180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of a low-cost efficient novel Ti3AlC2 MAX phase / Polyvinyl alcohol / Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) polymer nanocomposite film for symmetric supercapacitor

&
Pages 2121-2137 | Received 26 Jun 2023, Accepted 16 Aug 2023, Published online: 01 Sep 2023

References

  • Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Flexible and Wearable Power Sources for Next‐Generation Wearable Electronics. Batter Supercaps. 2020, 3(12), 1262–1274. DOI: 10.1002/batt.202000115.
  • Senthilkumar, S. T.; Selvan, R. K. Fabrication and Performance Studies of a Cable-Type Flexible Asymmetric Supercapacitor. Phys. Chem. Chem. Phys. 2014, 16(29), 15692–15698. DOI: 10.1039/c4cp00955j.
  • Oyedotun, K. O.; Ighalo, J. O.; Amaku, J. F.; Olisah, C.; Adeola, A. O.; Iwuozor, K. O.; Akpomie, K. G.; Conradie, J.; Adegoke, K. A. Advances in Supercapacitor Development: Materials, Processes, and Applications. J. Electron. Mater. 2023, 52(1), 96–129. DOI: 10.1007/s11664-022-09987-9.
  • Panda, S.; Deshmukh, K.; Pasha, S. K. K.; Theerthagiri, J.; Manickam, S.; Choi, M. Y. MXene Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives. Coord. Chem. Rev. 2022, 462, 214518. DOI: 10.1016/j.ccr.2022.214518.
  • Barsoum, M. W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; John Wiley & Sons, 2013. DOI: 10.1002/9783527654581.
  • Magnus, C.; Cooper, D.; Jantzen, C.; Lambert, H.; Abram, T.; Rainforth, M. Synthesis and High Temperature Corrosion Behaviour of Nearly Monolithic Ti3AlC2 MAX Phase in Molten Chloride Salt. Corros. Sci. 2021, 182, 109193. DOI: 10.1016/j.corsci.2020.109193.
  • Sun, Z. M. Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds. Int. Mater. Rev. 2011, 56(3), 143–166. DOI: 10.1179/1743280410Y.0000000001.
  • Fu, L.; Xia, W. MAX Phases as Nanolaminate Materials: Chemical Composition, Microstructure, Synthesis, Properties, and Applications. Adv. Eng. Mater. 2021, 23(4), 2001191. DOI: 10.1002/adem.202001191.
  • Torres, C.; Quispe, R.; Calderón, N. Z.; Eggert, L.; Hopfeld, M.; Rojas, C.; Camargo, M. K.; Bund, A.; Schaaf, P.; Grieseler, R. Development of the Phase Composition and the Properties of Ti2AlC and Ti3AlC2 MAX-Phase Thin Films–A Multilayer Approach Towards High Phase Purity. Appl. Surf. Sci. 2021, 537, 147864. DOI: 10.1016/j.apsusc.2020.147864.
  • Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as Emerging Nanofillers for High-Performance Polymer Composites: A Review. Compos. Part B Eng. 2021, 217, 108867. DOI: 10.1016/j.compositesb.2021.108867.
  • Mok, C. F.; Ching, Y. C.; Muhamad, F.; Abu Osman, N. A.; Hai, N. D.; Che Hassan, C. R. Adsorption of Dyes Using Poly (Vinyl Alcohol)(pva) and PVA-Based Polymer Composite Adsorbents: A Review. J Polym. Environ. 2020, 28(3), 775–793. DOI: 10.1007/s10924-020-01656-4.
  • Wang, Y.; Qu, Z.; Wang, W.; Yu, D. PVA/CMC/PEDOT: PSS Mixture Hydrogels with High Response and Low Impedance Electronic Signals for ECG Monitoring. Colloids Surf. B Biointerfaces. 2021, 208, 112088. DOI: 10.1016/j.colsurfb.2021.112088.
  • Kayser, L. V.; Lipomi, D. J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT: PSS. Adv. Mater. 2019, 31(10), 1806133. DOI: 10.1002/adma.201806133.
  • Yildirim, E.; Wu, G.; Yong, X.; Tan, T. L.; Zhu, Q.; Xu, J.; Ouyang, J.; Wang, J.-S.; Yang, S.-W. A Theoretical Mechanistic Study on Electrical Conductivity Enhancement of DMSO Treated PEDOT: PSS. J. Mater. Chem. C. 2018, 6(19), 5122–5131. DOI: 10.1039/C8TC00917A.
  • Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT: PSS: A Review. Adv. Electron. Mater. 2015, 1(4), 1500017. DOI: 10.1002/aelm.201500017.
  • Pasha, A.; Roy, A. S.; Murugendrappa, M. V.; Al-Hartomy, O. A.; Khasim, S. Conductivity and Dielectric Properties of PEDOT-PSS Doped DMSO Nano Composite Thin Films. J. Mater. Sci.: Mater. Electron. 2016, 27(8), 8332–8339. DOI: 10.1007/s10854-016-4842-5.
  • Wang, W.-J.; Li, C.-W.; Chen, K.-P. Electrical, Dielectric and Mechanical Properties of a Novel Ti3AlC2/Epoxy Resin Conductive Composites. Mater. Lett. 2013, 110, 61–64. DOI: 10.1016/j.matlet.2013.07.117.
  • Wang, Z.; Fan, J.; Guo, X.; Ji, J.; Sun, Z. Enhanced Permittivity of Negative Permittivity Middle-Layer Sandwich Polymer Matrix Composites Through Conductive Filling with Flake MAX Phase Ceramics. R.S.C. Adv. 2020, 10(45), 27025–27032. DOI: 10.1039/D0RA03493B.
  • Feng, Q.-K.; Dong, Q.; Zhang, D.-L.; Pei, J.-Y.; Dang, Z.-M. Enhancement of High-Temperature Dielectric Energy Storage Performances of Polyimide Nanocomposites Utilizing Surface Functionalized MAX Nanosheets. Compos. Sci. Technol. 2022, 218, 109193. DOI: 10.1016/j.compscitech.2021.109193.
  • Vijayakumar, M. P.; Raja, S.; Rangaraj, L. Development of MAX Phase Particles Reinforced Shape Memory Epoxy/PCL Polymer Composites. Trans. Indian Natl. Acad. Eng. 2022, 7(3), 897–909. DOI: 10.1007/s41403-022-00336-0.
  • Alsoruji, G.; Moustafa, E. B.; Alzahrani, M. A.; Taha, M. A. Preparation of Silicon Bronze-Based Hybrid Nanocomposites with Excellent Mechanical, Electrical, and Wear Properties by Adding the Ti3AlC2 MAX Phase and Granite via Powder Metallurgy. Silicon. 2023, 15(6), 2753–2763. DOI: 10.1007/s12633-022-02165-w.
  • Chen, W.; Chen, J.; Zhu, M.; Zheng, J.; Ma, N.; Liu, X.; Chen, Z.; Huang, Z. Fabrication of SiC Ceramics with Invariable Value Resistivity in the Range of 20–400℃ Using MAX Phase-Ti3AlC2 Additives. J. Eur. Ceram. Soc. 2021, 41(13), 6248–6254. DOI: 10.1016/j.jeurceramsoc.2021.06.037.
  • Hong, J.; Park, B. Additive-Free Electrophoretic-Deposited Ti3AlC2 MAX Phase Li-Ion Battery Anode. Mater. Lett. 2023, 330, 133227. DOI: 10.1016/j.matlet.2022.133227.
  • Jamshidi, R.; Heidarpour, A.; Aghamohammadi, H.; Eslami-Farsani, R. Improvement in the Mechanical and Tribological Behavior of Epoxy Matrix with the Inclusion of Synthesized Ti3AlC2 MAX Particles. J. Compos. Mater. 2019, 53(26–27), 3819–3827. DOI: 10.1177/0021998319848140.
  • Henniche, A.; Derradji, M.; Wang, J.; Liu, W.; Ouyang, J.; Medjahed, A. High-Performance Polymeric Nanocomposites from Phthalonitrile Resin and Silane Surface–Modified Ti3AlC2 MAX Phase. High Perform. Polym. 2018, 30(4), 427–436. DOI: 10.1177/0954008317699678.
  • Zhang, Y.-F.; Guo, M.-M.; Zhang, Y.; Tang, C. Y.; Jiang, C.; Dong, Y.; Law, W.-C.; Du, F.-P. F. Stretchable and Conductive PVA/PEDOT: PSS Composite Hydrogels Prepared by SIPN Strategy. Polym. Test. 2020, 81, 106213. DOI: 10.1016/j.polymertesting.2019.106213.
  • Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P. FTIR Spectroscopy Characterization of Poly (Vinyl Alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. Mater. Sci. Eng. C. 2008, 28(4), 539–548. DOI: 10.1016/j.msec.2007.10.088.
  • Muntaz Begum, S.; Rao, M. C.; Ravikumar, R. Cu2+ Doped PVA Passivated ZnSe Nanoparticles-Preparation, Characterization and Properties. J. Inorg. Organomet. Polym. Mater. 2013, 23(2), 350–356. DOI: 10.1007/s10904-012-9783-8.
  • Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Unidirectional Water-Penetration Composite Fibrous Film via Electrospinning. Soft Matter. 2012, 8(22), 5996–5999. DOI: 10.1039/c2sm25514f.
  • Sreeja, S.; Sreedhanya, S.; Smijesh, N.; Philip, R.; Muneera, C. I. Organic Dye Impregnated Poly (Vinyl Alcohol) Nanocomposite as an Efficient Optical Limiter: Structure, Morphology and Photophysical Properties. J. Mater. Chem. C. 2013, 1(24), 3851–3861. DOI: 10.1039/c3tc30427b.
  • Bhajantri, R. F.; Ravindrachary, V.; Harisha, A.; Crasta, V.; Nayak, S. P.; Poojary, B. Microstructural Studies on BaCl2 Doped Poly (Vinyl Alcohol). Polymer (Guildf.). 2006, 47(10), 3591–3598. DOI: 10.1016/j.polymer.2006.03.054.
  • Kharazmi, A.; Faraji, N.; Hussin, R. M.; Saion, E.; Yunus, W. M. M.; Behzad, K. S. Optical, Opto-Thermal and Thermal Properties of ZnS–PVA Nanofluids Synthesized Through a Radiolytic Approach. Beilstein J. Nanotechnol. 2015, 6(1), 529–536. DOI: 10.3762/bjnano.6.55.
  • Abood, T. W.; Shabeeb, K. M.; Alzubaydi, A. B.; Majdi, H. S.; Al-Juboori, R. A.; Alsalhy, Q. F. Effect of MAX Phase Ti3ALC2 on the Ultrafiltration Membrane Properties and Performance. Membr. (Basel). 2023, 13(5), 456. DOI: 10.3390/membranes13050456.
  • Hussain, K.; Mehboob, S.; Ahmad, I.; Mumtaz, M.; Khan, A. R.; Mujtaba-Ul-Hassan, S.; Mehran, M. T.; Iqbal, Z.; Ahmad, J.; Mehmood, M. Terahertz Time-Domain Spectroscopy of Thin and Flexible CNT-Modified MXene/Polymer Composites. Appl. Phys. A. 2021, 127(5), 1–8. DOI: 10.1007/s00339-021-04525-6.
  • Shuck, C. E.; Han, M.; Maleski, K.; Hantanasirisakul, K.; Kim, S. J.; Choi, J.; Reil, W. E. B.; Gogotsi, Y. Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2T X MXene. Acs Appl. Nano Mater. 2019, 2(6), 3368–3376. DOI: 10.1021/acsanm.9b00286.
  • Magnus, C.; Cooper, D.; Sharp, J.; Rainforth, W. M. Microstructural Evolution and Wear Mechanism of Ti3AlC2–Ti2AlC Dual MAX Phase Composite Consolidated by Spark Plasma Sintering (SPS). Wear. 2019, 438, 203013. DOI: 10.1016/j.wear.2019.203013.
  • Karthikeyan, B.; Hariharan, S.; Sasidharan, A.; Gayathri, V.; Arun, T.; Akbari-Fakhrabadi, A.; Madhumitha, C. O. Optical, Vibrational and Fluorescence Recombination Pathway Properties of Nano SiO2-PVA Composite Films. Opt. Mater. (Amst). 2019, 90, 139–144. DOI: 10.1016/j.optmat.2019.01.063.
  • Sheha, E.; Nasr, M.; El-Mansy, M. K. Characterization of Poly (Vinyl Alcohol)/Poly (3, 4-Ethylenedioxythiophene) Poly (Styrenesulfonate) Polymer Blend: Structure, Optical Absorption, Electrical and Dielectric Properties. Phys. Scr. 2013, 88(3), 35701. DOI: 10.1088/0031-8949/88/03/035701.
  • Hebbar, V.; Bhajantri, R. F.; Ravikumar, H. B.; Ningaraju, S. Role of Free Volumes in Conducting Properties of GO and RGO Filled PVA-PEDOT: PSS Composite Free Standing Films: A Positron Annihilation Lifetime Study. J. Phys. Chem. Solids. 2019, 126, 242–256. DOI: 10.1016/j.jpcs.2018.11.014.
  • Li, X.; Xie, X.; Gonzalez-Julian, J.; Malzbender, J.; Yang, R. Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials. J. Eur. Ceram. Soc. 2020, 40(15), 5258–5271. DOI: 10.1016/j.jeurceramsoc.2020.07.043.
  • Vaisakh, S. S.; Mahesh, K. V.; Balanand, S.; Metz, R.; Hassanzadeh, M.; Ananthakumar, S. MAX Phase Ternary Carbide Derived 2-D Ceramic Nanostructures [CDCN] as Chemically Interactive Functional Fillers for Damage Tolerant Epoxy Polymer Nanocomposites. R.S.C. Adv. 2015, 5(21), 16521–16531. DOI: 10.1039/C4RA16518G.
  • Zhang, Z.; Cao, H.; Quan, Y.; Ma, R.; Pentzer, E. B.; Green, M. J.; Wang, Q. Thermal Stability and Flammability Studies of MXene–Organic Hybrid Polystyrene Nanocomposites. Polymers (Basel). 2022, 14(6), 1213. DOI: 10.3390/polym14061213.
  • Wang, X. H.; Zhou, Y. C. Stability and Selective Oxidation of Aluminum in Nano-Laminate Ti3AlC2 Upon Heating in Argon. Chem. Mater. 2003, 15(19), 3716–3720. DOI: 10.1021/cm030022v.
  • Salim, E.; Tarabiah, A. E. The Influence of NiO Nanoparticles on Structural, Optical and Dielectric Properties of CMC/PVA/PEDOT: PSS Nanocomposites. J. Inorg. Organomet. Polym. Mater. 2023, 33(6), 1638–1645. DOI: 10.1007/s10904-023-02591-2.
  • Abdelghany, A. M.; Abdelrazek, E. M.; Rashad, D. S. Impact of in situ Preparation of CdS Filled PVP Nano-Composite. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 130, 302–308. DOI: 10.1016/j.saa.2014.04.049.
  • Gong, X.; Tang, C. Y.; Pan, L.; Hao, Z.; Tsui, C. P. Characterization of Poly (Vinyl Alcohol)(pva)/ZnO Nanocomposites Prepared by a One-Pot Method. Compos. Part B Eng. 2014, 60, 144–149. DOI: 10.1016/j.compositesb.2013.12.045.
  • Dundar, I.; Mere, A.; Mikli, V.; Krunks, M.; Oja Acik, I. Thickness Effect on Photocatalytic Activity of TiO2 Thin Films Fabricated by Ultrasonic Spray Pyrolysis. Catalysts. 2020, 10(9), 1058. DOI: 10.3390/catal10091058.
  • Wang, X.; Feng, G.; Li, M.; Ge, M. Effect of PEDOT: PSS Content on Structure and Properties of PEDOT: PSS/Poly (Vinyl Alcohol) Composite Fiber. Polym. Bull. 2019, 76(4), 2097–2111. DOI: 10.1007/s00289-018-2459-y.
  • Vas, J. V.; Joy Thomas, M. Monte Carlo Modelling of Percolation and Conductivity in Carbon Filled Polymer Nanocomposites. IET Sci. Meas. Technol. 2018, 12(1), 98–105. DOI: 10.1049/iet-smt.2017.0093.
  • Jyoti, J.; Singh, B. P.; Arya, A. K.; Dhakate, S. R. Dynamic Mechanical Properties of Multiwall Carbon Nanotube Reinforced ABS Composites and Their Correlation with Entanglement Density, Adhesion, Reinforcement and C Factor. R.S.C. Adv. 2016, 6(5), 3997–4006. DOI: 10.1039/C5RA25561A.
  • Bagotia, N.; Sharma, D. K. Systematic Study of Dynamic Mechanical and Thermal Properties of Multiwalled Carbon Nanotube Reinforced Polycarbonate/Ethylene Methyl Acrylate Nanocomposites. Polym. Test. 2019, 73, 425–432. DOI: 10.1016/j.polymertesting.2018.12.006.
  • M Hadi, J.; B Aziz, S.; M Nofal, M.; Hussein, S.; Hafiz, M. H.; Brza, M. A.; Abdulwahid, R. T.; Kadir, M. F. Z.; Woo, H. J. Electrical, Dielectric Property and Electrochemical Performances of Plasticized Silver Ion-Conducting Chitosan-Based Polymer Nanocomposites. Membr. (Basel). 2020, 10(7), 151. DOI: 10.3390/membranes10070151.
  • Fu, J.; Li, L.; Lee, D.; Yun, J. M.; Ryu, B. K.; Kim, K. H. Enhanced Electrochemical Performance of Ti3C2Tx MXene Film Based Supercapacitors in H2SO4/KI Redox Additive Electrolyte. Appl. Surf. Sci. 2020, 504, 144250. DOI: 10.1016/j.apsusc.2019.144250.
  • Schoetz, T.; Gordon, L. W.; Ivanov, S.; Bund, A.; Mandler, D.; Messinger, R. J. D. F. Pseudocapacitive, and Capacitive Charge Storage: A Tutorial for the Characterization of Batteries, Supercapacitors, and Hybrid Systems. Electrochim. Acta. 2022, 412, 140072. DOI: 10.1016/j.electacta.2022.140072.
  • Purushothaman, K. K.; Cuba, M.; Muralidharan, G. Supercapacitor Behavior of α-MnMoo4 Nanorods on Different Electrolytes. Mater. Res. Bull. 2012, 47(11), 3348–3351. DOI: 10.1016/j.materresbull.2012.07.027.
  • Eftekhari, A.; Mohamedi, M. Tailoring Pseudocapacitive Materials from a Mechanistic Perspective. Mater. Today Energy. 2017, 6, 211–229. DOI: 10.1016/j.mtener.2017.10.009.
  • She, Y.; Tang, B.; Li, D.; Tang, X.; Qiu, J.; Shang, Z.; Hu, W. Mixed Nickel-Cobalt-Molybdenum Metal Oxide Nanosheet Arrays for Hybrid Supercapacitor Applications. Coatings. 2018, 8(10), 340. DOI: 10.3390/coatings8100340.
  • Kharade, P. M.; Chavan, S. G.; Salunkhe, D. J.; Joshi, P. B.; Mane, S. M.; Kulkarni, S. B. Synthesis and Characterization of PANI/MnO2 Bi-Layered Electrode and Its Electrochemical Supercapacitor Properties. Mater. Res. Bull. 2014, 52, 37–41. DOI: 10.1016/j.materresbull.2013.12.058.
  • Chen, L.; Song, Z.; Liu, G.; Qiu, J.; Yu, C.; Qin, J.; Ma, L.; Tian, F.; Liu, W. Synthesis and Electrochemical Performance of Polyaniline–MnO2 Nanowire Composites for Supercapacitors. J. Phys. Chem. Solids. 2013, 74(2), 360–365. DOI: 10.1016/j.jpcs.2012.10.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.