110
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the development and characterization of TiO2 reinforced polyimide nanocomposites for advanced engineering material applications: A review

, , &
Pages 2073-2093 | Received 29 Jun 2023, Accepted 21 Aug 2023, Published online: 27 Aug 2023

References

  • Harito, C.; Bavykin, D. V.; Walsh, F. C. Incorporation of Titanate Nanosheets to Enhance Mechanical Properties of Water-Soluble Polyamic Acid. IOP Conference Series: Mater. Sci. Eng. 2017, 223, 012054. IOP Publishing. DOI: 10.1088/1757-899X/223/1/012054.
  • Huang, Z.; Zhao, W. Coupling Hybrid of HBN Nanosheets and TiO2 to Enhance the Mechanical and Tribological Properties of Composite Coatings. Prog. Org. Coat. 2020, 148, 105881. DOI: 10.1016/j.porgcoat.2020.105881.
  • Pinto, D.; Bernardo, L. F.; Amaro, A.; Lopes, S. Mechanical Properties of Epoxy Nanocomposites Using Alumina as Reinforcement-A Review. J. Nano Res. 2015, 30, 9–38. DOI: 10.4028/www.scientific.net/JNanoR.30.9.
  • Lay, M.; Meng, S.; Ismail, H.; Huat, T. S.; Todo, M. Changes in the Dielectric Constant of Interphase Volume in Polyimide–Ceramic Nanocomposites: A Power Law Model Approach. J. Appl.Polym. Sci. 2022, 139(6), 51600. DOI: 10.1002/app.51600.
  • Akinyi, C.; Iroh, J. O. Thermal Decomposition and Stability of Hybrid Graphene–Clay/polyimide Nanocomposites. Polym. 2023, 15(2), 299. DOI: 10.3390/polym15020299.
  • Patra, S. C.; Swain, S.; Senapati, P.; Sahu, H.; Murmu, R.; Sutar, H. Polypropylene and Graphene Nanocomposites: Effects of Selected 2D-Nanofiller’s Plate Sizes on Fundamental Physicochemical Properties. Invent. 2022, 8(1), 8. DOI: 10.3390/inventions8010008.
  • Kausar, A. Reinforced Polyaniline Nanocomposite Nanofibers: Cutting-Edge Potential. Polym.-Plast. Technol. Mater. 2022, 61(10), 1088–1101. DOI: 10.1080/25740881.2022.2033772.
  • Feng, L.; Iroh, J. O. Corrosion Resistance and Lifetime of Polyimide-B-Polyurea Novel Copolymer Coatings. Prog. Org. Coat. 2014, 77(3), 590–599. DOI: 10.1016/j.porgcoat.2013.11.023.
  • Santos, B. P. S.; Arias, J. J. R.; Jorge, F. E.; de Deus Santos, R. É. P.; da Silva Fernandez, B.; da Silva Candido, L.; Marques, M. D. F. V. Nanocomposites of Poly (Vinylidene Fluoride) with Oxide Nanoparticles for Barrier Layers of Flexible Pipes. J. Mater. Res. Technol. 2021, 15, 3547–3557. DOI: 10.1016/j.jmrt.2021.09.148.
  • Al-Jumaili, S. K.; Alkaron, W. A.; Atshan, M. Y. Mechanical, Thermal, and Morphological Properties of Low-Density Polyethylene Nanocomposites Reinforced with Montmorillonite: Fabrication and Characterizations. Cogent Eng. 2023, 10, 2204550. DOI: 10.1080/23311916.2023.2204550.
  • Tung, H. T.; Lee, G. H.; Luan, V. H.; Lim, S.; Kang, H. W.; Lee, W. Highly Dispersed Aramid Nanofiber-Reinforced Epoxy Nanocomposites by the Sequential Solvent-Exchange Method. Adv. Compos. Mater. 2023, 32(3), 350–367. DOI: 10.1080/09243046.2022.2090045.
  • Okafor, O. B.; Popoola, A. P. I.; Popoola, O. M.; Uyor, U. O.; Ogbonna, V. E. Review of Advances in Improving Thermal, Mechanical and Electrochemical Properties of Polyaniline Composite for Supercapacitor Application. Polym. Bull. 2023, 1–58. DOI: 10.1007/s00289-023-04710-y.
  • Zhang, Y.; Li, Y.; Li, G.; Huang, H.; Chan, H. L. W.; Daoud, W. A.; Xin, J. H.; Li, L. Polyimide-Surface-Modified Silica Tubes: Preparation and Cryogenic Properties. Chem. Mater. 2007, 19(8), 1939–1945. DOI: 10.1021/cm062540m.
  • Ma, J.; Liu, X.; Wang, R.; Lu, C.; Wen, X.; Tu, G. Research Progress and Application of Polyimide-Based Nanocomposites. Nanomater. 2023, 13(4), 656. DOI: 10.3390/nano13040656.
  • Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Ooishi, Y.; Tsubai, M.; Fukuda, O.; Ueno, N. Preparation of Oriented Aluminum Nitride Thin Films on Polyimide Films and Piezoelectric Response with High Thermal Stability and Flexibility. Adv. Funct. Mater. 2007, 17(3), 458–462. DOI: 10.1002/adfm.200600098.
  • Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide‐Based Materials for Space Applications. Adv. Mater. 2019, 31(18), 1807738. DOI: 10.1002/adma.201807738.
  • Sezer Hicyilmaz, A.; Celik Bedeloglu, A. Applications of Polyimide Coatings: A Review. Sn. Appl. Sci. 2021, 3(3), 1–22. DOI: 10.1007/s42452-021-04362-5.
  • Guo, Y.; Qiu, H.; Ruan, K.; Zhang, Y.; Gu, J. Hierarchically Multifunctional Polyimide Composite Films with Strongly Enhanced Thermal Conductivity. Nano-Micro Lett. 2022, 14(1), 1–13. DOI: 10.1007/s40820-021-00767-4.
  • Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Electrospun Polyimide Nanofibers and Their Applications. Prog. Polym. Sci. 2016, 61, 67–103. DOI: 10.1016/j.progpolymsci.2016.06.006.
  • Feng, L.; Iroh, J. O. Polyimide-B-Polysiloxane Copolymers: Synthesis and Properties. J. Inorg. Organomet. Polym. Mater. 2013, 23(3), 477–488. DOI: 10.1007/s10904-012-9795-4.
  • Ahmadizadegan, H.; Tahriri, M.; Tahriri, M.; Padam, M.; Ranjbar, M. Polyimide-TiO2 Nanocomposites and Their Corresponding Membranes: Synthesis, Characterization, and Gas Separation Applications. Solid State Sci. 2019, 89, 25–36. DOI: 10.1016/j.solidstatesciences.2018.12.016.
  • Li, M. K.; Fan, M. W.; Zhang, Y. F.; Liang, H.; Yang, L.; Yu, T. Q.; Yang, J.; Huang, J.; Fan, K. J.; Xiong, Y. Q., et al. A Novel Design of Insulated Core Transformer High Voltage Power Supply. Proceedings of RuPAC2016, St.Petersburg, Russia, 2016, 623–625.
  • Dong, J.; Hu, R.; Xu, X.; Chen, J.; Niu, Y.; Wang, F.; Hao, J.; Wu, K.; Wang, Q.; Wang, H. A Facile in-Situ Surface‐Functionalization Approach to Scalable Laminated High‐Temperature Polymer Dielectrics with Ultrahigh Capacitive Performance. Adv Funct Materials. 2021, 31(32), 2102644. DOI: 10.1002/adfm.202102644.
  • Wu, C.; Deshmukh, A. A.; Li, Z.; Chen, L.; Alamri, A.; Wang, Y.; Ramprasad, R.; Sotzing, G. A.; Cao, Y. Flexible Temperature‐Invariant Polymer Dielectrics with Large Bandgap. Adv. Mater. 2020, 32(21), 2000499. DOI: 10.1002/adma.202000499.
  • Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J.; Wang, Y.; Wang, B.; Liu, F.; Chen, L. Q.; Alem, N., et al. High‐Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High‐Temperature Dielectric Materials. Adv. Mater. 2017, 29(35), 1701864. DOI: 10.1002/adma.201701864.
  • Liu, X. J.; Zheng, M. S.; Chen, G.; Dang, Z. M.; Zha, J. W. High-Temperature Polyimide Dielectric Materials for Energy Storage: Theory, Design, Preparation and Properties. Energy Environ. Sci. 2022, 15(1), 56–81. DOI: 10.1039/D1EE03186D.
  • Ma, C.; Zhou, J.; Cui, Z.; Wang, Y.; Zou, Z. In situ Growth MoO3 Nanoflake on Conjugated Polymer: An Advanced Photocatalyst for Hydrogen Evolution from Water Solution Under Solar Light. Sol. Energy Mater. Sol. Cells. 2016, 150, 102–111. DOI: 10.1016/j.solmat.2016.02.010.
  • Lei, Y.; Huo, J.; Liao, H. Fabrication and Catalytic Mechanism Study of CeO2-Fe2O3-ZnO Mixed Oxides on Double Surfaces of Polyimide Substrate Using Ion-Exchange Technique. Mater. Sci. Semicond. Process. 2018, 74, 154–164. DOI: 10.1016/j.mssp.2017.10.032.
  • Qi, H.; Zhang, G.; Zheng, Z.; Yu, J.; Hu, C. Tribological Properties of Polyimide Composites Reinforced with Fibers Rubbing Against Al2O3. Friction. 2021, 9(2), 301–314. DOI: 10.1007/s40544-019-0339-6.
  • Li, X.; Wang, G.; Huang, L.; Kang, X.; Cheng, F.; Zhao, W.; Li, H. Significant Enhancement in Dielectric Constant of Polyimide Thin Films by Doping Zirconia Nanocrystals. Mater. Lett. 2015, 148, 22–25. DOI: 10.1016/j.matlet.2015.02.016.
  • Li, J.; Yin, J.; Liu, X.; Feng, Y.; Liu, Y.; Zhao, H.; Li, Y.; Zhu, C. Effect of Structure on Electric Properties of Polyimide/Al2O3 Composites Investigated by SAXS. In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, China, 2018, May, pp. 960–965. IEEE.
  • Zhang, B.; Wu, J.; Zheng, X. Charge Transport Characteristics of ZnO/Polyimide Nanocomposite Under Vacuum DC Flashover. In 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Vancouver, BC, Canada, 2021, December. pp. 446–449. IEEE.
  • Huang, J.; Zhang, G.; Dong, B.; Liu, J. Synthesis and Properties of Polyimide Silica Nanocomposite Film with High Transparent and Radiation Resistance. Nanomater. 2021, 11(3), 562. DOI: 10.3390/nano11030562.
  • Kim, Y. J.; Kim, J. H.; Ha, S. W.; Kwon, D.; Lee, J. K. Polyimide Nanocomposites with Functionalized SiO2 Nanoparticles: Enhanced Processability, Thermal and Mechanical Properties. R.S.C. Adv. 2014, 4(82), 43371–43377. DOI: 10.1039/C4RA04952G.
  • Cui, X.; Zhu, G.; Liu, W. Effect of Alumina on the Structure and Properties of Polyimide Matrix Films. Plast. Rubber Compos. 2016, 45(7), 294–299. DOI: 10.1080/14658011.2016.1194600.
  • Ogbonna, V.; Popoola, A.; Popoola, O. Effect of ECR-Glass Additions in the Mechanical and Tribological Properties of TiO2 Reinforced Polyimide Composites. Polym.-Plast. Technol. Mater. 2023, 62(5), 547–553. DOI: 10.1080/25740881.2022.2123277.
  • Nikolaeva, A. L.; Bugrov, A. N.; Sokolova, M. P.; Kuntsman, I. V.; Vlasova, E. N.; Ivan’kova, E. M.; Abalov, I. V.; Gofman, I. V. Synergistic Effect of Metal Oxide and Carbon Nanoparticles on the Thermal and Mechanical Properties of Polyimide Composite Films. Polym. 2023, 15(10), 2298. DOI: 10.3390/polym15102298.
  • Aframehr, W. M.; Molki, B.; Bagheri, R.; Heidarian, P.; Davodi, S. M. Characterization and Enhancement of the Gas Separation Properties of Mixed Matrix Membranes: Polyimide with Nickel Oxide Nanoparticles. Chem. Eng. Res. Des. 2020, 153, 789–805. DOI: 10.1016/j.cherd.2019.11.006.
  • Lei, Y.; Huo, J.; Liao, H. Microstructure and Photocatalytic Properties of Polyimide/Heterostructured NiO–Fe2O3–ZnO Nanocomposite Films via an Ion-Exchange Technique. R.S.C. Adv. 2017, 7(64), 40621–40631. DOI: 10.1039/C7RA07611H.
  • Sun, G.; Yang, L.; Liu, R. Thermal Insulation Coatings Based on Microporous Particles from Pickering Emulsion Polymerization. Prog. Org. Coat. 2021, 151, 106023. DOI: 10.1016/j.porgcoat.2020.106023.
  • Azlan, N. F.; Akhbar, S.; Hanipah, S. H.; Sharudin, R. W. A Short Review on Synthesis and Characterisation of Nano SiO2/TiO2 Composite for Insulation Application. Malays. J. Chem. Eng. Technol. 2021, 4, 155–166. DOI: 10.24191/mjcet.v4i2.14972.
  • Ochigbo, S. S.; Luyt, A. S. Mechanical and Morphological Properties of Films Based on Ultrasound Treated Titanium Dioxide Dispersion/Natural Rubber Latex. Int. J. Compos. Mater. 2012, 1(1), 7–13. DOI: 10.5923/j.cmaterials.20110101.02.
  • Kikuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect. Journal Of Photochemistry And Photobiology A: Chemistry. 1997, A106(1–3), 51–56. DOI: 10.1016/S1010-6030(97)00038-5.
  • Niosh. NIOSH Pocket Guide to Chemical Hazards. Available online: http://www.cdc.gov/niosh/npg/npgd0617.html. Accessed June 3rd, 2023.
  • Hanaor, D. A.; Sorrell, C. C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46(4), 855–874. DOI: 10.1007/s10853-010-5113-0.
  • Sukmara, S.; Adi, W. A.; Manaf, A. Mineral Analysis and Its Extraction Process of Ilmenite Rocks in Titanium-Rich Cumulates from Pandeglang Banten Indonesia. J. Mater. Res. Technol. 2022, 17, 3384–3393. DOI: 10.1016/j.jmrt.2022.02.005.
  • Thambiliyagodage, C.; Wijesekera, R.; Bakker, M. G. Leaching of Ilmenite to Produce Titanium Based Materials: A Review. Discover Mater. 2021, 1(1), 20. DOI: 10.1007/s43939-021-00020-0.
  • Janzeer, Y. Surface Modification of Titanium and Titanium Alloys to Enhance Bone Healing. Doctoral dissertation, Guy’s, King’s and St. Thomas’s School of Dentistry, London, 2013.
  • Haggerty, J. E.; Schelhas, L. T.; Kitchaev, D. A.; Mangum, J. S.; Garten, L. M.; Sun, W.; Stone, K. H.; Perkin, J. D.; Toney, M. F.; Ceder, G., et al. High-Fraction Brookite Films from Amorphous Precursors. Sci. Rep. 2017, 7(1), 15232. DOI: 10.1038/s41598-017-15364-y.
  • Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J. A.; Oshea, K., et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B. 2012, 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036.
  • Lee, S.-M. Atomic Layer Deposition on Biological Matter. PhD Thesis, der Albert-Ludwigs-Universität Freiburg im Breisgau, 2009.
  • Liu, Z.; Chen, Q.; Wang, Z.; Yang, L.; Wang, C. Production of Titanium Dioxide Powders by Atmospheric Pressure Plasma Jet. Phys. Procedia, 2011, 18, 168–173.
  • Reijnders, L. The Release of TiO2 and SiO2 Nanoparticles from Nanocomposites. Polym. Degrad. Stab. 2009, 94(5), 873–876. DOI: 10.1016/j.polymdegradstab.2009.02.005.
  • Ogbonna, V. E.; Popoola, A. P. I.; Popoola, O. M.; Adeosun, S. O. A Review on Polyimide Reinforced Nanocomposites for Mechanical, Thermal, and Electrical Insulation Application: Challenges and Recommendations for Future Improvement. Polym. Bull. 2022, 79(1), 663–695. DOI: 10.1007/s00289-020-03487-8.
  • Lu, H.; Lin, J.; Yang, W.; Liu, L.; Wang, Y.; Chen, G.; Huang, W. Effect of Nano-TiO 2 Surface Modification on Polarization Characteristics and Corona Aging Performance of Polyimide Nano-Composites. J. Appl. Polym. Sci. 2017, 134(29), 45101. DOI: 10.1002/app.45101.
  • Chen, X.; Zhu, W.; Chen, J.; Cao, Q.; Chen, Y.; Hu, D. TiO2 Nanoparticle/Polyimide Nanocomposite for Ultrahigh-Temperature Energy Storage. Nanomater. 2022, 12(24), 4458. DOI: 10.3390/nano12244458.
  • Diaham, S. Polyimide in Electronics: Applications and Processability Overview. IntechOpen. 2021. DOI: 10.5772/intechopen.92629.
  • Zhao, G.; Mu, X.; Ma, D.; Wang, S.; Pan, J.; Cui, J.; Qi, M. Dielectric and Mechanical Properties of TiO2/Polyimide Composites with Low Dielectric Constant. Polymer Engineering & Sci. 2023, 63(7), 1953–1960. DOI: 10.1002/pen.26337.
  • Wu, G.; Zhang, H.; Luo, X.; Yang, L.; Lv, H. Investigation and Optimization of Fe/ZnFe2O4 as a Wide-Band Electromagnetic Absorber. J. Colloid. Interface. Sci. 2019, 536, 548–555. DOI: 10.1016/j.jcis.2018.10.084.
  • Liu, Y.; Zhou, X.; Jia, Z.; Wu, H.; Wu, G. Oxygen Vacancy‐Induced Dielectric Polarization Prevails in the Electromagnetic Wave‐Absorbing Mechanism for Mn‐Based MOFs‐Derived Composites. Adv. Funct. Mater. 2022, 32(34), 2204499. DOI: 10.1002/adfm.202204499.
  • Wang, L.; Gong, G.; Shen, J.; Leng, J. Fabrication of Low Dielectric Constant Polyimide/TiO2 Nanofibers with Enhanced UV-Light Shielding Properties. High Perform. Polym. 2019, 31(8), 986–995. DOI: 10.1177/0954008318815733.
  • Hasegawa, M.; Taira, Y. Nematic Homogeneous Photo Alignment by Polyimide Exposure to Linearly Polarized UV. J. Photopolym Sci. Technol. 1995, 8(2), 241–248. DOI: 10.2494/photopolymer.8.241.
  • Hassan, Y. A.; Hu, H. Current Status of Polymer Nanocomposite Dielectrics for High-Temperature Applications. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106064. DOI: 10.1016/j.compositesa.2020.106064.
  • Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric Polymers for High-Temperature Capacitive Energy Storage. Chem. Soc. Rev. 2021, 50(11), 6369–6400. DOI: 10.1039/D0CS00765J.
  • Zhang, Y. H.; Lu, S. G.; Li, Y. Q.; Dang, Z. M.; Xin, J. H.; Fu, S. Y.; Li, G. T.; Guo, R. R.; Li, L. F. Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant. Adv. Mater. 2005, 17(8), 1056–1059. DOI: 10.1002/adma.200401330.
  • Li, H.; Ren, L.; Ai, D.; Han, Z.; Liu, Y.; Yao, B.; Wang, Q. Ternary Polymer Nanocomposites with Concurrently Enhanced Dielectric Constant and Breakdown Strength for High‐Temperature Electrostatic Capacitors. InfoMat. 2020, 2(2), 389–400. DOI: 10.1002/inf2.12043.
  • Yin, P.; Shi, Z.; Sun, L.; Xie, P.; Dastan, D.; Sun, K.; Fan, R. Improved Breakdown Strengths and Energy Storage Properties of Polyimide Composites: The Effect of Internal Interfaces of C/SiO2 Hybrid Nanoparticles. Polym. Compos. 2021, 42(6), 3000–3010. DOI: 10.1002/pc.26034.
  • Lin, J.; Wang, Y.; Yang, W.; Lu, H. Balance of Mechanical and Electrical Performance in Polyimide/Nano Titanium Dioxide Prepared by an In‐Sol Method. J. Appl. Polym. Sci. 2017, 134(13), 13. DOI: 10.1002/app.44666.
  • Kim, S. K.; Kim, W. D.; Kim, K. M.; Hwang, C. S.; Jeong, J. High Dielectric Constant TiO2 Thin Films on a Ru Electrode Grown at 2 °C by Atomic-Layer Deposition. Appl. Phys. Lett. 2004, 85(18), 4112–4114. DOI: 10.1063/1.1812832.
  • Liao, W. H.; Yang, S. Y.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C.-C. M.; Tien, H. W.; Zeng, S. J. Effect of Octa (Aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites. ACS Appl. Mater. Interfaces. 2014, 6(18), 15802–15812. DOI: 10.1021/am504342j.
  • Atabaki, F.; Ahmadizadegan, H. Fabrication of a New Polyimide/Titania (TiO2) Nanocomposite Thin Film by the Sol-Gel Route. Polym-Plast. Technol. Eng. 2015, 54(5), 523–531. DOI: 10.1080/03602559.2014.935407.
  • Ahmadizadegan, H.; Esmaielzadeh, S. The Role of Organically Modified Clay Particle on Thermal, Mechanical and Gas Barrier Properties of Polyimide Nanocomposites and Toward Improvement of Gas Selectivities. Polym.-Plast. Technol. Mater. 2020, 59(17), 1855–1874. DOI: 10.1080/25740881.2020.1758137.
  • Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37(7), 907–974. DOI: 10.1016/j.progpolymsci.2012.02.005.
  • Kausar, A. Holistic Insights on Polyimide Nanocomposite Nanofiber. Polym.-Plast. Technol. Mater. 2020, 59(15), 1621–1639. DOI: 10.1080/25740881.2020.1759635.
  • Toiserkani, H. Synthesis and Characterization of Nanocomposites Based on Polyimide Bearing Benzimidazole Side Groups Filled with Titania Nanoparticles. Polym.-Plast. Technol. Mater. 2023, 62(9), 1096–1105. DOI: 10.1080/25740881.2023.2192290.
  • Dong, G.; Liu, B.; Sun, G.; Tian, G.; Qi, S.; Wu, D. TiO2 Nanoshell@ Polyimide Nanofiber Membrane Prepared via a Surface-Alkaline-Etching and in-Situ Complexation-Hydrolysis Strategy for Advanced and Safe LIB Separator. J. Membr. Sci. 2019, 577, 249–257. DOI: 10.1016/j.memsci.2019.02.003.
  • Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107(7), 2891–2959. DOI: 10.1021/cr0500535.
  • Gofman, I. V.; Abalov, I. V.; Gladchenko, S. V.; Afanas’ Eva, N. V. Carbon Nanocones/discs–A New Type of Filler to Improve the Thermal and Mechanical Properties of Polymer Films. Polym. Adv. Technol. 2012, 23(3), 408–413. DOI: 10.1002/pat.1889.
  • Bessonov, M. I.; Koton, M. M.; Kudryavtsev, V. V.; Laius, L. A. Polyimides–Thermally Stable Polymers; Plenum Publishing Corp: New York, NY, USA, 1987. ISBN 978-1-4615-7636-5. 10.1007/978-1-4615-7634-1_1
  • Yudin, V. E.; Bugrov, A. N.; Didenko, A. L.; Smirnova, V. E.; Gofman, I. V.; Kononova, S. V.; Kremnev, E. N.; Popova, V. M.; Kudryavtsev, V. V. Composites of Multiblock (Segmented) Aliphatic Poly (Ester Imide) with Zirconia Nanoparticles: Synthesis, Mechanical Properties, and Pervaporation Behavior. Polym. Sci. Ser. B. 2014, 56(6), 919–926. DOI: 10.1134/S1560090414060165.
  • Tsai, C. L.; Liou, G. S. Highly Transparent and Flexible Polyimide/ZrO2 Nanocomposite Optical Films with a Tunable Refractive Index and Abbe Number. Chem. Commun. 2015, 51(70), 13523–13526. DOI: 10.1039/C5CC05301C.
  • Ahmadizadegan, H. Synthesis and Gas Transport Properties of Novel Functional Polyimide/ZnO Nanocomposite Thin Film Membranes. R.S.C. Adv. 2016, 6(108), 106778–106789. DOI: 10.1039/C6RA21562A.
  • Sokolova, M. P.; Smirnov, M. A.; Geydt, P.; Bugrov, A. N.; Ovaska, S. S.; Lahderanta, E.; Toikka, A. M. Structure and Transport Properties of Mixed-Matrix Membranes Based on Polyimides with ZrO2 Nanostars. Polym. 2016, 8(11), 403. DOI: 10.3390/polym8110403.
  • Dong, N.; Wang, J.; Chen, N.; Liu, B.; Tian, G.; Qi, S.; Sun, G.; Wu, D. In situ Reinforcing: ZrO2-Armored Hybrid Polyimide Separators for Advanced and Safe Lithium-Ion Batteries. ACS Sust. Chem. Eng. 2021, 9(18), 6250–6257. DOI: 10.1021/acssuschemeng.0c08818.
  • Kızılkaya, C.; Dumludağ, F.; Karataş, S.; Apohan, N. K.; Altındal, A.; Güngör, A. The Effect of Titania Content on the Physical Properties of Polyimide/Titania Nanohybrid Films. J. Appl. Polym. Sci. 2012, 125(5), 3802–3810. DOI: 10.1002/app.35292.
  • Hsu, S. C.; Whang, W. T.; Hung, C. H.; Chiang, P. C.; Hsiao, Y. N. Effect of the Polyimide Structure and ZnO Concentration on the Morphology and Characteristics of Polyimide/ZnO Nanohybrid Films. Macromol. Chem. Phys. 2005, 206(2), 291–298. DOI: 10.1002/macp.200400326.
  • Muhammad, S.; Niazi, J. H.; Shawuti, S.; Qureshi, A. Functional POSS Based Polyimide Nanocomposite for Enhanced Structural, Thermal, Antifouling and Antibacterial Properties. Mater. Today Commun. 2022, 31, 103287. DOI: 10.1016/j.mtcomm.2022.103287.
  • Zhao, Y.; Zhao, X.; Shen, Z.; Zhang, X. Preparation of Two-Component Hybrid Polyimide Film for Atomic Oxygen Erosion Resistance. Mater. Today Commun. 2021, 27, 102141. DOI: 10.1016/j.mtcomm.2021.102141.
  • Mekuira, T. D.; Wogsato, T. A. Synthesis, Characterization and Properties of Polyimide Nanocomposite Thin Films Reinforced with TiO2/Al2O3 Hybrid Nanoparticles. Mater. Today Commun. 2022, 32, 103903. DOI: 10.1016/j.mtcomm.2022.103903.
  • Jeon, H.; Lee, K. Effect of Gold Nanoparticle Morphology on Thermal Properties of Polyimide Nanocomposite Films. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123651. DOI: 10.1016/j.colsurfa.2019.123651.
  • Mekuria, T. D.; Zhang, C.; Fouad, D. E. The Effect of Thermally Developed SiC@ SiO2 Core-Shell Structured Nanoparticles on the Mechanical, Thermal and UV-Shielding Properties of Polyimide Composites. Compos. Part B Eng. 2019, 173, 106917. DOI: 10.1016/j.compositesb.2019.106917.
  • Yi, C.; Li, W.; Shi, S.; He, K.; Ma, P.; Chen, M.; Yang, C. High-Temperature-Resistant and Colorless Polyimide: Preparations, Properties, and Applications. Sol. Energy. 2020, 195, 340–354. DOI: 10.1016/j.solener.2019.11.048.
  • Wang, C.; Lan, Y.; Yu, W.; Li, X.; Qian, Y.; Liu, H. Preparation of Amino-Functionalized Graphene Oxide/Polyimide Composite Films with Improved Mechanical, Thermal and Hydrophobic Properties, Appl. Surf. Sci. 2016, 362, 11–19. DOI: 10.1016/j.apsusc.2015.11.201.
  • Lin, J. Q.; Liu, Y.; Yang, W. L.; Lin, H. Preparation and Study on the Electric Properties of PI-Al2O3/PI-TiO2/PI-Al2O3 Three Layers Nanocomposite Films. Adv. Mater. Res. 2014, 1015, 244–249. Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/AMR.1015.244.
  • Huang, F.; Cornelius, C. J. Polyimide-SiO2-TiO2 Nanocomposite Structural Study Probing Free Volume, Physical Properties, and Gas Transport. J. Membr. Sci. 2017, 542, 110–122. DOI: 10.1016/j.memsci.2017.08.003.
  • Anderson, O.; Ottermann, C. R.; Kuschnereit, R.; Hess, P.; Bange, K. Density and Young’s Modulus of Thin TiO 2 Films. Fresenius’ Journal Of Analytical Chemistry. 1997, 358(1–2), 315–318. DOI: 10.1007/s002160050416.
  • Quercia, G.; Lazaro, A.; Geus, J. W.; Brouwers, H. J. H. Characterization of Morphology and Texture of Several Amorphous Nano-Silica Particles Used in Concrete. Cem. Concr. Compos. 2013, 44, 77–92. DOI: 10.1016/j.cemconcomp.2013.05.006.
  • Ogbonna, V. E.; Popoola, A. P. I.; Popoola, O. M.; Adeosun, S. O. Enhanced Mechanical and Electrical Properties of ECR-Glass Reinforced Polyimide Composites with Incorporation of TiO2 for Insulation Applications. J. Thermoplast. Compos. Mater. 2022, 08927057221142233. DOI: 10.1177/08927057221142233.
  • Zhenhua, L. The Effect of Titanium Dioxide on the Tribological Properties of Carbon Fiber-Reinforced Polyimide Composites. J. Thermoplast. Compos. Mater. 2015, 28(2), 257–264. DOI: 10.1177/0892705713484738.
  • Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K. Tensile Performance Improvement of Low Nanoparticles Filled-Polypropylene Composites. Compos. Sci. Technol. 2002, 62(10–11), 1327–1340. DOI: 10.1016/S0266-3538(02)00079-9.
  • Liu, L.; Lv, F.; Li, P.; Ding, L.; Tong, W.; Chu, P. K.; Zhang, Y. Preparation of Ultra-Low Dielectric Constant Silica/Polyimide Nanofiber Membranes by Electrospinning. Compos. Part A Appl. Sci. Manuf. 2016, 84, 292–298. DOI: 10.1016/j.compositesa.2016.02.002.
  • Nikolaeva, A. L.; Gofman, I. V.; Yakimansky, A. V.; Ivan’kova, E. M.; Gulii, N. S.; Teplonogova, M. A.; Ivanova, O. S.; Baranchikov, A. E.; Ivanov, V. K. Interplay of Polymer Matrix and Nanosized Redox Dopant with Regard to Thermo-Oxidative and Pyrolytic Stability: CeO2 Nanoparticles in a Milieu of Aromatic Polyimides. Mater. Today Commun. 2020, 22, 100803. DOI: 10.1016/j.mtcomm.2019.100803.
  • Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel Thin Film Nanocomposite Membranes Incorporated with Functionalized TiO2 Nanoparticles for Organic Solvent Nanofiltration. Chem. Eng. J. 2014, 241, 155–166. DOI: 10.1016/j.cej.2013.12.024.
  • Li, Y.; Yang, C.; Li, N.; Yin, J.; Feng, Y.; Liu, Y.; Li, J.; Zhao, H.; Yue, D.; Zhu, C., et al. Microstructure and Electrical Properties of Polyimide-Based Composites Reinforced by High-Aspect-Ratio Titanium Oxide Nanowires. Surf. Coat. Technol. 2019, 361, 425–431. DOI: 10.1016/j.surfcoat.2019.01.066.
  • Asif, M.; Li, Q.; Liu, T.; Xiao, Y.; Shu, X.; Zhang, K.; Wang, Z. Effect of TiO2 Nanoparticle on Partial Discharge Characteristics and Lifetime of Polyimide Films Under High Frequency Voltage. In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi'an, China, 2018, May, 948–951. IEEE.
  • Gao, X.; Sheng, L.; Li, M.; Xie, X.; Yang, L.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G., et al. Flame-Retardant Nano-TiO2/Polyimide Composite Separator for the Safety of a Lithium-Ion Battery. ACS Appl. Polym. Mater. 2022, 4(7), 5125–5133. DOI: 10.1021/acsapm.2c00645.
  • Wu, J.; Liu, H.; Wang, H.; Ma, W.; Wang, T.; Wang, Q. Effects of TiO2 Decorated Reduced Graphene Oxide on Mechanical and Tribological Properties of Thermosetting Polyimide. Compos. Interfaces. 2022, 29(9), 985–998. DOI: 10.1080/09276440.2021.1878766.
  • Fu, Y.-F.; Li, J.; Zhang, F.-Q.; Xu, K. The Preparation and the Friction and Wear Behaviours of TiO2/CNT/PI Composite Film. J. Exp. Nanosci. 2016, 11(6), 459–469. DOI: 10.1080/17458080.2014.980446.
  • Ogbonna, V. E.; Popoola, A. P. I.; Popoola, O. M. Effect of ECR-Glass Additions in the Mechanical and Tribological Properties of TiO2 Reinforced Polyimide Composites. Polym.-Plast. Technol. Mater. 2023, 62(5), 547–553. DOI: 10.1080/25740881.2022.2123277.
  • Watanabe, Y.; Iwasa, Y.; Sato, H.; Teramoto, A.; Abe, K.; Miura-Fujiwara, E. Microstructures and Mechanical Properties of Titanium/biodegradable-Polymer FGM for Bone Tissue Fabricated by Spark Plasma Sintering Method. J. Mater. Process. Technol. 2011, 211(12), 1919–1926. DOI: 10.1016/j.jmatprotec.2011.05.024.
  • Shi, Y.; Mu, L.; Feng, X.; Lu, X. The Tribological Behavior of Nanometer and Micrometer TiO2 Particle-Filled Polytetrafluoroethylene/Polyimide. Mater. Des. 2011, 32(2), 964–970. DOI: 10.1016/j.matdes.2010.07.013.
  • Liu, X.; Yin, J.; Kong, Y.; Chen, M.; Feng, Y.; Yan, K.; Li, X.; Su, B.; Lei, Q. Electrical and Mechanical Property Study on Three-Component Polyimide Nanocomposite Films with Titanium Dioxide and Montmorillonite. Thin Solid Films. 2013, 544, 352–356. DOI: 10.1016/j.tsf.2013.02.100.
  • Ahmadizadegan, H. Surface Modification of TiO2 Nanoparticles with Biodegradable Nanocellulose and Synthesis of Novel Polyimide/Cellulose/TiO2 Membrane. J. Colloid. Interface. Sci. 2017, 491, 390. DOI: 10.1016/j.jcis.2016.11.043.
  • Li, L.; Xu, Y.; Che, J.; Xiaohong, L.; Zhao, W.; Ye, Z. Preparation and Thermal Degradation of White Fluorinated Polyimide/TiO2 Composite Films with Strong Shielding Performance. Polym.-Plast. Technol. Mater. 2019, 58(2), 172–181. DOI: 10.1080/03602559.2018.1466173.
  • Kan, W. H.; Chang, L. The Mechanisms Behind the Tribological Behaviour of Polymer Matrix Composites Reinforced with TiO2 Nanoparticles. Wear. 2021, 474, 203754. DOI: 10.1016/j.wear.2021.203754.
  • Chang, L.; Zhang, Z. Tribological Properties of Epoxy Nanocomposites: Part II. A Combinative Effect of Short Carbon Fibre with Nano-TiO2. Wear. 2006, 260(7–8), 869–878. DOI: 10.1016/j.wear.2005.04.002.
  • Feng, X.; Xing, W.; Song, L.; Hu, Y.; Liew, K. M. TiO2 Loaded on Graphene Nanosheet as Reinforcer and Its Effect on the Thermal Behaviors of Poly (Vinyl Chloride) Composites. Chem. Eng. J. 2015, 260, 524–531. DOI: 10.1016/j.cej.2014.08.103.
  • Schwartz, C. J.; Bahadur, S. Studies on the Tribological Behavior and Transfer Film–Counterface Bond Strength for Polyphenylene Sulfide Filled with Nanoscale Alumina Particles. Wear. 2000, 237(2), 261–273. DOI: 10.1016/S0043-1648(99)00345-2.
  • Chang, L.; Friedrich, K. Enhancement Effect of Nanoparticles on the Sliding Wear of Short Fiber-Reinforced Polymer Composites: A Critical Discussion of Wear Mechanisms. Tribol. Int. 2010, 43(12), 2355–2364. DOI: 10.1016/j.triboint.2010.08.011.
  • Hayeemasae, N.; Rathnayake, W. G. I. U.; Ismail, H. Nano-Sized TiO 2 -Reinforced Natural Rubber Composites Prepared by Latex Compounding Method. J. Vinyl Addit. Technol. 2017, 23(3), 200–209. DOI: 10.1002/vnl.21497.
  • Liu, J.; Yu, Q.; Yu, M.; Li, S.; Zhao, K.; Xue, B.; Zu, H. Silane Modification of Titanium Dioxide-Decorated Graphene Oxide Nanocomposite for Enhancing the Anticorrosion Performance of Epoxy Coatings on AA-2024. J. Alloy Compd. 2018, 744, 728–739. DOI: 10.1016/j.jallcom.2018.01.267.
  • Choi, J. R.; Hah, H. J.; Koo, S. M.; Bae, Y. C. Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 Under Visible and UV Light Irradiation. J. Photoch Photobiol A. 2004, 163(1–2), 37–44. DOI: 10.1016/S1010-6030(03)00428-3.
  • Castelain, M.; Martinez, G.; Marco, C.; Ellis, G.; Salavagione, H. J. Effect of Click-Chemistry Approaches for Graphene Modification on the Electrical, Thermal, and Mechanical Properties of Polyethylene/Graphene Nanocomposites. Macromol. 2013, 46(22), 8980–8987. DOI: 10.1021/ma401606d.
  • Li, X.; Chang, W. C.; Chao, Y. J.; Wang, R.; Chang, M. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone. Nano Lett. 2004, 4(4), 613–617. DOI: 10.1021/nl049962k.
  • Chang, L.; Zhang, Z.; Ye, L.; Friedrich, K. Tribological Properties of Epoxy Nanocomposites. Wear. 2007, 262(5–6), 699–706. DOI: 10.1016/j.wear.2006.08.002.
  • Bollok, P.; Kozma, M. Changes of Subsurface Structure of Materials Developed During Sliding Friction. Mater. Sci. Forum. 2007, 537-538, 315–320. DOI: 10.4028/www.scientific.net/MSF.537-538.315.
  • Matizamhuka, W. R. Spark Plasma Sintering (SPS) – an Advanced Sintering Technique for Structural Nanocomposite Materials. J. South. Afri. Inst. Min. Metall. 2016, 116(7), 1171–1180. DOI: 10.17159/2411-9717/2016/v116n12a12.
  • Shongwe, M. B.; Diouf, S.; Durowoju, M. O.; Olubambi, P. Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Fe-30%Ni Alloys Produced by Spark Plasma Sintering. J. Alloys Compd. 2015, 649, 824–832. DOI: 10.1016/j.jallcom.2015.07.223.
  • Liu, H.; Wang, T.; Wang, Q. Tribological Properties of Thermosetting Polyimide/TIO2 Nanocomposites Under Dry Sliding and Water-Lubricated Conditions. J. Macromol. Sci.Part B. 2012, 51(11), 2284–2296. DOI: 10.1080/00222348.2011.624043.
  • Fusaro, R. L. Counterface Effects on the Tribological Properties of Polyimide Composites. Lubr. Eng. 1986, 42, 668.
  • Guang, S.; Zhang, M. Q.; Rong, M. Z.; Wetzel, B.; Friedrich, K. Sliding Wear Behavior of Epoxy Containing Nano-Al2O3 Particles with Different Pretreatments. Wear. 2004, 256(11–12), 1072. DOI: 10.1016/S0043-1648(03)00533-7.
  • Sungur, S. Titanium Dioxide Nanoparticles: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer, 2020, Vol. 1, pp. 1–18. DOI: 10.1007/978-3-030-11155-7_9-1.
  • Turner, A.; Filella, M. The Role of Titanium Dioxide on the Behaviour and Fate of Plastics in the Aquatic Environment. Sci. Total Environ. 2023, 869, 161727. DOI: 10.1016/j.scitotenv.2023.161727.
  • Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact During Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. DOI: 10.1016/j.jhazmat.2017.10.014.
  • Ogbonna, V. E.; Popoola, P. I.; Popoola, O. M.; Adeosun, S. O. A Review on Recent Advances on Improving Polyimide Matrix Nanocomposites for Mechanical, Thermal, and Tribological Applications: Challenges and Recommendations for Future Improvement. J. Thermoplast. Compos. Mater. 2023, 36(2), 836–865. DOI: 10.1177/08927057211007904.
  • Peng, M.; Li, K.; Huang, B.; Cheng, J. PVDF Promotes TiO2 Dispersion to Obtain Composite Films with High Dielectric Constant and Low Loss. High Perform. Polym. 2022, 34(1), 95–104. DOI: 10.1177/09540083211044054.
  • Huang, T. T.; Tsai, C. L.; Tateyama, S.; Kaneko, T.; Liou, G. S. Highly Transparent and Flexible Bio-Based Polyimide/TiO2 and ZrO2 Hybrid Films with Tunable Refractive Index, Abbe Number, and Memory Properties. Nanoscale. 2016, 8(25), 12793–12802. DOI: 10.1039/C6NR03963D.
  • Li, G. Y.; Yin, J. H.; Yao, L.; Zhao, X. Particle Size Effect on the Corona Resistant Properties of PI/TiO2 Composite Films. Adv. Mater. Res. 2014, 981, 914–917. Trans Tech Publications Ltd DOI: 10.4028/www.scientific.net/AMR.981.914.
  • Sitole, S. Developing an epoxy composite dielectric with hollow carbon nanospheres Doctoral dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, 2020.
  • Dong, G.; Liu, B.; Kong, L.; Wang, Y.; Tian, G.; Qi, S.; Wu, D. Neoteric Polyimide Nanofiber Encapsulated by the TiO2 Armor as the Tough, Highly Wettable, and Flame-Retardant Separator for Advanced Lithium-Ion Batteries. ACS Sust. Chem. Eng. 2019, 7(21), 17643–17652. DOI: 10.1021/acssuschemeng.9b03525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.