149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insights into the friction stir processing of fused filament fabricated polymers with multiple reinforcements

, &
Pages 1621-1638 | Received 04 Apr 2023, Accepted 15 Jun 2023, Published online: 25 Jun 2023

References

  • Strand, S. R.; Sorensen, C. D.; Nelson, T. W. Effects of Friction Stir Welding on Polymer Microstructure. Annu. Tech. Conf. ANTEC, Conf. Proc. 2003, 1, 1078–1082.
  • . Barmouz, M.; Shahi, P.; Asadi, P. Friction Stir Welding/Processing of Polymeric Materials. Woodhead Publishing Limited. 2014. 10.1533/9780857094551.601
  • Patel, A.; Taufik, M. Advances in Nanocomposite Material for Fused Filament Fabrication. Polym. Technol. Mater. 2022, 61(15), 1617–1661. DOI: 10.1080/25740881.2022.2072225.
  • Jain, A.; Mishra, A.; Dubey, A. K.; Kumar, A.; Sahai, A.; Sharma, R. S. Mechanical Characteristics and Failure Morphology of FFF-Printed Poly Lactic Acid Composites Reinforced with Carbon Fibre, Graphene and MWCNTs. J. Thermoplast. Compos. Mater. 2022, 1–26. DOI: 10.1177/08927057221133089.
  • Li, C. X.; Bell, T. Potential of Plasma Nitriding of Polymer for Improved Hardness and Wear Resistance. J. Mater. Process. Technol. 2005, 168(2), 219–224. DOI: 10.1016/j.jmatprotec.2004.10.018.
  • Ramesh, B.; Elayaperumal, A.; Satishkumar, S. Drillability Study of Pultruded and Sheet Moulding Compound Thick Polymeric Composites. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231(2), 268–285. DOI: 10.1177/0954405415573678.
  • Department, K. T.; Y, N. Capturing Efficiency of Melt Mixing. J. Chem. Eng. Jpn. 2011, 44(11), 831–839. DOI: 10.1252/jcej.11we081.
  • Pötschke, P.; Bhattacharyya, A. R.; Janke, A.; Pegel, S.; Leonhardt, A.; Täschner, C.; Ritschel, M.; Roth, S.; Hornbostel, B.; Cech, J. Melt Mixing as Method to Disperse Carbon Nanotubes into Thermoplastic Polymers. Fuller. Nanotub. Carbon Nanostruct. 2005, 13(SUPPL. 1), 211–224. DOI: 10.1081/FST-200039267.
  • Visco, A.; Grasso, A.; Recca, G.; Carbone, D. C.; Pistone, A. Mechanical, Wear and Thermal Behavior of Polyethylene Blended with Graphite Treated in Ball Milling. Polym. (Basel). 2021, 13(6), 6. DOI: https://doi.org/10.3390/polym13060975.
  • Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of Polymer Nanocomposites via Ball Milling: Present Status and Future Perspectives. Prog. Mater. Sci. 2017, 86, 75–126. DOI: 10.1016/j.pmatsci.2017.01.003.
  • Zhitomirsky, V. N.; Grimberg, I.; Joseph, M. C.; Boxman, R. L.; Weiss, B. Z.; Matthews, A.; Goldsmith, S. Vacuum Arc Deposition of Metal/Ceramic Coatings on Polymer Substrates. Surf. Coatings Technol. 1998, 108–109(1–3), 160–165. DOI: 10.1016/S0257-8972(98)00649-5.
  • Straumal, B. B.; Vershinin, N. F.; Cantarero-Saez, A.; Friesel, M.; Zieba, P.; Gust, W. Vacuum Arc Deposition of Protective Layers on Glass and Polymer Substrates. Thin Solid Films. 2001, 383(1–2), 224–226. DOI: 10.1016/S0040-6090(00)01799-5.
  • Kühn-Kauffeldt, M.; Kühn, M.; Mallon, M.; Saur, W.; Fuchs, F. Vacuum Arc Plasma Coating for Polymer Surface Protection— a Plasma Enhanced In-Orbit Additive Manufacturing Concept. Plasma. 2022, 5(4), 470–481. DOI: 10.3390/plasma5040035.
  • . Liu, S.-J. Injection Molding in Polymer Matrix Composites. Woodhead Publishing Limited. 2012. 10.1533/9780857096258.1.13
  • Fu, H.; Xu, H.; Liu, Y.; Yang, Z.; Kormakov, S.; Wu, D.; Sun, J. Overview of Injection Molding Technology for Processing Polymers and Their Composites. ES Mater. Manuf. 2020, 8, 3–23. DOI: 10.30919/esmm5f713.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A. N.; Srivastava, M. A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems via Friction Stir Processing. Crit. Rev. Solid State Mater. Sci. 2018, 43(4), 334–366. DOI: 10.1080/10408436.2017.1358146.
  • Huang, Y.; Meng, X.; Xie, Y.; Wan, L.; Lv, Z.; Cao, J.; Feng, J. Friction Stir Welding/Processing of Polymers and Polymer Matrix Composites. Compos. Part A Appl. Sci. Manuf. 2018, 105, 235–257. DOI: 10.1016/j.compositesa.2017.12.005.
  • Tyagi, L.; Butola, R.; Jha, A. K. Mechanical and Tribological Properties of AA7075-T6 Metal Matrix Composite Reinforced with Ceramic Particles and Aloevera Ash via Friction Stir Processing. Mater. Res. Express. 2020, 7(6), 6. DOI: https://doi.org/10.1088/2053-1591/ab9c5e.
  • Węglowski, M. S. Friction Stir Processing – State of the Art. Arch. Civ. Mech. Eng. 2018, 18(1), 114–129. DOI: 10.1016/j.acme.2017.06.002.
  • Gupta, M. K. Friction Stir Process: A Green Fabrication Technique for Surface Composites—A Review Paper. Sn. Appl. Sci. 2020, 2(4), 1–14. DOI: 10.1007/s42452-020-2330-2.
  • Roeseler, W. G.; Branko Sarh, M. U. K. Composite Structures: The First 100 Years William. 16th International Conference on Composite Materials, 2007, 1–10. https://www.iccm-central.org/Proceedings/ICCM16proceedings/papers/MoAM1-01sp_roeselerw228184p.pdf
  • Doniavi, A.; Babazadeh, S.; Azdast, T.; Hasanzadeh, R. An Investigation on the Mechanical Properties of Friction Stir Welded Polycarbonate/Aluminium Oxide Nanocomposite Sheets. J. Elastomers Plast. 2017, 49(6), 498–512. DOI: 10.1177/0095244316674352.
  • Azdast, T.; Hasanzadeh, R.; Moradian, M. Improving Impact Strength in FSW of Polymeric Nanocomposites Using Stepwise Tool Design. Mater. Manuf. Process. 2018, 33(3), 343–349. DOI: 10.1080/10426914.2017.1339324.
  • Mosavvar, A.; Azdast, T.; Moradian, M.; Hasanzadeh, R. Tensile Properties of Friction Stir Welding of Thermoplastic Pipes Based on a Novel Designed Mechanism. Weld. World. 2019, 63(3), 691–699. DOI: 10.1007/s40194-018-00698-6.
  • Saeedy, S.; Givi, M. K. B. Proceedings of the Institution of Mechanical Engineers, Part B J. Eng. Manuf. Invest. Eff. Crit. Process Parameters. 2011. 10.1243/09544054JEM1989.
  • Sahu, S. K.; Mishra, D.; Mahto, R. P.; Sharma, V. M.; Pal, S. K.; Pal, K.; Banerjee, S.; Dash. Friction Stir Welding of Polypropylene Sheet. Eng. Sci. Technol. An Int. J. 2018, 21(2), 245–254. DOI: 10.1016/j.jestch.2018.03.002.
  • Aghajani, H.; Simchi, A.; Lambiase, F. Friction Stir Welding of Polycarbonate Lap Joints: Relationship Between Processing Parameters and Mechanical Properties. Polym. Test. 2019, 79(July), 105999. DOI: 10.1016/j.polymertesting.2019.105999.
  • Gbadeyan, O. J.; Kanny, K.; Mohan, T. P. Tribological Properties of Layered Silicate Nanoparticle Filled Acrylonitrile Butadiene Styrene (ABS) Nanocomposite Produced Using 3D Printing. Polym. Technol. Mater. 2022, 61(18), 2073–2084. DOI: 10.1080/25740881.2022.2089582.
  • Sharma, A. K. R.; Choudhury, M. R.; Debnath, K. Experimental Investigation of Friction Stir Welding of PLA. Weld. World. 2020, 2020(6), 1011–1021. DOI: 10.1007/s40194-020-00890-7.
  • Mansour, M.; Tsongas, K.; Tzetzis, D. Measurement of the Mechanical and Dynamic Properties of 3D Printed Polylactic Acid Reinforced with Graphene. Polym. Technol. Mater. 2019, 58(11), 1234–1244. DOI: 10.1080/03602559.2018.1542730.
  • Ramezani Dana, H.; El Mansori, M.; Barrat, M.; Seck, C. A. Tensile Behavior of Additively Manufactured Carbon Fiber Reinforced Polyamide-6 Composites. Polym. Technol. Mater. 2022, 61(6), 624–641. DOI: 10.1080/25740881.2021.2005094.
  • Adibeig, M. R.; Hassanifard, S.; Vakili-Tahami, F.; Hattel, J. S. Mater. Today Commun. 2018. DOI: 10.1016/j.mtcomm.2018.09.009.
  • Ali, D. S.; Deveci, S.; Almaskari, F.; Jarrar, F. Friction Stir Welding of High Density Polyethylene – Carbon Black Composite. J. Mater. Process. Tech. 2018. DOI: 10.1016/j.jmatprotec.2018.09.033.
  • Prasad, A.; Kandasubramanian, B. Fused Deposition Processing Polycaprolactone of Composites for Biomedical Applications. Polym. Technol. Mater. 2019, 58(13), 1365–1398. DOI: 10.1080/25740881.2018.1563117.
  • Javadi, M. S.; Ehteshamfar, M. V.; Adibi, H. A Comprehensive Analysis and Prediction of the Effect of Groove Shape and Volume Fraction of Multi-Walled Carbon Nanotubes on the Polymer 3D-Printed Parts in the Friction Stir Welding Process. Polym. Test. 2023, 117, 107844. DOI: 10.1016/J.POLYMERTESTING.2022.107844.
  • Forcellese, A.; Mancia, T.; Pieralisi, M.; Vita, A. Friction Stir Welding of Additively Manufactured Blanks in Thermoplastic Polymer. Procedia. CIRP. 2022, 112, 448–453. DOI: 10.1016/J.PROCIR.2022.09.035.
  • Senthil, S. M.; Kumar, M. B. Effect of Tool Rotational Speed and Traverse Speed on Friction Stir Welding of 3d-Printed Polylactic Acid Material. Appl. Sci. Eng. Prog. 2022, 15(1), 1–9. DOI: 10.14416/j.asep.2021.09.002.
  • Tiwary, V. K.; Ravi, N. J.; Arunkumar, P.; Shivakumar, S.; Deshpande, A. S.; Malik, V. R. Investigations on Friction Stir Joining of 3D Printed Parts to Overcome Bed Size Limitation and Enhance Joint Quality for Unmanned Aircraft Systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234(24), 4857–4871. DOI: 10.1177/0954406220930049.
  • Eslami, S.; Tavares, P. J.; Moreira, P. M. G. P. Friction Stir Welding Tooling for Polymers: Review and Prospects. Int. J. Adv. Manuf. Technol. 2017, 89(5), 1677–1690. DOI: 10.1007/s00170-016-9205-0.
  • Yadav, P.; Singhal, I.; Tyagi, B.; Sahai, A.; Sharma, R. S. Intensifying Hands-On Learning and Experimentation of Fused Deposition Modeling Three-Dimensional Printers. 2020, 309–317. 10.1007/978-981-32-9433-2_27.
  • Singh, P.; Kandikonda, H. R. Friction Stir Processing of Aluminum Alloys. Indian J. Eng. Mater. Sci. 2021, 28(1), 5–20.
  • Abd El-Aziz, M. H.; El-Shabasy, A. B.; Ahmed, M. M. Z.; Hassan, H. A. Assessment of AA7075/SiO2 Surface Composites Fabricated by Friction Stir Processing (FSP). IOP Conf. Ser Mater. Sci. Eng. 2019, 610(1), 1. DOI: https://doi.org/10.1088/1757-899X/610/1/012022.
  • Abraham, S. J.; Madane, S. C. R.; Vettive, S. C. Mechanical Behavior of SiO2 Particulate Reinforced AA 6063 Surface Composites Using Friction Stir Processing. Int. J. Appl. Eng. Res. 2015, 10, 43934–43938.
  • Hamza, A. A.; Jalal, S. R. A Review on Manufacturing the Polymer Composites by Friction Stir Processing. Eur. Polym. J. 2022, 178(August), 111495. DOI: 10.1016/j.eurpolymj.2022.111495.
  • Pramanik, A.; Basak, A. K.; Dong, Y.; Sarker, P. K.; Uddin, M. S.; Littlefair, G.; Dixit, A. R.; Chattopadhyaya, S. Joining of Carbon Fibre Reinforced Polymer (CFRP) Composites and Aluminium Alloys – a Review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. DOI: 10.1016/j.compositesa.2017.06.007.
  • Singh, P.; Sahai, A. Friction Stir Processing of Multiwalled Carbon Nanotubes Reinforced Al ‑ Mg ‑ Si Alloy Composites. J. Inst. Eng. Ser. C. 2023, No. 0123456789. DOI: 10.1007/s40032-023-00962-9.
  • Butola, R.; Pandit, D.; Pratap, C.; Chandra, P. Two Decades of Friction Stir Processing–A Review of Advancements in Composite Fabrication. J. Adhes. Sci. Technol. 2022, 36(8), 795–832. DOI: 10.1080/01694243.2021.1938835.
  • Gao, J.; Shen, Y.; Li, C. Fabrication of High-Density Polyethylene/Multiwalled Carbon Nanotube Composites via Submerged Friction Stir Processing. J. Thermoplast. Compos. Mater. 2017, 30(2), 241–254. DOI: 10.1177/0892705715598360.
  • Deng, S.; Lin, Z.; Xu, B.; Lin, H.; Du, C. Effects of Carbon Fillers on Crystallization Properties and Thermal Conductivity of Poly(phenylene Sulfide). Polym. - Plast. Technol. Eng. 2015, 54(10), 1017–1024. DOI: 10.1080/03602559.2014.986802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.