.3390/ma12223659.
  • Pulphol, P.; Pongampai, S.; Charoonsuk, T.; Vittayakorn, W.; Muanghua, R.; Vittayakorn, N. Intrinsic Enhancement of Permittivity with Ultralow Dielectric Loss in Donor-Acceptor Co-Doped Rutile TiO2 Ceramics. Integr. Ferroelectr. 2022, 223, 152–161. DOI: 10.1080/10584587.2021.1964294.
  • Zhang, Q. M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z. Y.; Xu, H.; Huang, C. An All-Organic Composite Actuator Material with a High Dielectric Constant. Nature. 2002, 419(6904), 284–287. DOI: 10.1038/nature01021.
  • Chang, B. P.; Thakur, S.; Mohanty, A. K.; Misra, M. Novel Sustainable Biobased Flame Retardant from Functionalized Vegetable Oil for Enhanced Flame Retardancy of Engineering Plastic. Sci. Rep. 2019, 9(1), 15971. DOI: 10.1038/s41598-019-52039-2.
  • Soliman, E.; Furuta, M.; Furuta, M.; Soliman, E. Influence of Phase Behavior and Miscibility on Mechanical, Thermal and Micro-Structure of Soluble Starch-Gelatin Thermoplastic Biodegradable Blend Films. Food Nutr. Sci. 2014, 5(11), 1040–1055. DOI: 10.4236/fns.2014.511115.
  • Zhang, C.; Lan, Q.; Zhai, T.; Nie, S.; Luo, J.; Yan, W. Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-Caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer. Polym. 2018, 10(11), 1181. DOI: 10.3390/polym10111181.
  • Gosens, I.; Post, J. A.; de la Fonteyne, L. J.; Jansen, E. H.; Geus, J. W.; Cassee, F. R.; de Jong, W. H. Impact of Agglomeration State of Nano- and Submicron Sized Gold Particles on Pulmonary Inflammation. Part. Fibre Toxicol. 2010, 7(1), 37. DOI: 10.1186/1743-8977-7-37.
  • Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: The Effect of Doping Elements on Photocatalytic Activity. Mater. Adv. 2020, 1(5), 1193–1201. DOI: 10.1039/D0MA00171F.
  • Ma, Y.; Nagai, T.; Inoue, Y.; Ikegami, K.; Kuroda, Y.; Matsuzawa, K.; Napporn, T. W.; Liu, Y.; Mitsushima, S.; Ishihara, A. Control of Surface Area and Conductivity of Niobium-Added Titanium Oxides as Durable Supports for Cathode of Polymer Electrolyte Fuel Cells. Mater. Des. 2021, 203, 109623. DOI: 10.1016/j.matdes.2021.109623.
  • Ma, H. L.; Yang, J. Y.; Dai, Y.; Zhang, Y. B.; Lu, B.; Ma, G. H. Raman Study of Phase Transformation of TiO2 Rutile Single Crystal Irradiated by Infrared Femtosecond Laser. Appl. Surf. Sci. 2007, 253, 7497–7500. DOI: 10.1016/j.apsusc.2007.03.047.
  • Elghniji, K.; Atyaoui, A.; Livraghi, S.; Bousselmi, L.; Giamello, E.; Ksibi, M. Synthesis and Characterization of Fe3+ Doped TiO2 Nanoparticles and Films and Their Performance for Photocurrent Response Under UV Illumination. J. Alloys Compd. 2012, 541, 421–427. DOI: 10.1016/j.jallcom.2012.07.010.
  • Yang, C.; Zhu, B.; Wang, J.; Qin, Y. Structural Changes and Nano-TiO2 Migration of Poly(lactic Acid)-Based Food Packaging Film Contacting with Ethanol as Food Simulant. Int. J. Biol. Macromol. 2019, 139, 85–93. DOI: 10.1016/j.ijbiomac.2019.07.151.
  • Buzarovska, A. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polym. Plast. Technol. Eng. 2013, 52, 280–286. DOI: 10.1080/03602559.2012.751411.
  • Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Thermal and Mechanical Properties of Biodegradable Polyester/Silica Nanocomposites. Energy Procedia. 2013, 34, 705–713. DOI: 10.1016/j.egypro.2013.06.803.
  • Xiu, H.; Bai, H.; Huang, C. M.; Xu, C. L.; Li, X. Y.; Fu, Q. Selective Localization of Titanium Dioxide Nanoparticles at the Interface and Its Effect on the Impact Toughness of Poly(l-Lactide)/poly(ether)urethane Blends. Express Polym. Lett. 2013, 7(3), 261–271. DOI: 10.3144/expresspolymlett.2013.24.
  • He, F.; Lau, S.; Chan, H. L.; Fan, J. High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene Fluoride) and Exfoliated Graphite Nanoplates. Adv. Mater. 2009, 21(6), 710–715. DOI: https://doi.org/10.1002/adma.200801758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.