113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Copolymers and terpolymers of vinyl phosphonic acid, acrylonitrile, methyl acrylate, and vinyl acetate. Thermal oxidative stabilization and their nanofiber

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2030-2042 | Received 26 Jun 2023, Accepted 18 Aug 2023, Published online: 27 Aug 2023

References

  • Boryniec, S.; Przygocki, W. Polymer Combustion Processes. 3. Flame Retardants for Polymeric Materials, Progress in Rubber, Plastic and Recycling Technology. Prog. Rubber And Plast. Technol. 2001, 17(2), 127–148. DOI: 10.1177/147776060101700204.
  • Morgan, A. B. The Future of Flame Retardant Polymers – Unmet Needs and Likely New Approaches. Polym. Rev. 2018, 59(1), 25–54. DOI: 10.1080/15583724.2018.1454948.
  • Macarie, L.; Ilia, G. Synthesis and Polymerization of Vinylphosphonic Acid. In Monge, S. David, G., Eds. Phosphorus-Based Polymers from Synthesis to Applications. The Royal Society of Chemistry: Cambridge: 2014; pp. 51–67. 10.1039/9781782624523-00051
  • Coleman, M. M.; Sivy, G. T. Fourier Transform Ir Studies of the Degradation of Polyacrylonitrile Copolymers—III: Acrylonitrile/Vinyl Acetate Copolymers. Carbon. 1981, 19(2), 133–135. DOI: 10.1016/0008-6223(81)90120-2.
  • Coleman, M. M.; Sivy, G. T. Fourier Transform Ir Studies of the Degradation of Polyacrylonitrile Copolymers—I: Introduction and Comparative Rates of the Degradation of Three Copolymers Below 200°C and Under Reduced Pressure. Carbon. 1981, 19(2), 123–126. DOI: 10.1016/0008-6223(81)90118-4.
  • Bahrami, S. H.; Bajaj, P.; Sen, K. Thermal Behavior of Acrylonitrile Carboxylic Acid Copolymers. J. Appl. Polym. Sci. 2003, 88(3), 685–698. DOI: 10.1002/app.11637.
  • Bajaj, P.; Roopanwal, A. K. Thermal Stabilization of Acrylic Precursors for the Production of Carbon Fibers: An Overview. J. Macromol. Sci. Part C Polym. Rev. 1997, 37(1), 97. DOI: 10.1080/15321799708014734.
  • Park, D. U.; Ryu, J. H.; Han, N. K.; Park, W. H.; Jeong, Y. G. Thermal Analysis on the Stabilization Behavior of Ternary Copolymers Based on Acrylonitrile, Methyl Acrylate and Itaconic Acid. Fibers. Polym. 2018, 19(12), 2439. DOI: 10.1007/s12221-018-8782-y.
  • Köken, N.; Akşit, E.; Yilmaz, M. Nanofibers from Chitosan/Polyacrylonitrile/Sepiolite Nanocomposites, Polymer-Plastics Technology and Materials. 2021, 60(16), 1820–1832. DOI: 10.1080/25740881.2021.1934014.
  • Wyman, P.; Crook, V.; Ebdon, J.; Hunt, B.; Joseph, P. Flame-Retarding Effects of Dialkyl-P-Vinyl Benzyl Phosphonates in Copolymers with Acrylonitrile. Polym. Int. 2006, 55(7), 764–771. DOI: 10.1002/pi.1946.
  • Willy, H.; Franz, R.; Anneliese, R.; Herbert, V. Vinylphosphonic Acid Polymers and Process for Making Them, U.S. Patent, 1967, 3297663. https://patents.google.com/patent/US3297663A/en.
  • Yılmaz, M.; Akar, A.; Köken, N.; Kızılcan, N. Polymers of Vinylphosphonic Acid, Acrylonitrile, and Methyl Acrylate and Their Nanofibers. J. Appl. Polym. Sci. 2020, 137(35), 49023. DOI: 10.1002/app.49023.
  • Yılmaz, M.; Süer, N. C.; Eren, T.; Akar, A. Alendronic Acid Bearing Acrylic Monomer to Produce Heat Resistant Polyacrylonitrile Copolymer and Nanofibers. Polymer. Plastic Technol Mater. 2021, 60(17), 1833–1844. DOI: 10.1080/25740881.2021.1934015.
  • Xiao, S.; Cao, W.; Wang, B.; Xu, L.; Chen, B. Mechanism and Kinetics of Oxidation During the Thermal Stabilization of Polyacrylonitrile Fibers. J. Appl. Polym. Sci. 2013, 127(4), 3198–3203. DOI: 10.1002/app.37733.
  • Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A Review of Heat Treatment on Polyacrylonitrile Fiber. Polym. Degrad. Stab. 2007, 92(8), 1421–1432. DOI: 10.1016/j.polymdegradstab.2007.03.023.
  • Cho, D. W.; Hong, S. C. Synergistic Effect of Comonomers on the Thermal Oxidative Stabilization of Polyacrylonitrile Copolymers for Carbon Materials. Polym. Degrad. Stab. 2019, 161, 191–197. DOI: 10.1016/j.polymdegradstab.2019.01.027.
  • Morris, E. A.; Weisenberger, M. C.; Bradley, S. B.; Abdallah, M. G.; Mecham, S. J.; Pisipati, P.; McGrath, J. E. Synthesis, Spinning, and Properties of Very High Molecular Weight Poly(acrylonitrile-Co-Methyl Acrylate) for High-Performance Precursors for Carbon Fiber. Polymer. 2014, 55(25), 6471–6482. DOI: 10.1016/j.polymer.2014.10.029.
  • Bhanu, V. A.; Rangarajan, P.; Wiles, K.; Bortner, M.; Sankarpandian, M.; Godshall, D.; Glass, T. E.; Banthia, A. K.; Yang, J.; Wilkes, G., et al. Synthesis and Characterization of Acrylonitrile Methyl Acrylate Statistical Copolymers as Melt Processable Carbon Fiber Precursors. Polymer. 2002, 43(18), 4841. DOI: 10.1016/S0032-3861(02)00330-0.
  • Sonnier, R.; Ferry, L.; Lopez-Cuesta, J. M.F Lame Retardancy of Phosphorus-Containing Polymers. In Phosphorus-Based Polymers from Synthesis to Applications; Monge, S. David, G. Eds.; The Royal Society of Chemistry: Cambridge, 2014; Vol. Chapter 12, pp. 252–268. DOI:10.1039/9781782624523-00252
  • Vahabi, H.; Ferry, L.; Longuet, C.; Sonnier, R.; Negrell-Guirao, C.; Davidand, G.; Lopez-Cuesta, J. M. Theoretical and Empirical Approaches to Understanding the Effect of Phosphonate Groups on the Thermal Degradation for Two Chemically Modified PMMA. Eur. Polym. J. 2012, 48(3), 604–612. DOI: 10.1016/j.eurpolymj.2011.12.015.
  • Josepha, P.; Tretsiakova-Mcnally, S. Reactive Modifications of Some Chain- and Step-Growth Polymers with Phosphorus-Containing Compounds: Effects on Flame Retardance -A Review. Polym. Adv. Technol. 2011, 22(4), 395–406. DOI: 10.1002/pat.1900.
  • Can, D. S.; Baskan, H.; Gumrukcu, S.; Sarac, A. S. A Novel Carbon Nanofiber Precursor: Poly(acrylonitrile-Co-Vinylacetate-Co-Itaconic Acid) Terpolymer. J. Nanosci. Nanotechnol. 2019, 19(7), 3844–3853. DOI: 10.1166/jnn.2019.16309.
  • Ke, G.; Xin Wang, X.; Jiafeng Pei, J. Fabrication and Properties of Electrospun PAN/LA–Sa/tio 2 Composite Phase Change Fiber. Polym. Plast. Technol. Eng. 2018, 57(10), 958–964. DOI: 10.1080/03602559.2017.1370101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.