109
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Additive manufactured membranes of polylactic acid for effluent treatment

, , &
Pages 1587-1609 | Received 30 Jan 2023, Accepted 05 Jun 2023, Published online: 18 Jun 2023

References

  • Schilperoort, R. P. S.; Meijer, H. A. J.; Flamink, C. M. L.; Clemens, F. H. L. R. Changes in Isotope Ratios During Domestic Wastewater Production. Water Sci. Technol. 2007, 55(4), 93–101. DOI: 10.2166/wst.2007.099.
  • Dutta, D.; Arya, S.; Kumar, S. Industrial Wastewater Treatment: Current Trends, Bottlenecks, and Best Practices. Chemosphere. 2021, 285, 131245. DOI: 10.1016/j.chemosphere.2021.131245.
  • Li, Y.-H.; Yang, L.; Li, H.-B.; Wang, S.-Q.; Su, F. IDENTIFICATION OF NITROUS OXIDE GENERATION IN SUBSURFACE WASTEWATER INFILTRATION SYSTEM FILLED WITH MIXED MATRIX. J. Environ. Eng. Landsc. Manag. 2020, 28(2), 88–94. DOI: 10.3846/jeelm.2020.12073.
  • Ekka, S. A.; Rujner, H.; Leonhardt, G.; Blecken, G.-T.; Viklander, M.; Hunt, W. F. Next Generation Swale Design for Stormwater Runoff Treatment: A Comprehensive Approach. J. Environ. Manage. 2021, 279, 111756. DOI: 10.1016/j.jenvman.2020.111756.
  • Schweitzer, L.; Noblet, J. Water Contamination and Pollution. In Green Chemistry; Elsevier: 2018; pp. 261–290. doi:10.1016/B978-0-12-809270-5.00011-X
  • Subash A, Naebe M, Wang X and Kandasubramanian B. (2023). Biopolymer – A sustainable and efficacious material system for effluent removal. Journal of Hazardous Materials, 443 130168 10.1016/j.jhazmat.2022.130168
  • Cheevaporn, V.; Menasveta, P. Water Pollution and Habitat Degradation in the Gulf of Thailand. Mar. Pollut. Bull. 2003, 47(1–6), 43–51. DOI: 10.1016/S0025-326X(03)00101-2.
  • Singh, A. A Review of Wastewater Irrigation: Environmental Implications. Resour. Conserv. Recycl. 2021, 168, 105454. DOI: 10.1016/j.resconrec.2021.105454.
  • Gaynor, J. D. Soil Degradation of Wastewater Sludges Containing Chemical Precipitants. Environ. Pollut. 1979, 20(1), 57–64. DOI: 10.1016/0013-9327(79)90053-3.
  • Srivastava, N. K.; Majumder, C. B. Novel Biofiltration Methods for the Treatment of Heavy Metals from Industrial Wastewater. J. Hazard. Mater. 2008, 151(1), 1–8. DOI: 10.1016/j.jhazmat.2007.09.101.
  • Thorn, J.; Kerekes, E. Health Effects Among Employees in Sewage Treatment Plants: A Literature Survey. Am. J. Ind. Med. 2001, 40(2), 170–179. DOI: 10.1002/ajim.1085.
  • Wei, Y.; Van Houten, R. T.; Borger, A. R.; Eikelboom, D. H.; Fan, Y. Minimization of Excess Sludge Production for Biological Wastewater Treatment. Water Res. 2003, 37(18), 4453–4467. DOI: 10.1016/S0043-1354(03)00441-X.
  • Kumar A, Nighojkar A, Varma P, Prakash N Jaya, Kandasubramanian B, Zimmermann K and Dixit F. (2023). Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. Journal of Hazardous Materials, 455 131568 10.1016/j.jhazmat.2023.131568
  • Ghisalba, O.; Cevey, P.; Küenzi, M.; Schär, H.-P. Biodegradation of Chemical Waste by Specialized Methylotrophs, an Alternative to Physical Methods of Waste Disposal. Conserv. Recycl. 1985, 8(1–2), 47–71. DOI: 10.1016/0361-3658(85)90025-6.
  • Donkadokula, N. Y.; Kola, A. K.; Naz, I.; Saroj, D. A Review on Advanced Physico-Chemical and Biological Textile Dye Wastewater Treatment Techniques. Rev. Environ. Sci. Bio. Technol. 2020, 19(3), 543–560. DOI: 10.1007/s11157-020-09543-z.
  • Mantis, I.; Voutsa, D.; Samara, C. Assessment of the Environmental Hazard from Municipal and Industrial Wastewater Treatment Sludge by Employing Chemical and Biological Methods. Ecotoxicol. Environ. Saf. 2005, 62(3), 397–407. DOI: 10.1016/j.ecoenv.2004.12.010.
  • Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination. 2004, 167, 55–63. DOI: 10.1016/j.desal.2004.06.113.
  • Todd, J.; Josephson, B. The Design of Living Technologies for Waste Treatment. Ecol. Eng. 1996, 6(1–3), 109–136. DOI: 10.1016/0925-8574(95)00054-2.
  • Ahmad, A.; Mohd-Setapar, S. H.; Chuong, C. S.; Khatoon, A.; Wani, W. A.; Kumar, R.; Rafatullah, M. Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater. R.S.C. Adv. 2015, 5(39), 30801–30818. DOI: 10.1039/C4RA16959J.
  • Ariffin, N.; Abdullah, M. M. A. B.; Zainol, M. R. R. M. A.; Murshed, M. F.; Hariz-Zain; Faris, M. A.; Bayuaji, R. Review on Adsorption of Heavy Metal in Wastewater by Using Geopolymer. MATEC Web Conf., 2017, 97, 01023. 10.1051/matecconf/20179701023.
  • Cai, L.; Zhang, Y.; Zhou, Y.; Zhang, X.; Ji, L.; Song, W.; Zhang, H.; Liu, J. Effective Adsorption of Diesel Oil by Crab-Shell-Derived Biochar Nanomaterials. Mater. (Basel). 2019, 12(2), 236. DOI: 10.3390/ma12020236.
  • Diaz de Tuesta, J. L.; Silva, A. M. T.; Faria, J. L.; Gomes, H. T. Removal of Sudan IV from a Simulated Biphasic Oily Wastewater by Using Lipophilic Carbon Adsorbents. Chem. Eng. J. 2018, 347, 963–971. DOI: 10.1016/j.cej.2018.04.105.
  • Dąbrowski, A. Adsorption — from Theory to Practice. Adv. Colloid Interface Sci. 2001, 93(1–3), 135–224. DOI: 10.1016/S0001-8686(00)00082-8.
  • Huang, W.; Liu, Z. Biosorption of Cd(ii)/Pb(ii) from Aqueous Solution by Biosurfactant-Producing Bacteria: Isotherm Kinetic Characteristic and Mechanism Studies. Colloids Surf. B Biointerfaces. 2013, 105, 113–119. DOI: 10.1016/j.colsurfb.2012.12.040.
  • Subash A, Naebe M, Wang X and Kandasubramanian B. (2023). Fabrication of biodegradable fibrous systems employing electrospinning technology for effluent treatment. Environ. Sci.: Adv., 2(3), 368–396. 10.1039/D2VA00244B
  • Senthil Kumar, P.; Narayan, A. S.; Dutta, A. Nanochemicals and Effluent Treatment in Textile Industries. 2017, pp. 57–96. doi:10.1007/978-981-10-2188-6_2
  • Hussein, F. H. Chemical Properties of Treated Textile Dyeing Wastewater. Asian J. Chem. 2013, 25(16), 9393–9400. DOI: 10.14233/ajchem.2013.15909A.
  • Weldegebrieal, G. K. Synthesis Method, Antibacterial and Photocatalytic Activity of ZnO Nanoparticles for Azo Dyes in Wastewater Treatment: A Review. Inorg. Chem. Commun. 2020, 120, 108140. DOI: 10.1016/j.inoche.2020.108140.
  • Allègre, C.; Moulin, P.; Maisseu, M.; Charbit, F. Treatment and Reuse of Reactive Dyeing Effluents. J. Memb. Sci. 2006, 269(1–2), 15–34. DOI: 10.1016/j.memsci.2005.06.014.
  • Eskelinen, K.; Särkkä, H.; Kurniawan, T. A.; Sillanpää, M. E. T. Removal of Recalcitrant Contaminants from Bleaching Effluents in Pulp and Paper Mills Using Ultrasonic Irradiation and Fenton-Like Oxidation, Electrochemical Treatment, And/Or Chemical Precipitation: A Comparative Study. Desalination. 2010, 255(1–3), 179–187. DOI: 10.1016/j.desal.2009.12.024.
  • SAVANT, D.; ABDULRAHMAN, R.; RANADE, D. Anaerobic Degradation of Adsorbable Organic Halides (AOX) from Pulp and Paper Industry Wastewater. Bioresources Technol. 2006, 97(9), 1092–1104. DOI: 10.1016/j.biortech.2004.12.013.
  • Canosa, P.; Morales, S.; Rodríguez, I.; Rubí, E.; Cela, R.; Gómez, M. Aquatic Degradation of Triclosan and Formation of Toxic Chlorophenols in Presence of Low Concentrations of Free Chlorine. Anal. Bioanal. Chem. 2005, 383(7–8), 1119–1126. DOI: 10.1007/s00216-005-0116-4.
  • Zango, Z. U.; Sambudi, N. S.; Jumbri, K.; Ramli, A.; Abu Bakar, N. H. H.; Saad, B.; Rozaini, M. N. H.; Isiyaka, H. A.; Osman, A. M.; Sulieman, A. An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. Water. 2020, 12(10), 2921. DOI: 10.3390/w12102921.
  • Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Occurrence of Organic Contaminants in Sewage Sludges from Eleven Wastewater Treatment Plants, China. Chemosphere. 2007, 68(9), 1751–1762. DOI: 10.1016/j.chemosphere.2007.03.041.
  • Wang, C.; Peng, Z.; Feng, K.; Chen, Z.; Liu, H. A Study on the Treatment Efficiency of Internal Circulation Biological Aerated Filters for Refinery Wastewater and the Transformation of Main Organic Pollutants. Environ. Sci. Pollut. Res. 2020, 27(18), 22902–22912. DOI: 10.1007/s11356-020-08602-w.
  • YAVUZ, Y. EC and EF Processes for the Treatment of Alcohol Distillery Wastewater. Sep. Purif. Technol. 2007, 53(1), 135–140. DOI: 10.1016/j.seppur.2006.08.022.
  • Anastopoulos, I.; Mittal, A.; Usman, M.; Mittal, J.; Yu, G.; Núñez-Delgado, A.; Kornaros, M. A Review on Halloysite-Based Adsorbents to Remove Pollutants in Water and Wastewater. J. Mol. Liq. 2018, 269, 855–868. DOI: 10.1016/j.molliq.2018.08.104.
  • DENG, W.; YAN, J.; LI, X.; WANG, F.; CHI, Y.; LU, S. Emission Characteristics of Dioxins, Furans and Polycyclic Aromatic Hydrocarbons During Fluidized-Bed Combustion of Sewage Sludge. J Environ Sci. 2009, 21(12), 1747–1752. DOI: 10.1016/S1001-0742(08)62483-3.
  • Hassan, M.; Bai, J.; Dou, D.-Q. Biopolymers; Definition, Classification and Applications. Egypt. J. Chem. 2019, 2019, 0–0. DOI: 10.21608/ejchem.2019.6967.1580.
  • Houghton, J. I.; Quarmby, J. Biopolymers in Wastewater Treatment. Curr. Opin. Biotechnol. 1999, 10(3), 259–262. DOI: 10.1016/S0958-1669(99)80045-7.
  • Milovanovic, S.; Markovic, D.; Pantic, M.; Pavlovic, S. M.; Knapczyk-Korczak, J.; Stachewicz, U.; Novak, Z. Development of Advanced Floating Poly(lactic Acid)-Based Materials for Colored Wastewater Treatment. J. Supercrit Fluids. 2021, 177, 105328. DOI: 10.1016/j.supflu.2021.105328.
  • Robbins, D. E. Photodissociation of Methyl Chloride and Methyl Bromide in the Atmosphere. Geophys. Res. Lett. 1976, 3(4), 213–216. DOI: 10.1029/GL003i004p00213.
  • Fijoł, N.; Abdelhamid, H. N.; Pillai, B.; Hall, S. A.; Thomas, N.; Mathew, A. P. 3D-Printed Monolithic Biofilters Based on a Polylactic Acid (PLA) – Hydroxyapatite (HAp) Composite for Heavy Metal Removal from an Aqueous Medium. R.S.C. Adv. 2021, 11(51), 32408–32418. DOI: 10.1039/D1RA05202K.
  • Wang, S.; Ma, Y.; Deng, Z.; Zhang, S.; Cai, J. Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials. Polym. Test. 2020, 86, 106483. DOI: 10.1016/j.polymertesting.2020.106483.
  • Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M. I. 3D Printing – a Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. DOI: 10.1016/j.susoc.2021.09.004.
  • Guo, N.; Leu, M. C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8(3), 215–243. DOI: 10.1007/s11465-013-0248-8.
  • Mohd Yusoff, N. H.; Irene Teo, L.-R.; Phang, S. J.; Wong, V.-L.; Cheah, K. H.; Lim, S.-S. Recent Advances in Polymer-Based 3D Printing for Wastewater Treatment Application: An Overview. Chem. Eng. J. 2022, 429, 132311. DOI: 10.1016/j.cej.2021.132311.
  • Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B. Potential of Starch Nanocomposites for Biomedical Applications. IOP Conf. Ser Mater. Sci. Eng. 2017, 209, 012087. DOI: 10.1088/1757-899X/209/1/012087.
  • Patadiya J, Gawande A, Joshi G and Kandasubramanian B. (2021). Additive Manufacturing of Shape Memory Polymer Composites for Futuristic TechnologyAdditive Manufacturing of Shape Memory Polymer Composites for Futuristic Technology. Ind. Eng. Chem. Res., 60(44), 15885–15912. 10.1021/acs.iecr.1c0308310.1021/acs.iecr.1c03083.s001
  • Patadiya J, Wang X, Joshi G, Kandasubramanian B and Naebe M. (2023). 3D-Printed Biomimetic Hierarchical Nacre Architecture: Fracture Behavior and Analysis3D-Printed Biomimetic Hierarchical Nacre Architecture: Fracture Behavior and Analysis. ACS Omega, 8(21), 18449–18461. 10.1021/acsomega.2c0807610.1021/acsomega.2c08076.s001
  • Puppi, D.; Chiellini, F. Biodegradable Polymers for Biomedical Additive Manufacturing. Appl. Mater. Today. 2020, 20, 100700. DOI: 10.1016/j.apmt.2020.100700.
  • Alafaghani, A.; Qattawi, A.; Alrawi, B.; Guzman, A. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-For-Manufacturing Approach. Procedia Manuf. 2017, 10, 791–803. DOI: 10.1016/j.promfg.2017.07.079.
  • Dong, M.; Zhang, S.; Gao, D.; Chou, B. The Study on Polypropylene Applied in Fused Deposition Modeling. 2019, p. 030059. doi:10.1063/1.5088317
  • Drzyzga, O.; Prieto, A. Plastic Waste Management, a Matter for the ‘Community. Microb. Biotechnol. 2019, 12(1), 66–68. DOI: 10.1111/1751-7915.13328.
  • Patadiya J, Naebe M, Wang X, Joshi G and Kandasubramanian B. (2023). Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. European Polymer Journal, 184 111778 10.1016/j.eurpolymj.2022.111778
  • Laycock, B.; Nikolić, M.; Colwell, J. M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G. Lifetime Prediction of Biodegradable Polymers. Prog. Polym. Sci. 2017, 71, 144–189. DOI: 10.1016/j.progpolymsci.2017.02.004.
  • Rigotti, D.; Pegoretti, A. Additive Manufacturing with Biodegradable Polymers. In Biodegradable Polymers, Blends and Composites; Elsevier: 2022; pp. 611–679. doi:10.1016/B978-0-12-823791-5.00026-0
  • Sanchez-Rexach, E.; Johnston, T. G.; Jehanno, C.; Sardon, H.; Nelson, A. Sustainable Materials and Chemical Processes for Additive Manufacturing. Chem. Mater. 2020, 32(17), 7105–7119. DOI: 10.1021/acs.chemmater.0c02008.
  • Emadian, S. M.; Onay, T. T.; Demirel, B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. 2017, 59, 526–536. DOI: 10.1016/j.wasman.2016.10.006.
  • Mohr, L. C.; Capelezzo, A. P.; Baretta, C. R. D. M.; Martins, M. A. P. M.; Fiori, M. A.; Mello, J. M. M. Titanium Dioxide Nanoparticles Applied as Ultraviolet Radiation Blocker in the Polylactic Acid Bidegradable Polymer. Polym. Test. 2019, 77, 105867. DOI: 10.1016/j.polymertesting.2019.04.014.
  • Zhao, C. Q.; Liu, W. G.; Xu, Z. Y.; Li, J. G.; Huang, T. T.; Lu, Y. J.; Huang, H. G.; Lin, J. X. Chitosan Ducts Fabricated by Extrusion-Based 3D Printing for Soft-Tissue Engineering. Carbohydr. Polym. 2020, 236, 116058. DOI: 10.1016/j.carbpol.2020.116058.
  • Opoku, P. A.; Jingyu, H.; Yi, L.; Guang, L.; Norgbey, E. Scaled-Up Multi-Anode Shared Cathode Microbial Fuel Cell for Simultaneous Treatment of Multiple Real Wastewaters and Power Generation. Chemosphere. 2022, 299, 134401. DOI: 10.1016/j.chemosphere.2022.134401.
  • Shi, Z.; Xu, C.; Chen, F.; Wang, Y.; Li, L.; Meng, Q.; Zhang, R. Renewable Metal–Organic-frameworks-coated 3D Printing Film for Removal of Malachite Green. R.S.C. Adv. 2017, 7(79), 49947–49952. DOI: 10.1039/C7RA10912A.
  • Mai, Z.; Liu, D.; Chen, Z.; Lin, D.; Zheng, W.; Dong, X.; Gao, Q.; Zhou, W. Fabrication and Application of Photocatalytic Composites and Water Treatment Facility Based on 3D Printing Technology. Polymers (Basel). 2021, 13(13), 2196. DOI: 10.3390/polym13132196.
  • Ashraf, M. A.; Ullah, S.; Ahmad, I.; Qureshi, A. K.; Balkhair, K. S.; Abdur Rehman, M. Green Biocides, a Promising Technology: Current and Future Applications to Industry and Industrial Processes. J. Sci. Food Agric. 2014, 94(3), 388–403. DOI: 10.1002/jsfa.6371.
  • Darwish, A. A. A.; Rashad, M.; AL-Aoh, H. A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dye. Pigm. 2019, 160, 563–571. DOI: 10.1016/j.dyepig.2018.08.045.
  • Alkan, M.; Demirbaş, Ö.; Doğan, M. Adsorption Kinetics and Thermodynamics of an Anionic Dye Onto Sepiolite. Microporous. Mesoporous. Mater. 2007, 101(3), 388–396. DOI: 10.1016/j.micromeso.2006.12.007.
  • Chakraborty, R.; Asthana, A.; Singh, A. K.; Jain, B.; Susan, A. B. H. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Int. J. Environ. Anal. Chem. 2022, 102(2), 342–379. DOI: 10.1080/03067319.2020.1722811.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6(4), 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Wang, Y.; Wang, B.; Wang, Q.; Di, J.; Miao, S.; Yu, J. Amino-Functionalized Porous Nanofibrous Membranes for Simultaneous Removal of Oil and Heavy-Metal Ions from Wastewater. ACS Appl. Mater. Interfaces. 2019, 11(1), 1672–1679. DOI: 10.1021/acsami.8b18066.
  • Medeiros, A. D. M. D.; Silva Junior, C. J. G. D.; Amorim, J. D. P. D.; Durval, I. J. B.; Costa, A. F. D. S.; Sarubbo, L. A. Oily Wastewater Treatment: Methods, Challenges, and Trends. Processes. 2022, 10(4), 743. DOI: 10.3390/pr10040743.
  • Zhang, W.; Liu, N.; Xu, L.; Qu, R.; Chen, Y.; Zhang, Q.; Liu, Y.; Wei, Y.; Feng, L. Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. Langmuir. 2018, 34(44), 13192–13202. DOI: 10.1021/acs.langmuir.8b02834.
  • Yuan, J.; Yi, C.; Jiang, H.; Liu, F.; Cheng, G. J. Direct Ink Writing of Hierarchically Porous Cellulose/Alginate Monolithic Hydrogel as a Highly Effective Adsorbent for Environmental Applications. ACS Appl. Polym. Mater. 2021, 3(2), 699–709. DOI: 10.1021/acsapm.0c01002.
  • Podstawczyk, D.; Nizioł, M.; Szymczyk, P.; Wiśniewski, P.; Guiseppi-Elie, A. 3D Printed Stimuli-Responsive Magnetic Nanoparticle Embedded Alginate-Methylcellulose Hydrogel Actuators. Addit. Manuf. 2020, 34, 101275. DOI: 10.1016/j.addma.2020.101275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.