191
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Influence of interfacial engineering on properties of polymeric nanoarchitectures

ORCID Icon
Pages 1844-1877 | Received 01 May 2023, Accepted 20 Jul 2023, Published online: 31 Jul 2023

References

  • Genix, A. C.; Bocharova, V.; Carroll, B.; Dieudonné-George, P.; Chauveau, E.; Sokolov, A. P.; Oberdisse, J. How Tuning Interfaces Impacts the Dynamics and Structure of Polymer Nanocomposites Simultaneously. ACS Appl. Mater. Interfaces. 2023, 15(5), 7496–7510. DOI: 10.1021/acsami.2c18083.
  • Wang, G.; Wang, R.; Wang, C.; Tang, C.; Zhang, F. Active Responses of Nanoparticle-Polymer Interface/Interphase via the Interfacial Interaction Redistribution. Int. J. Mech. Sci. 2023, 243, 108030. DOI: 10.1016/j.ijmecsci.2022.108030.
  • Abhiram, B. R.; Ghosh, D. Atomic Investigation on Optimal Interfacial Bonding for Enhanced Fracture Properties in Polymer Nanocomposites. Eng. Fract. Mech. 2023, 109078, 109078. DOI: 10.1016/j.engfracmech.2023.109078.
  • Adaval, A.; Subash, C. K.; Shafeeq, V. H.; Singh, S.; Maji, P. K.; Aslam, M.; Bhattacharyya, A. R.; Simon, G. P.; Bhattacharyya, A. R. Exploring Interfacial Interactions, Dielectric, Ferroelectric and Piezoelectric Properties of Ultrahigh Molecular Weight Polyethylene/Graphene Oxide Nanocomposites. J. App. Polym. Sci. 2023, 140(4), e53379. DOI: 10.1002/app.53379.
  • Wang, H.; Lu, R.; Yan, J.; Peng, J.; Tomsia, A. P.; Liang, R.; Sun, G.; Liu, M.; Jiang, L.; Cheng, Q. Tough and Conductive Nacre‐Inspired MXene/Epoxy Layered Bulk Nanocomposites. Angew. Chem. Int. Ed. 2023, 62(9), e202216874. DOI: 10.1002/anie.202216874.
  • Liang, J.; Wang, S.; Luo, Z.; Fu, J.; Hu, J.; He, J.; Li, Q. Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy. Nano-Micro. Lett. 2023, 15(1), 5. DOI: 10.1007/s40820-022-00978-3.
  • Morsi, M. A.; Pashameah, R. A.; Sharma, K.; Alzahrani, E.; Farea, M. O.; Al-Muntaser, A. A. Hybrid MWCNTs/Ag Nanofiller Reinforced PVP/CMC Blend-Based Polymer Nanocomposites for Multifunctional Optoelectronic and Nanodielectric Applications. J. Polym. Environ. 2023, 31(2), 664–676. DOI: 10.1007/s10924-022-02656-2.
  • Bansal, S. A.; Singh, A. P.; Singh, S.; Kumar, S. Bisphenol-A–carbon Nanotube Nanocomposite: Interfacial DFT Prediction and Experimental Strength Testing; Langmuir, 2023.
  • Wang, J.; Sun, Q.; Li, J.; Guo, Y.; Tian, W.; Liu, Y.; Wu, B.; Deng, L.; Mahmood, N.; Jian, X. Polymer-Based Nanocomposites: Role of Interface for Effective Microwave Absorption. Mater. Today Phys. 2023, 31, 100981. DOI: 10.1016/j.mtphys.2023.100981.
  • Al Mahmud, H.; Patil, S. U.; Radue, M. S.; Odegard, G. M. Probing the Influence of Surface Chemical Functionalization on Graphene Nanoplatelets-Epoxy Interfacial Shear Strength Using Molecular Dynamics. Nanomater. 2023, 13(2), 287. DOI: 10.3390/nano13020287.
  • Morsch, S.; Wand, C. R.; Gibbon, S.; Irwin, M.; Siperstein, F.; Lyon, S. The Effect of Cross-Linker Structure on Interfacial Interactions, Polymer Dynamics and Network Composition in an Epoxy-Amine Resin. Appl. Surf. Sci. 2023, 609, 155380. DOI: 10.1016/j.apsusc.2022.155380.
  • Yang, Z.; Chiang, C. C.; Meng, Z. Investigation of Dynamic Impact Responses of Layered Polymer-Graphene Nanocomposite Films Using Coarse-Grained Molecular Dynamics Simulations. Carbon. 2023, 203, 202–210. DOI: 10.1016/j.carbon.2022.11.015.
  • Aslam, F.; Qu, G.; Feng, Y.; Li, S. Tailoring Interfacial Crosslinking Sites to Improve the Dielectric Properties of Epoxy/POSS Nanocomposites. J. Mater. Sci. 2023, 58(4), 1–14. DOI: 10.1007/s10853-022-08111-w.
  • Huang, L.; Yu, F.; Liu, Y.; Lu, A.; Song, Z.; Liu, W.; Zhu, C.; He, H.; Li, S.; Zhao, X.; Cui, S. Structural Analyses of the Bound Rubber in Silica-Filled Silicone Rubber Nanocomposites Reveal Mechanisms of Filler-Rubber Interaction. Compos. Sci. Technol. 2023, 233, 109905. DOI: 10.1016/j.compscitech.2022.109905.
  • Park, G.; Lee, H.; Sim, J. H.; Kim, A.; Kim, M.; Paeng, K. Polymer Segmental Dynamics Near the Interface of Silica Particles in the Particle/Polymer Composites. J. Coll. Interf. Sci. 2023, 629, 256–264. DOI: 10.1016/j.jcis.2022.08.168.
  • Chaturvedi, A. K.; Pappu, A.; Gupta, M. K. Unraveling the Effect of Carbon Nanotubes on the Dielectric and Mechanical Properties of Inorganic Silica Rich Stone Waste Nanocomposites. Mater. Adv. 2023, 4(1), 164–170. DOI: 10.1039/D2MA00930G.
  • Nepal, D.; Kang, S.; Adstedt, K. M.; Kanhaiya, K.; Bockstaller, M. R.; Brinson, L. C.; Buehler, M. J., Coveney, P. V., Dayal, K., El-Awady, J. A., Henderson, L. C. Hierarchically Structured Bioinspired Nanocomposites. Nat. Mater. 2023, 22(1), 18–35. DOI: 10.1038/s41563-022-01384-1.
  • Zare, Y.; Rhee, K. Y.; Park, S. J. Significances of Effective Interphase Characteristics on the Pukanszky Interfacial Factor and Strength of Halloysite-Containing Composites After Mechanical Percolation Onset. Surf. Interfaces. 2023, 37, 102664. DOI: 10.1016/j.surfin.2023.102664.
  • Oh, S. M.; Kim, S. Y. Intensified Nonequilibrium Effect of Polymer Nanocomposites with Decreasing Nanoparticle Size. ACS Appl. Mater. Interfaces. 2023, 15(3), 4527–4537. DOI: 10.1021/acsami.2c20156.
  • Kausar, A.; Ahmad, I.; Eisa, M. H.; Maaza, M.; Khan, H. Manufacturing Strategies for Graphene Derivative Nanocomposites—Current Status and Fruitions. Nanomanufacturing. 2023, 3(1), 1–19. DOI: 10.3390/nanomanufacturing3010001.
  • Behera, R.; Elanseralathan, K. Improved Electrical Properties in Three Phase Poly (Vinylidene Fluoride) Nanocomposites with Hybrid Fillers of Titanium Dioxide and MXene. Mater. Today Commun. 2023, 34, 105334. DOI: 10.1016/j.mtcomm.2023.105334.
  • Prajitha, V.; Jibin, K. P.; Sisanth, K. S.; Abitha, V. K.; Maria, H. J.; Thomas, S. Overview of MXene-Based Polymer Nanocomposites: State of the Art and New Challenges. MXene-Filled Polym. Nanocompos. 2023, 27–41.
  • Kashfipour, M.; Mehra, N.; Zhu, J. A Review on the Role of Interface in Mechanical, Thermal, and Electrical Properties of Polymer Composites. Adv. Compos. Hybrid Mater. 2018, 1(3), 415–439. DOI: 10.1007/s42114-018-0022-9.
  • Huang, J.; Zhou, J.; Liu, M. Interphase in Polymer Nanocomposites. JACS Au. 2022, 2(2), 280–291. DOI: 10.1021/jacsau.1c00430.
  • Ronchi, R. M.; de Lemos, H. G.; Nishihora, R. K.; Cuppari, M. G. D. V.; Santos, S. F. Tribology of Polymer-Based Nanocomposites Reinforced with 2D Materials. Mater. Today Commun. 2023, 34, 105397. DOI: 10.1016/j.mtcomm.2023.105397.
  • Zhang, T.; Wang, H.; Hao, Y.; Liu, C.; Zhao, Y.; Zeng, Y. Optimizing Interfacial Interactions Between Functionalized Graphene and Chitosan for Enhanced Strength and Toughness of Composite Films. Express Polym. Lett. 2023, 17(1), 90–103. DOI: 10.3144/expresspolymlett.2023.7.
  • Xie, A.; Lin, X.; Zhang, C.; Cheng, S.; Dong, W.; Wu, F. Oxygen Vacancy Mediated Polymerization of Pyrrole on MoO3 to Construct Dielectric Nanocomposites for Electromagnetic Waves Absorption Application. J. Alloys Compound. 2023, 938, 168523. DOI: 10.1016/j.jallcom.2022.168523.
  • Meera, K.; Ramesan, M. T. Tailoring the Performance of Boehmite Nanoparticles Reinforced Carboxymethyl Chitosan/Cashew Gum Blend Nanocomposites via Green Synthesis. Polymer. 2023, 268, 125706. DOI: 10.1016/j.polymer.2023.125706.
  • Eghbalian, M.; Ansari, R.; Haghighi, S. Molecular Dynamics Investigation of the Mechanical Properties and Fracture Behaviour of Hydroxyl-Functionalised Carbon and Silicon Carbide Nanotubes-Reinforced Polymer Nanocomposites. Mol. Simul. 2023, 49(4), 1–12. DOI: 10.1080/08927022.2022.2164022.
  • Bekin Acar, S.; Ozdemir, K.; Raihane, M.; Lahcini, M.; Tasdelen, M. A. Thermoset Nanocomposites Reinforced by Vinyl‐Functionalized Halloysite; Polymer Composites, 2023.
  • Singh, D. K.; Verma, R. K. Development of Zirconia-Modified Polymer Nanocomposites for Artificial Bio-Bearing (ABB) Applications. Int. Nano Lett. 2023, 13(1), 1–12. DOI: 10.1007/s40089-023-00393-5.
  • Dey, S.; Kar, A. K. Charge Transfer and ZnO Defect State Mediated FRET Dependent Luminescence in Nanocomposites Based on PPy Nanowires and ZnO Microflowers; Ceramics International, 2023.
  • Suvarna, S.; Ramesan, K.; Parvathi, M. T. Role of Copper Alumina Nanoparticles on the Performance of Polyvinylchloride Nanocomposites. J. Vinyl Add. Tech. 2023, 29(1), 17–28. DOI: 10.1002/vnl.21939.
  • Kausar, A.; Ahmad, I.; Eisa, M. H.; Maaza, M. Avant-Garde Polymer/Graphene Nanocomposites for Corrosion Protection: Design, Features, and Performance. Corrosi. Mater.Degrad. 2023, 4(1), 33–53. DOI: 10.3390/cmd4010004.
  • Ren, Z.; Sun, H.; Zhou, X.; Chi, X.; Bi, H.; Ji, T.; Xu, M.; Cai, L. Insights from Molecular Dynamics Simulations for Interfacial Effects Between Polylactic Acid and Wood Cell Wall Constituents. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107310. DOI: 10.1016/j.compositesa.2022.107310.
  • Neuman, A.; Zhang, S.; Lee, D.; Riggleman, R. A. Increases in Miscibility of a Binary Polymer Blend Confined within a Nanoparticle Packing; Macromolecules, 2023.
  • Mokhtari Dizaji, S.; Katbab, A. A.; Hajibabazadeh, S. Role of Interfacial Compatibilizer and Functionality of Rubber Phase on Micromorphology Development and Mechanical Properties of PP/EPDM/Nanosilica Ternary Nanocomposite. Polym. Bull. 2023, 80(2), 1353–1368. DOI: 10.1007/s00289-022-04112-6.
  • Song, Y.; Wu, G.; Wang, D.; Peng, J.; Zhang, C.; Zheng, Q. (2023). Tailoring Reinforcement and Strain Softening Behaviors of Natural Rubber Vulcanizates Nanocomposites by Dopamine-Modified Silica. Composites Part B: Engineering, 110552.
  • Meera, K.; Ramesan, M. T. Performance of Boehmite Nanoparticles Reinforced Carboxymethyl Chitosan/Polyvinyl Alcohol Blend Nanocomposites Tailored Through Green Synthesis. J. Polym. Environ. 2023, 31(2), 447–460. DOI: 10.1007/s10924-022-02649-1.
  • Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J. Graphene Oxide as a Promising Nanofiller for Polymer Composite. Surf. Interfaces. 2023, 37, 102747. DOI: 10.1016/j.surfin.2023.102747.
  • Al-Bermany, E.; Mekhalif, A. T. M.; Banimuslem, H. A.; Abdali, K.; Sabri, M. M. Effect of Green Synthesis Bimetallic Ag@ SiO2 Core–Shell Nanoparticles on Absorption Behavior and Electrical Properties of PVA-PEO Nanocomposites for Optoelectronic Applications. Silicon. 2023, 15(9), 1–13. DOI: 10.1007/s12633-023-02332-7.
  • Guo, L.; Liang, R.; Zhang, Y.; Wang, L.; Wang, F.; Yen, J.; Jiang, J. Molecular Dynamics Study on the Interaction of Tricalcium Silicate/Polymer Composites. Chem. Phys. Lett. 2023, 811, 140193. DOI: 10.1016/j.cplett.2022.140193.
  • Ahmed, D. S.; Al-Baidhani, M.; Adil, H.; Bufaroosha, M.; Rashad, A. A.; Zainulabdeen, K.; Yousif, E. Recent Study of PF/ZnO Nanocomposites: Synthesis, Characterization and Optical Properties. Mater. Sci. Energy Technol. 2023, 6, 29–34. DOI: 10.1016/j.mset.2022.11.004.
  • Zhao, M.; Liu, L.; Zhang, B.; Sun, M.; Zhang, X.; Zhang, X.; Li, J.; Wang, L. Epoxy Composites with Functionalized Molybdenum Disulfide Nanoplatelets Additives. R.S.C. Adv. 2018, 8(61), 35170. DOI: 10.1039/C8RA07448H.
  • Sahu, M.; Narasimhan, L.; Raichur, A. M.; Sover, A.; Ciobanu, R. C.; Lucanu, N.; Aradoaei, M. Improving Fracture Toughness of Tetrafunctional Epoxy with Functionalized 2D Molybdenum Disulfide Nanosheets. Polym. 2021, 13(24), 4440. DOI: 10.3390/polym13244440.
  • Zhang, H.; Zhang, X.; Yoon, K.-B. Preparation of Isotactic Polypropylene/Exfoliated MoS2 Nanocomposites via in situ Intercalative Polymerization. Polym. 2017, 9(12), 490. DOI: 10.3390/polym9100490.
  • Rao, Y.; Shivamurthy, B.; Mohan, N.; Shetty, N.; Rangappa, S.; Siengchin, S. Investigation of Tensile Properties, Hardness, and Morphology of H-BN and MoS2 Filler Modified Carbon Fabric/Epoxy Composites. Cogent Eng. 2023, 10(1), 1, 2178129. DOI: 10.1080/23311916.2023.2178129.
  • Ahmed, H. M.; Abd El-Fattah, Z. M.; Anad, N. S.; Attallah, M.; El-Bahnasawy, H. H. Thermo-Mechanical and Opto-Electrical Study of Cr-Doped-ZnO-Based Polyvinyl Chloride Nanocomposites. J. Mater. Sci. Mater. Electron. 2023, 34(2), 113. DOI: 10.1007/s10854-022-09412-1.
  • Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors. 2011, 11(11), 10691–10723. DOI: 10.3390/s111110691.
  • Karmakar, R.; Sinha, S.; Das, A. K.; Dutta, B.; Pramanik, S.; Kuiri, P. K.; Meikap, A. K. Elucidation of Inter/Intra Molecular H-Bonding Mediated Charge Transportation Mechanism in Water Swelled, Hydrophilic Organic PVA-Co3O4 Nanocomposite Films. Surf. Interfaces. 2023, 36, 102567. DOI: 10.1016/j.surfin.2022.102567.
  • Akhukov, M. A.; Chorkov, V. A.; Gavrilov, A. A.; Guseva, D. V.; Khalatur, P. G.; Khokhlov, A. R.; Trepalin, S. V.; Komarov, P. V.; Okun, M. V.; Potapkin, B. V.; Rudyak, V. Y. MULTICOMP Package for Multilevel Simulation of Polymer Nanocomposites. Comput. Mater. Sci. 2023, 216, 111832. DOI: 10.1016/j.commatsci.2022.111832.
  • Parvathi, K.; Ramesan, M. T. Tailoring the Structural, Electrical and Thermal Properties of Zinc Oxide Reinforced Chlorinated Natural Rubber/Poly (Indole) Blend Nanocomposites for Flexible Electrochemical Devices. J. Polym. Res. 2023, 30(2), 1–15. DOI: 10.1007/s10965-022-03427-2.
  • Yang, Z.; Chiang, C.-C.; Meng, Z. Investigation of Dynamic Impact Response of PMMA-Graphene Layered Nanocomposite Films Using Molecular Dynamics Simulations. Bull. Am. Phys. Soc. 2023, 203, 202–210. DOI: 10.1016/j.carbon.2022.11.015.
  • Shi, C.; An, B.; Zhang, L.; Zai, Z.; Shi, Z.; Wang, Z.; Ma, J. Contribution of Surface Carboxyl of Cellulose in the Formation Mechanism and Interfacial Catalysis Activity of ZnO/Cellulose Nanocomposites. Appl. Surf. Sci. 2023, 618, 156633. DOI: 10.1016/j.apsusc.2023.156633.
  • Wang, X.; Li, N.; Yin, J.; Wang, X.; Xu, L.; Jiao, T.; Qin, Z. Interface Interaction-Mediated Design of Tough and Conductive MXene-Composited Polymer Hydrogel with High Stretchability and Low Hysteresis for High-Performance Multiple Sensing. Sci. China Mater. 2023, 66(1), 272–283.
  • Liu, S.; Liu, C.; Bai, Z.; Lin, G.; Liu, X. Metal-Organic Frameworks Mediated Interface Engineering of Polymer Nanocomposites for Enhanced Dielectric Constant and Low Dielectric Loss. Surf. Interfaces. 2023, 36, 102586. DOI: 10.1016/j.surfin.2022.102586.
  • Leungpuangkaew, S.; Amornkitbamrung, L.; Phetnoi, N.; Sapcharoenkun, C.; Jubsilp, C.; Ekgasit, S.; Rimdusit, S. Magnetic-And Light-Responsive Shape Memory Polymer Nanocomposites from Bio-Based Benzoxazine Resin and Iron Oxide Nanoparticles. Adv. Ind. Eng. Polym. Res. 2023, 6(3), 215–225. DOI: 10.1016/j.aiepr.2023.01.003.
  • Althubiti, N. A.; Al-Harbi, N.; Sendi, R. K.; Atta, A.; Henaish, A. M. A. Surface Characteriza-Tion and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials. Inorganics. 2023, 11(2), 74. DOI: 10.3390/inorganics11020074.
  • Li, J.; Liu, X.; Feng, Y.; Chen, D.; Li, Y.; Yue, D.; Huang, B.; Yin, J. Constructing Bidirectional-Matched Interface Between Polymer and 2D Nanosheets for Enhancing Energy Storage Performance of the Composites. Energy Storage Mater. 2023, 54, 605–614. DOI: 10.1016/j.ensm.2022.11.009.
  • Zha, Z.; Gao, Y.; Zhang, D.; Wen, Y.; Li, R.; Shi, Y.; Dang, Z. Flexible Electrospun Polyvinylidene Fluoride Nanofibrous Composite with High Electrical Conductivity and Good Mechanical Properties by Employing Ultrasonication Induced Dispersion of Multi-Walled Carbon Nanotubes.
  • Taherian, R. Experimental and Analytical Model for the Electrical Conductivity of Polymer-Based Nanocomposites. Compos. Sci. Technol. 2016, 123, 17–31. DOI: 10.1016/j.compscitech.2015.11.029.
  • Thirunavukkarasu, N.; Gunasekaran, H. B.; Peng, S.; Laroui, A.; Wu, L.; Weng, Z. Study on the Interface Toughening of Particle/Fibre Reinforced Epoxy Composites with Molecularly Designed Core–Shell Particles and Various Interface 3D Models. Mater. Des. 2023, 225, 111510. DOI: 10.1016/j.matdes.2022.111510.
  • Makableh, Y. F.; Bozeya, A.; Alnasra, I.; Rawshdeh, T.; Hammam, H. A. Investigation of the Structure and Tensile Strength of Ultrahigh Molecular Weight Polyethylene and Amide Functionalized Single-Walled Carbon Nanotubes Nanocomposites. Polym. Bull. 2023, 1–19. DOI: 10.1007/s00289-023-04681-0.
  • Panicker, S. S.; Rajeev, S. P.; Thomas, V. Impact of PVDF and Its Copolymer-Based Nanocomposites for Flexible and Wearable Energy Harvesters. Nano-Struct. Nano-Object. 2023, 34, 100949. DOI: 10.1016/j.nanoso.2023.100949.
  • Fan, W. H.; Zhou, J.; Ding, Y. J.; Xiao, Z. L. Fabrication and Performance of Nitrocellulose Nanoparticles Reinforced Environment-Friendly Waterborne Ethyl Cellulose (Surelease®) Nanocomposites. Colloids Surf. A Physicochem. Eng. Aspects. 2023, 662, 130997. DOI: 10.1016/j.colsurfa.2023.130997.
  • Ji, H.; Yang, H.; Zhou, X.; Sun, C.; Li, L.; Zhao, S.; Yu, J.; Li, S.; Wang, R.; Zhang, L. Preparation of Bio-Based Elastomer and Its Nanocomposites Based on Dimethyl Itaconate with Versatile Properties. Compos. B Eng. 2023, 248, 110383. DOI: 10.1016/j.compositesb.2022.110383.
  • Raghvan, S.; Singhal, P.; Rattan, S.; Tyagi, A. K. Durable PP/EPDM/GF/SiO2 Nanocomposites with Improved Strength and Toughness for Orthotic Applications. J. Mech. Behav. Biomed. Mater. 2023, 138, 105582. DOI: 10.1016/j.jmbbm.2022.105582.
  • Bismark, S.; Tawiah, B. Thermal and Crystallization Behavior of MXene/Polymer Nanocomposites. In MXene-Filled Polymer Nanocomposites. 2023,CRC Press. pp. 133–152. DOI: 10.1201/9781003164975-7.
  • Sun, Y.; Yang, X.; Ding, R.; Hong, S. Y.; Lee, J.; An, Z.; Suhr, J. Super-Elastic and Mechanically Durable MXene-Based Nanocomposite Aerogels Enabled by Interfacial Engineering with Dual Crosslinking Strategy; Nano Research, 2023.
  • Kausar, A. Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. C. 2023, 9(1), 13. DOI: 10.3390/c9010013.
  • Lu, Z.; Geng, B.; Ma, Q.; Ning, D.; Zhao, R.; Kong, F.; Songfeng, E. Polymer Induced Strengthening and Toughening of Aramid Nanofiber Film: The Importance of Densification and Hydrogen Bonding. Appl. Surf. Sci. 2023, 607, 155045. DOI: 10.1016/j.apsusc.2022.155045.
  • Qian, Y.; Su, W.; Li, L.; Fu, H.; Li, J.; Zhang, Y. Synthesis of 3D Hollow Layered Double Hydroxide-Molybdenum Disulfide Hybrid Materials and Their Application in Flame Retardant Thermoplastic Polyurethane. Polymers. 2022, 14(8), 1506. DOI: 10.3390/polym14081506.
  • Qian, Y.; Su, W.; Li, L.; Zhao, R.; Fu, H.; Li, J.; Zhang, P.; Guo, Q.; Ma, J. Cooperative Effect of ZIF-67- Derived Hollow NiCo-LDH and MoS2 on Enhancing the Flame Retardancy of Thermoplastic Polyurethane. Polymers. 2022, 14(11), 2204. DOI: 10.3390/polym14112204.
  • Sun, X.; Li, Z.; Das, O.; Hedenqvist, M. S. Superior Flame Retardancy and Smoke Suppression of Epoxy Resins with Zinc Ferrite@ Polyphosphazene Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107417. DOI: 10.1016/j.compositesa.2022.107417.
  • Behera, K.; Chen, J. F.; Yang, J. M.; Chang, Y. H.; Chiu, F. C. Evident Improvement in Burning Anti-Dripping Performance, Ductility and Electrical Conductivity of PLA/PVDF/PMMA Ternary Blend-Based Nanocomposites with Additions of Carbon Nanotubes and Organoclay. Compos. B Eng. 2023, 248, 110371. DOI: 10.1016/j.compositesb.2022.110371.
  • Ji, Y.; Wen, Z.; Fan, J.; Zeng, X.; Zeng, X.; Sun, R.; Ren, L. Adaptable Thermal Conductive, High Toughness and Compliant Poly (Dimethylsiloxane) Elastomer Composites Based on Interfacial Coordination Bonds. Compos. Sci. Technol. 2023, 231, 109840. DOI: 10.1016/j.compscitech.2022.109840.
  • George, E.; Manoli, A.; VijayanP, P.; Vahabi, H.; George, S. C.; Anas, S. Polydopamine Modified Polymeric Carbon Nitride Nanosheet Based Abs Nanocomposites for Better Thermal. Frictional And Mechanical Performance. Frictional And Mechanical Performance.
  • Duarte Garcia, M.; Isaza Merino, C. A.; Patiño Arcila, I. D. Analytical Models for the Effective Tensile Strength of Nanocomposites: A Comprehensive Review. J. Braz. Soc. Mech. Sci. Eng. 2023, 45(2), 105. DOI: 10.1007/s40430-022-03928-7.
  • Song, T.; Xu, F.; Qin, Z.; Pan, Y. T.; Lan, Y.; Yang, Y.; Cheng, R.; Li, D.; Yang, R. Toughed Interface of Mg (OH) 2/Polymer Composites with Improved Mechanical Performance via Intramolecular “Bridge”. Appl. Surf. Sci. 2023, 607, 155100. DOI: 10.1016/j.apsusc.2022.155100.
  • Singh, A.; Li, Y. 2D Materials Guided Self-Assembly of Polymer: Molecular Dynamics Simulation Study. AIAA SCITECH 2023 Forum. 2023, 0142.
  • Mandal, S.; Sethi, S.; Biswas, K. Flexural Behavior of pMwcnts Filled Glass Fiber/Epoxy Nanocomposites: Synthesis and Interfacial Failure. J. Appl. Polym. Sci. 2023, 140(6), e53438. DOI: 10.1002/app.53438.
  • Hamza, M. F.; Soleimani, H.; Ridha, S.; Ahmed, A. A.; Sikiru, S. Double Layer Chemical Encapsulation of SiO2 Nanoparticles for Interfacial Tension Reduction Under Low Salinity Condition. J. Mol. Liq. 2023, 371, 121100. DOI: 10.1016/j.molliq.2022.121100.
  • Zhan, Y.; Zheng, X.; Nan, B.; Lu, M.; Shi, J.; Wu, K. Flexible MXene/Aramid Nanofiber Nanocomposite Film with High Thermal Conductivity and Flame Retardancy. Eur. Polym. J. 2023, 186, 111847. DOI: 10.1016/j.eurpolymj.2023.111847.
  • Badry, R.; Ibrahim, A.; Gamal, F.; Elhaes, H.; Yahia, I. S.; Zahran, H. Y.; Ibrahim, M. A.; Abdel-Wahab, M. S.; Zyoud, S. H.; Ibrahim, M. A. Design and Implementation of Low-Cost Gas Sensor Based on Functionalized Graphene Quantum Dot/Polyvinyl Alcohol Polymeric Nanocomposites. Opt. Quant. Electron. 2023, 55(3), 1–13. DOI: 10.1007/s11082-022-04510-0.
  • Ni, X.; Wang, X.; Lin, J.; Liu, X.; Cui, Z. K.; Zuo, P.; Zhuang, Q. Ultra-Low Dielectric Loss and High Thermal Stability Achieved by Hierarchical Microcapacitor Structure in Nanocomposites via Surface Topological Modulation. Mater. Today Energy. 2023, 31, 101221. DOI: 10.1016/j.mtener.2022.101221.
  • Sarmah, A.; Morales, M. A.; Srivastava, A.; Upama, S.; Nandi, A.; Henry, T. C.; Green, M. J.; Vashisth, A. Interfacial Carbon Fiber–Matrix Interactions in Thermosetting Composites Volumetrically Cured by Electromagnetic Fields. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107276. DOI: 10.1016/j.compositesa.2022.107276.
  • Feng, P.; Shen, S.; Shuai, Y.; Peng, S.; Shuai, C.; Chen, S. PLLA Grafting Draws GO from PGA Phase to the Interface in PLLA/PGA Bone Scaffold Owing Enhanced Interfacial Bonding. Sustainable Mater. Technol. 2023, 35, e00566. DOI: 10.1016/j.susmat.2023.e00566.
  • Wilke, L. A.; Robertson, C. G.; Karsten, D. A.; Hardman, N. J. Detailed Understanding of the Carbon Black–Polymer Interface in Filled Rubber Composites. Carbon. 2023, 201, 520–528. DOI: 10.1016/j.carbon.2022.09.032.
  • Cao, J.; Li, J.; Majdi, H. S.; Le, B. N.; Khadimallah, M. A.; Ali, H. E.; Assilzadeh, H. Assessment of Graphene-Based Polymers for Sustainable Wastewater Treatment: Development of a Soft Computing Approach. Chemosphere. 2023, 313, 137189. DOI: 10.1016/j.chemosphere.2022.137189.
  • Chauhan, A.; Agnihotri, P. K.; Basu, S. Molecular Dynamic Study on Modulating the Interfacial Thermal Conductivity of Carbon Fiber/Epoxy Interfaces. Comput. Mater. Sci. 2023, 217, 111914. DOI: 10.1016/j.commatsci.2022.111914.
  • Ahmad, Z.; Kumar, S.; Trinh, C. K.; Shim, J. J.; Lee, J. S. Decoupling Electrochemical Parameters of Molecular-Level-Controlled Polypyrrole and Graphene Oxide Nanocomposite. Appl. Surf. Sci. 2023, 610, 155464. DOI: 10.1016/j.apsusc.2022.155464.
  • Im, S.; Cho, S. Y.; Cho, J. H.; Hwang, G. T.; Kingon, A. I.; Bu, S. D.; Jeong, C. K.; Kim, S.-H.; Jeong, C. K. Study on Relaxor Polymer Interface Matrix for Piezoelectric Nanocomposite Generators. Appl. Surf. Sci. 2023, 613, 156031. DOI: 10.1016/j.apsusc.2022.156031.
  • Madhad, H. V.; Vasava, D. V. Carboxyl Graphene Reinforced Melamine-Based Polyamide Nanocomposites. J. Thermoplast. Compos. Mater. 2023, 36(3), 1073–1087. DOI: 10.1177/08927057211051411.
  • Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites. J. Phys. Chem. C. 2012, 116(25), 13629–13639. DOI: 10.1021/jp3026545.
  • Mu, L.; Li, Y.; Mehra, N.; Ji, T.; Zhu, J. Expedited Phonon Transfer in Interfacially Constrained Polymer Chain Along Selforganized Amino Acid Crystals. ACS Appl. Mater. Interfaces. 2017, 9(13), 12138–12145. DOI: 10.1021/acsami.7b02257.
  • Mu, L.; He, J.; Li, Y.; Ji, T.; Mehra, N.; Shi, Y.; Zhu, J. The Molecular Origin of Efficient Phonon Transfer in Modulated Polymer Blends: Effect of Hydrogen Bonding on Polymer Coil Size and Assembled Microstructure. J. Phys. Chem. C. 2017, 121(26), 14204–14212. DOI: 10.1021/acs.jpcc.7b03726.
  • Tasleem, S.; Tahir, M. Constructing Exfoliated, Ti3C2T X MXene-Dispersed, LaCoo3 and pC3n4-Based Nanocomposites with in situ Grown Titania Through Etching/Oxidation for Stimulating Solar H2 Production; Energy & Fuels, 2023.
  • Mathew, S.; Radhakrishnan, E. K. Characterization of Polymer/Clay Nanocomposites. In Nano-Innovations in Food Packaging. 2023,Apple Academic Press. pp. 75–100. DOI: 10.1201/9781003277422-4.
  • Ramesan, M. T.; Subburaj, M.; Mathew, G.; Bahuleyan, B. K. Utilization of Copper Sulphide Nanoparticles for the Development of Cashew Tree Gum/Chitin Biopolymer Blend Nanocomposites. J. Thermoplast. Compos. Mater. 2023, 36(3), 984–1003. DOI: 10.1177/08927057211046282.
  • Abdolmaleki, H.; Haugen, A. B.; Buhl, K. B.; Daasbjerg, K.; Agarwala, S. Interfacial Engineering of PVDF‐TrFe Toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applications. Adv. Sci. 2023, 10(6), 2205942. DOI: 10.1002/advs.202205942.
  • Wen, Y.; Chen, B. Green Synthesis and Characterization of a Wholly Bio-Based Self-Healing Polyester Elastomer and Its Graphene Nanocomposites. Mater. Today Sustainability. 2023, 21, 100328. DOI: 10.1016/j.mtsust.2023.100328.
  • Sadek, E. M.; Ahmed, S. M.; El-Nashar, D. E.; Mansour, N. A. Effect of Modified Graphite Nanoflakes on Curing, Mechanical and Dielectric Properties of Nitrile Rubber Nanocomposites. Polym. Bull. 2023, 80(1), 847–863. DOI: 10.1007/s00289-021-03916-2.
  • Chen, J.; Han, J. Comparative Performance of Carbon Nanotubes and Nanoclays as Flame Retardants for Epoxy Composites. Results Phys. 2019, 14, 102481. DOI: 10.1016/j.rinp.2019.102481.
  • Ma, W.-S.; Wu, L.; Yang, F.; Wang, S.-F. Non-Covalently Modified Reduced Graphene Oxide/Polyurethane Nanocomposites with Good Mechanical and Thermal Properties. J. Mater. Sci. 2014, 49(2), 562–571. DOI: 10.1007/s10853-013-7736-4.
  • Zong, P.; Fu, J.; Chen, L.; Yin, J.; Dong, X.; Yuan, S.; Shi, L.; Deng, W. Effect of Aminopropylisobutyl Polyhedral Oligomeric Silsesquioxane Functionalized Graphene on the Thermal Conductivity and Electrical Insulation Properties of Epoxy Composites. Rsc. Adv. 2016, 6(13), 10498–10506. DOI: 10.1039/C5RA24885J.
  • Chen, J.; Chen, X.; Meng, F.; Li, D.; Tian, X.; Wang, Z.; Zhou, Z. Super-High Thermal Conductivity of Polyamide-6/graphene Oxide Composites Through in situ Polymerization. High Perform. Polym. 2017, 29(5), 585–594. DOI: 10.1177/0954008316655861.
  • Dai, W.; Yu, J.; Liu, Z.; Wang, Y.; Song, Y.; Lyu, J.; Bai, H.; Nishimura, K.; Jiang, N. Enhanced Thermal Conductivity and Retained Electrical Insulation for Polyimide Composites with SiC Nanowires Grown on Graphene Hybrid Fillers. Composites. Part A. 2015, 76, 73–81. DOI: 10.1016/j.compositesa.2015.05.017.
  • Gu, J.; Xie, C.; Li, H.; Dang, J.; Geng, W.; Zhang, Q. Thermal Percolation Behavior of Graphene Nanoplatelets/Polyphenylene Sulfide Thermal Conductivity Composites. Polym. Compos. 2014, 35(6), 1087–1092. DOI: 10.1002/pc.22756.
  • Sun, R.; Yao, H.; Zhang, H.-B.; Li, Y.; Mai, Y.-W.; Yu, Z.-Z. Decoration of Defect-Free Graphene Nanoplatelets with Alumina for Thermally Conductive and Electrically Insulating Epoxy Composites. Compos. Sci. Technol. 2016, 137, 16–23. DOI: 10.1016/j.compscitech.2016.10.017.
  • Wang, F.; Drzal, L. T.; Qin, Y.; Huang, Z. Mechanical Properties and Thermal Conductivity of Graphene Nanoplatelet/Epoxy Composites. J. Mater. Sci. 2015, 50(3), 1082–1093. DOI: 10.1007/s10853-014-8665-6.
  • Wong, C.; Bollampally, R. S. Comparative Study of Thermally Conductive Fillers for Use in Liquid Encapsulants for Electronic Packaging. IEEE Trans. Adv. Packag. 1999, 22(1), 54–59. DOI: 10.1109/6040.746543.
  • Cho, E.-C.; Huang, J.-H.; Li, C.-P.; Chang-Jian, C.-W.; Lee, K.-C.; Hsiao, Y.-S.; Huang, J.-H. Graphene-Based Thermoplastic Composites and Their Application for LED Thermal Management. Carbon. 2016, 102, 66–73. DOI: 10.1016/j.carbon.2016.01.097.
  • Yan, H.; Tang, Y.; Su, J.; Yang, X. Enhanced Thermal–Mechanical Properties of Polymer Composites with Hybrid Boron Nitride Nanofillers. Appl. Phys. A Mater. Sci. Process. 2014, 114(2), 331–337. DOI: 10.1007/s00339-013-8149-6.
  • Kuila, B. K.; Malik, S.; Batabyal, S. K.; Nandi, A. K. In-Situ Synthesis of Soluble Poly (3-Hexylthiophene)/multiwalled Carbon Nanotube Composite: Morphology, Structure, and Conductivi-Ty. Macromolecules. 2007, 40(2), 278–287. DOI: 10.1021/ma061548e.
  • Chen, J.; Ramasubramaniam, R.; Xue, C.; Liu, H. A Versatile, Molecular Engineering Ap-Proach to Simultaneously Enhanced, Multifunctional Carbon-Nanotube–polymer Composites. Adv. Funct. Mater. 2006, 16(1), 114–119. DOI: 10.1002/adfm.200500590.
  • Long, Y.; Chen, Z.; Zhang, X.; Zhang, J.; Liu, Z. Synthesis and Electrical Properties of Car-Bon Nanotube Polyaniline Composites. Appl. Phys. Lett. 2004, 85(10), 1796–1798. DOI: 10.1063/1.1786370.
  • Karim, M. R.; Lee, C. J.; Lee, M. S. Synthesis and Characterization of Conducting Polythio-Phene/carbon Nanotubes Composites. J. Polym. Sci. Part A Polym. Chem. 2006, 44(18), 5283–5290. DOI: 10.1002/pola.21640.
  • Kwon, J. Y.; Kim, H. D. Preparation and Properties of Acid Treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites. J. Appl. Polym. Sci. 2005, 96(2), 595–604. DOI: 10.1002/app.21436.
  • Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant Dielectric Permittivities in Func-Tionalized Carbon-Nanotube/electroactive Polymer Nanocomposites. Adv. Mater. 2007, 19(6), 852–857. DOI: 10.1002/adma.200600703.
  • Karim, M. R.; Lee, C. J.; Chowdhury, A. S.; Nahar, N.; Lee, M. S. Radiolytic Synthesis of Con-Ducting Polypyrrole/Carbon Nanotube Composites. Mater. Lett. 2007, 61(8), 1688–1692. DOI: 10.1016/j.matlet.2006.07.100.
  • Du, F.-P.; Tang, H.; Huang, D.-Y. Thermal Conductivity of Epoxy Resin Reinforced with Magnesium Oxide Coated Multiwalled Carbon Nanotubes. Int. J. Polym. Sci. 2013, 541823, 1–5. DOI: 10.1155/2013/541823.
  • Blake, R.; Coleman, J. N.; Byrne, M. T.; McCarthy, J. E.; Perova, T. S.; Blau, W. J.; Fonseca, A.; Nagy, J. B.; Gun’ko, Y. K. Reinforcement of Poly (Vinyl Chloride) and Polystyrene Using Chlorinated Pol-Ypropylene Grafted Carbon Nanotubes. J. Mater. Chem. 2006, 16(43), 4206–4213. DOI: 10.1039/b612305h.
  • Xie, L.; Xu, F.; Qiu, F.; Lu, H.; Yang, Y. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. Macromolecules. 2007, 40(9), 3296–3305. DOI: 10.1021/ma062103t.
  • Blake, R.; Gun’ko, Y. K.; Coleman, J.; Cadek, M.; Fonseca, A.; Nagy, J. B.; Blau, W. J. A Generic Organometallic Approach Toward Ultrastrong Carbon Nanotube Polymer Composites. J. Am. Chem. Soc. 2004, 126(33), 10226–10227. DOI: 10.1021/ja0474805.
  • Buffa, F.; Abraham, G. A.; Grady, B. P.; Resasco, D. Effect of Nanotube Functionalization on the Properties of Single-Walled Carbon Nanotube/Polyurethane Composites. J. Polym. Sci. Part B: Polym. Phys. 2007, 45(4), 490–501. DOI: 10.1002/polb.21069.
  • Shim, H. C.; Kwak, Y. K.; Han, C.-S.; Kim, S. Enhancement of Adhesion Between Carbon Nanotubes and Polymer Substrates Using Microwave Irradiation. Scr. Mater. 2009, 61(1), 32–35. DOI: 10.1016/j.scriptamat.2009.02.060.
  • Chang, C.-M.; Liu, Y.-L. Functionalization of Multi-Walled Carbon Nanotubes with Non-Reactive Polymers Through an Ozone Mediated Process for the Preparation of a Wide Range of High Performance Polymer/Carbon Nanotube Composites. Carbon. 2010, 48(4), 1289–1297. DOI: 10.1016/j.carbon.2009.12.002.
  • Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Graft-Ing of Epoxy Chains Onto Graphene Oxide for Epoxy Composites with Improved Mechanical and Thermal Properties. Carbon. 2014, 69, 467–480.
  • Cao, L.; Liu, X.; Na, H.; Wu, Y.; Zheng, W.; Zhu, J. How a Biobased Epoxy Monomer En-Hanced the Properties of Diglycidyl Ether of Bisphenol a (DGEBA)/Graphene Composites. J. Mater. Chem. A. 2013, 1(16), 5081–5088. DOI: 10.1039/c3ta01700a.
  • Shankar, A. N.; Prasad, M.; Selvaraj, R.; George, M.; Mohanty, A.; Sivakumar, J. Experimental Investigation of the Hydrophobic and Modal Properties of Epoxy Nanocomposites Reinforced with Graphene Nanofillers; Transactions of the Indian Institute of Metals, 2023; pp. 1–7.
  • Kausar, A. Polymeric Nanocomposite with Polyhedral Oligomeric Silsesquioxane and Nanocarbon (Fullerene, Graphene, Carbon Nanotube, Nanodiamond)—Futuristic Headways. Polym.-Plast. Technol. Mater. 2023, 62(7), 1–14. DOI: 10.1080/25740881.2022.2164724.
  • Liu, C.; Liu, S.; Feng, X.; Zhu, K.; Lin, G.; Bai, Z.; Wang, L.; Liu, X. Phthalocyanine-Mediated Interfacial Self-Assembly of Magnetic Graphene Nanocomposites Toward Low-Frequency Electromagnetic Wave Absorption. Chem. Eng. J. 2023, 452, 139483. DOI: 10.1016/j.cej.2022.139483.
  • Ahmad, N.; Majid, W. A.; Zaini, M. S.; Rosli, A. K.; Adnan, R. H.; Halim, N. A. Energy Harvesting Performance of a Novel Polymer-Nanocrystal Composite of P (VDF-Trfe)/ZnO QD Films. Mater. Sci. Eng. 2023, 289, 116256. DOI: 10.1016/j.mseb.2022.116256.
  • Kulkarni, N. D.; Kumari, P. Role of rGO on Mechanical, Thermal, and Piezoelectric Behaviour of PVDF-BTO Nanocomposites for Energy Harvesting Applications. J. Polym. Res. 2023, 30(2), 79. DOI: 10.1007/s10965-023-03449-4.
  • Lacarbonara, W.; Guruva, S. K.; Carboni, B.; Krause, B.; Janke, A.; Formica, G.; Lanzara, G. Unusual Softening-To-Hardening Switching in Branched Carbon Nanotube Nanocomposites. 2023.
  • Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic Thermal Diffusivity of Hexagonal Boron Nitride-Filled Polyimide Films: Effects of Filler Particle Size, Aggregation, Orientation, and Polymer Chain Rigidity. ACS Appl. Mater. Interfaces. 2013, 5(10), 4374–4382. DOI: 10.1021/am400615z.
  • Sreevidya, U.; Shalini, V.; Kavirajan, S.; Maiyelvaganan, K. R.; Prakash, M.; Bharathi, K. K.; Navaneethan, M.; Archana, J.; Harish, S.; Navaneethan, M. Investigation of Non-Covalent Interactions in Polypyrrole/Polyaniline/Carbon Black Ternary Complex for Enhanced Thermoelectric Properties via Interfacial Carrier Scattering and π-π Stacking. J. Colloid Interface Sci. 2023, 630, 46–60. DOI: 10.1016/j.jcis.2022.09.056.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Electrochemical Energy Storage Applications. J. Energy Storage. 2023, 69, 107940. DOI: 10.1016/j.est.2023.107940.
  • Idumah, C. I.; Odera, R. S.; Ezeani, E. O.; Low, J. H.; Tanjung, F. A.; Damiri, F.; Wong, S. L. Construction, Characterization, Properties and Multifunctional Applications of Stimuli-Responsive Shape Memory Polymeric Nanoarchitectures: A Review. Polym. Plast. Technol. Eng. 2023, 62(10), 1247–1272. DOI: 10.1080/25740881.2023.2204936.
  • Idumah, C. I. Design, Fabrication, Characterization and Properties of Metallic and Conductive Smart Polymeric Textiles for Multifunctional Applications. Nano-Struct. Nano-Object. 2023, 35, 100982. DOI: 10.1016/j.nanoso.2023.100982.
  • Idumah, C. I. Thermal Expansivity of Polymer Nanocomposites and Applications. Polym. Plast. Technol. Eng. 2023, 62(9), 1178–1203. DOI: 10.1080/25740881.2023.2204952.
  • Idumah, C. I. Borophene Polymeric Nanoarchitecture and Applications: A Review. Polym. Plast. Technol. Eng. 2023, 62(12), 1560–1575. DOI: 10.1080/25740881.2023.2222798.
  • Idumah, C. I.; Obumneme, E. E. Novel Trends in Phosphorene and Phosphorene@ Polymeric Nanoarchitectures and Applications. Emergent Mater. 2023, 6(3), 1–22. DOI: 10.1007/s42247-023-00507-x.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous Mater. 1–19.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emergent Mater. 2023, 1–31.
  • Ng, Q. Y.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J. Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 105855, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–18. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications; JCIS Open, 2022; p. 100073.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous Mater. 2023, 1–19. DOI: 10.1007/s10934-023-01446-y.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emergent Mater. 2023, 1–31.
  • Ng, Q.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J. Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53 14. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–18. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently Emerging Trends in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. Polym. Bull. 2023, 1–31 2.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35(12), 2665–2704. DOI: 10.1177/0892705720930782.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open. 2022, 100070.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Eng. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I.; Ezika, A. C. Recent Advancements in Hybridized Polymer Nano-Biocomposites for Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(16), 1262–1276. DOI: 10.1080/00914037.2021.1960344.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–13. DOI: 10.1080/00914037.2022.2124256.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 1–37.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent Advances in Polymeric Hydrogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–32. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I.; Ezika, A. C.; Enwerem, U. E. A Review on Biomolecular Immobilization of Polymeric Textile Biocomposites, Bionanocomposites, and Nano-Biocomposites. J. Text. Inst. 2022, 113(9), 2016–2032. DOI: 10.1080/00405000.2021.1957277.
  • Idumah, C. I. MXene Polymeric Nanoarchitectures Mechanical, Deformation, and Failure Mechanism: A Review. Polym. Plast. Technol. Eng. 1–24.
  • Idumah, C. I. On MXene Conducting Polymer Nanocomposites Micro-Supercapacitors and Applications. 2022.
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 08927057221122096. DOI: 10.1177/08927057221122096.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications. 2022.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E.; Ohagwu, C. C.; Aronu, M. E. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. Mater. 2022, 32(11), 1–21.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57(31), 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Cryogel Nanostructures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–21. DOI: 10.1080/00914037.2022.2097678.
  • Idumah, C. I. Emerging Advancements in MXene Polysaccharide Bionanoarchitectures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–22. DOI: 10.1080/00914037.2022.2098297.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(10), 1039–1070. DOI: 10.1080/25740881.2022.2033769.
  • Idumah, C. I. Emerging Trends in Poly (Lactic-Co-Glycolic) Acid Bionanoarchitectures and Applications Cleaner Materials. Cleaner Mater. 2022, 5, 100102–100114. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoarchitectures and Applications. Cleaner Mater. 2022, 5, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Okonkwo, U. C.; Ohagwu, C.; Aronu, M. E.; Okafor, C. E.; Idumah, C. I.; Okokpujie, I. P.; Chukwu, N. N.; Chukwunyelu, C. E. Ionizing Radiation Protection and the Linear No-Threshold Controversy: Extent of Support or Counter to the Prevailing Paradigm. J. Environ. Radioact. 2022, 253, 106984. DOI: 10.1016/j.jenvrad.2022.106984.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Adekoya, G. J.; Odera, R. S. Recently Emerging Trends in MXene Hybrid Conductive Polymer Energy Storage Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(8), 861–887. DOI: 10.1080/25740881.2022.2029888.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(7), 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 09673911221082482. DOI: 10.1177/09673911221082482.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Hamam, Y. On Energy Storage Capacity of Conductive MXene Hybrid Nanoarchitectures. J. Energy Storage. 2022, 45, 103686. DOI: 10.1016/j.est.2021.103686.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight Against COVID-19. J. Text. Inst. 2021, 112(12), 2056–2076 59. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. J. Recent Advancements in Flame Retardancy of MXene Polymer Nanoarchitectures. Saf. Extreme Environ. 2021, 3(3), 253–273. DOI: 10.1007/s42797-021-00046-w.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(14), 1519–1531.
  • Idumah, C. I.; Nwuzor, I.; Odera, S. R. Recent Advancements in Self-Healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials. Int. J. Polym. Mater. Polym. Biomater. 2021, 70(13), 941–966. DOI: 10.1080/00914037.2020.1767615.
  • Idumah, C. I.; Ezika, A. C.; Okpechi, V. U. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2021, 29(5), 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34(6), 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I. Novel Trends in Magnetic Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2021, 60(8), 830–848. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2021, 29(4), 246–258. DOI: 10.1177/0967391120910882.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing Anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3(1), 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I. Novel Advancements in Green and Sustainable Polymeric Nanocomposites Coatings. Curr. Res. Green Sustainable Chem. 2021, 4, 100173. DOI: 10.1016/j.crgsc.2021.100173.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Current Research in Green and Sustainable Chemistry. 2021.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Current Res. Green Sustainable Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Current Res. Green Sustainable Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 147(5), 1–14. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interfaces. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer Nano-Biocomposites. J. Polym.-Plast. Technol. Mater. 2020, 60(3), 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, C. I.; Odera, S. R. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym.-Plast. Technol. Mater. 2020, 59(11), 1167–1190. DOI: 10.1080/25740881.2020.1725816.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J. U.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2020, 33(4), 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J. U.; Igba, E. C. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interfaces. 2020, 27(1), 1–72. DOI: 10.1080/09276440.2019.1600972.
  • Idumah, C. I.; Nwuzor, I. C. Novel Trends in Plastic Waste Management. SN Appl. Sci. 2019, 1(11), 1–14. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on Xgnp-PP Nano-Biocomposites. SN Appl. Sci. 2019, 1(10), 1–11 54. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Nwuzor ICRecently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces. 2019, 26(9), 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C. I.; Hassan, A.; Ihuoma, D. E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58(10), 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Orhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostruct. Polym. Compos. Biomed. Appl. 2019, 139–166.
  • Akubue, B. N.; Idumah, C. I.; David, E. Challenges of Teaching and Learning Clothing and Textiles for Entrepreneurship: Case Study of Ebonyi State University, Abakaliki. J. Hydro-environ. Res. 2018, 25(2).
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134(3), 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C. I.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14(5), 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C. I.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polymer Eng. 2016, 36(9), 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32(3), 305–361. DOI: 10.1515/revce-2015-0046.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32(2), 223–264. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Synth. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2016, 2(1), 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C. I.; Hassan, A.; Affam, A. C. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31(2), 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C. I. Comparative Evaluation of the Effects of Time of Heat Setting and Wet Processing on Shearing Properties of Knitted Ingeo™ Poly (Lactic Acid) (PLA) and Polyethyleneterepthalate. Am. J. Mater. Eng. Technol. 2014, 2(1), 1–6.
  • Idumah, C. I.; Nwachukwu, A. Comparative Analysis of the Effect of Heatsetting and Wet Processes on the Tensile Properties of Poly Lactic Acid (PLA) and Poly Ethylene Terephthalate (PET) Knitted Fabrics. Int. J. Mater. Methods Technol. 2013, 1(4), 45–64.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heatsetting on the Tensile Properties of ingeo™ Poly (Lactic Acid) (PLA) Fabric. J. Homepage: Www. IJEE. IEE Foundation Org. 2013, 4(5), 797–806.
  • Idumah, C. I. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J. Textile Sci. Eng 2013, 3, 137. 3. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I. Comparative Analysis of the Effects of Time of Heat Setting and Wet Processing on Tensile Properties of Treated and Untreated Knitted PLA Fabric. Am. J. Mater. Sci. Eng. 2013, 1(3), 40–45.
  • Idumah, C. I. A Study of the Effects of Time of Heat Setting and Wet Processes on Shearing (Gf/Cm) Properties of Treated and Untreated Griege Knitted Ingeo™ Poly (Lactic Acid) (Pla) and …. J. Textile Sci. Eng, 4, 148. DOI:10.4172/2165-8064.1000148.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J. Textile Sci. Eng. 2013, 4(3), 797–806. DOI: 10.4172/2165-8064.1000137.
  • Okonkwo, C. U.; Idumah, C. I.; Okafor, C. E.; Ezeani, E. O. Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite. Polym. Plast. Technol. Eng. 2009, 48(8), 821–826. DOI: 10.1080/03602550902994870.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitectures and Applications. Polym. Eng. Sci. 2023. DOI: 10.1002/pen.26421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.