856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electromagnetic interference shielding effects of modified carbon nanotube-nylon 12 composite films

, , , &
Pages 1610-1620 | Received 18 May 2023, Accepted 11 Jun 2023, Published online: 22 Jun 2023

References

  • Tjong, S. C.; Liang, G. D.; Bao, S. P. Electrical Behavior of Polypropylene/Multiwalled Carbon Nanotube Nanocomposites with Low Percolation Threshold. Scr Mater. 2007, 57(6), 461–464. DOI: 10.1016/j.scriptamat.2007.05.035.
  • Chae, S.-J.; Cho, B.-R.; Hong, B.-P.; Lee, B.S.; Byun, H.-S. Preparation of Sheet with CNT for EMI Shielding and Its EMI Shielding Property. Appl. Chem. Eng. 2010, 21, 430–434.
  • Wang, Y.; Yang, C.; Xin, Z.; Luo, Y.; Wang, B.; Feng, X.; Mao, Z.; Sui, X. Poly(lactic Acid)/Carbon Nanotube Composites with Enhanced Electrical Conductivity via a Two-Step Dispersion Strategy, Compos. Commun. 2022, 30, 101087. DOI: 10.1016/j.coco.2022.101087.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon. 2009, 47(7), 1738–1746. DOI: 10.1016/j.carbon.2009.02.030.
  • Anand, S.; Muniyappan, S.; Racik, K. M.; Manikandan, A.; Mani, D.; Nandhini, S.; Karuppasamy, P.; Pandian, M. S.; Ramasamy, P.; Chandar, N. K., et al. Fabrication of Binary to Quaternary PVDF Based Flexible Composite Films and Ultrathin Sandwich Structured Quaternary PVDF/cb/g-C3N4/BaFe11. 5Al0. 5O19 Composite Films for Efficient EMI Shielding Performance. Synth. Met. 2022, 291, 117199. DOI: 10.1016/j.synthmet.2022.117199.
  • Moon, D. J. A Study on Conductive Composites Manufacturing and Its Electromagnetic Shield Effectiveness. KSAE. A0297. 2016, 702–704.
  • Kazmi, S. J.; Nadeem, M.; Warsi, M. A.; Manzoor, S.; Shabbir, B.; Hussain, S. PVDF/CFO-Anchored CNTs Ternary Composite System with Enhanced EMI Shielding and EMW Absorption Properties. J. Alloys Compound. 2022, 903, 163938. DOI: 10.1016/j.jallcom.2022.163938.
  • Cao, S.; Tao, Y.; Li, H.; Ren, M.; Sun, J. Multiscale Hybrid CNT and CF Reinforced PEEK Composites with Enhanced EMI Properties. Nanocomposites. 2022, 8(1), 184–193. DOI: 10.1080/20550324.2022.2100683.
  • Yan, D.; Zhang, H.-B.; Jia, Y.; Hu, J.; Qi, X.-Y.; Zhang, Z.; Yu, Z.-Z. Improved Electrical Conductivity of Polyamide 12/Graphene Nanocomposites with Maleated Polyethylene-Octene Rubber Prepared by Melt Compounding. ACS Appl. Mater. Interfaces. 2012, 4(9), 4740–4745. DOI: 10.1021/am301119b.
  • Yan, D.; Li, X.; Ma, H.-L.; Tang, X.-Z.; Zhang, Z.; Yu, Z.-Z. Effect of Compounding Sequence on Localization of Carbon Nanotubes and Electrical Properties of Ternary Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 49, 35–41. DOI: 10.1016/j.compositesa.2013.02.002.
  • Li, X.-H.; He, Y.; Li, X.; An, F.; Yang, D.; Yu, Z.-Z. Simultaneous Enhancements in Toughness and Electrical Conductivity of Polypropylene/Carbon Nanotube Nanocomposites by Incorporation of Electrically Inert Calcium Carbonate Nanoparticles. Ind. Eng. Chem. Res. 2017, 56(10), 2783–2788. DOI: 10.1021/acs.iecr.7b00446.
  • Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Du, F.; Li, F.; Guo, T.; Chen, Y. Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites. Carbon. 2007, 45(4), 821–827. DOI: 10.1016/j.carbon.2006.11.020.
  • Huang, Y.; Li, N.; Ma, Y.; Du, F.; Li, F.; He, X.; Lin, X.; Gao, H.; Chen, Y. The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of Its Epoxy Composites. Carbon. 2007, 45(8), 1614–1621. DOI: 10.1016/j.carbon.2007.04.016.
  • Lapinsky, S. E.; Easty, A. C. Electromagnetic Interference in Critical Care. J. Crit. Care. 2006, 21(3), 267–270. DOI: 10.1016/j.jcrc.2006.03.010.
  • Johansen, C. Electromagnetic Fields and Health Effects—Epidemiologic Studies of Cancer, Diseases of the Central Nervous System and Arrhythmia-Related Heart Disease, Scand. J. Work Environ. Health. 2004, 30(1), 1–30.
  • Beitollahi, H.; Movahedifar, F.; Tajik, S.; Jahani, S. A Review on the Effects of Introducing CNTs in the Modification Process of Electrochemical Sensors. Electroanalysis. 2019, 31(7), 1195–1203. DOI: 10.1002/elan.201800370.
  • Biju, V. Chemical Modifications and Bioconjugate Reactions of Nanomaterials for Sensing, Imaging, Drug Delivery and Therapy. Chem. Soc. Rev. 2014, 43(3), 744–764. DOI: 10.1039/c3cs60273g.
  • Firkowska, I.; Boden, A.; Vogt, A.-M.; Reich, S. Effect of Carbon Nanotube Surface Modification on Thermal Properties of Copper–CNT Composites. J. Mater. Chem. 2011, 21(43), 17541–17546. DOI: 10.1039/c1jm12671g.
  • Mallakpour, S.; Soltanian, S. Chemical Surface Coating of MWCNTs with Riboflavin and Its Application for the Production of Poly(ester-imide)/MWCNTs Composites Containing 4,4′-Thiobis(2-Tert-Butyl-5-Methylphenol) Linkages: Thermal and Morphological Properties. J. Appl. Polym. Sci. 2016, 133(4), n/a–n/a. DOI: 10.1002/app.42908.
  • Griehl, W.; Ruestem, D. Nylon-12-Preparation, Properties, and Applications, Ind. Eng. Chem. 1970, 62(3), 16–22. DOI: 10.1021/ie50723a005.
  • Park, M.; Yoon, S.; Park, J.; Park, N.-H.; Ju, S.-Y. Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites. ACS Nano. 2020, 14(8), 10655–10665. DOI: https://doi.org/10.1021/acsnano.0c05170.
  • Choi, I.-S.; Park, M.; Koo, E.; Ju, S.-Y. Dispersions of Carbon Nanotubes by Helical Flavin Surfactants: Solvent Induced Stability and Chirality Enrichment, and Solvatochromism. Carbon. 2021, 184, 346–356. DOI: 10.1016/j.carbon.2021.08.054.
  • Ju, S.-Y.; Abanulo, D. C.; Badalucco, C. A.; Gascón, J. A.; Papadimitrakopoulos, F. Handedness Enantioselection of Carbon Nanotubes Using Helical Assemblies of Flavin Mononucleotide. J. Am. Chem. Soc. 2012, 134(32), 13196–13199. DOI: 10.1021/ja305250g.
  • Lee, J. K., Kim, S.C.; Kim, H.J.; Lee, C.G.; Ju, C.H.; Lee, L.C. A Study on the Zeta Potential Measurement and the Stability Analysis of Nanofluids Using a Particle Image Processing System. Institute for Liquid Atomization and Spray Systems-Korea (ILASS). 2003, 8, 16–22.
  • Mei, H.; Zhao, X.; Gui, X.; Lu, D.; Han, D.; Xiao, S.; Cheng, L. SiC Encapsulated Fe@ CNT Ultra-High Absorptive Shielding Material for High Temperature Resistant EMI Shielding. Ceram. Int. 2019, 45(14), 17144–17151. DOI: 10.1016/j.ceramint.2019.05.268.
  • Das, P.; Deoghare, A. B.; Ranjan Maity, S. Synergistically Improved Thermal Stability and Electromagnetic Interference Shielding Effectiveness (EMI SE) of in-Situ Synthesized Polyaniline/Sulphur Doped Reduced Graphene Oxide (PANI/S-RGO) Nanocomposites. Ceram. Int. 2022, 48(8), 11031–11042. DOI: 10.1016/j.ceramint.2021.12.323.
  • Zhang, C.-S.; Ni, Q.-Q.; Fu, S.-Y.; Kurashiki, K. Electromagnetic Interference Shielding Effect of Nanocomposites with Carbon Nanotube and Shape Memory Polymer, Compos. Sci. Technol. 2007, 67(14), 2973–2980. DOI: 10.1016/j.compscitech.2007.05.011.
  • Wu, N.; Hu, Q.; Wei, R.; Mai, X.; Naik, N.; Pan, D.; Guo, Z.; Shi, Z. Review on the Electromagnetic Interference Shielding Properties of Carbon Based Materials and Their Novel Composites: Recent Progress, Challenges and Prospects. Carbon. 2021, 176, 88–105. DOI: 10.1016/j.carbon.2021.01.124.
  • Dou, R.; Shao, Y.; Li, S.; Yin, B.; Yang, M. Structuring Tri-Continuous Structure Multiphase Composites with Ultralow Conductive Percolation Threshold and Excellent Electromagnetic Shielding Effectiveness Using Simple Melt Mixing. Polymer. 2016, 83, 34–39. DOI: 10.1016/j.polymer.2015.12.005.