135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving cell proliferation using polylactic acid, polycaprolactone, hydroxyapatite and zinc oxide nanocomposite for cancellous bone substitutes

, &
Pages 95-119 | Received 26 Jul 2023, Accepted 25 Oct 2023, Published online: 16 Nov 2023

References

  • Amini, A. R.; Wallace, J. S.; Nukavarapu, S. P. Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. J. Long-Term Eff Med Implant. 2011, 21(2), 93–122. DOI: 10.1615/JLongTermEffMedImplants.v21.i2.10.
  • Vaez, S.; Emadi, R.; Sadeghzade, S.; Salimijazi, H.; Kharaziha, M. Electrophoretic Deposition of Chitosan Reinforced Baghdadite Ceramic Nano-Particles on the Stainless Steel 316L Substrate to Improve Biological and Physical Characteristics. Mater. Chem. Phys. 2022, 282, 282 125991. DOI: 10.1016/j.matchemphys.2022.125991.
  • Ren, H.; Pan, C.; Liu, Y.; Liu, D.; He, X.; Li, X.; Sun, X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. Mater. Chem. Phys. 2022, 289 126458. doi10.1016/j.matchemphys.2022.126458.
  • Chudinova, E.; Koptyug, A.; Mukhortova, Y.; Pryadko, A.; Volkova, A.; Ivanov, A.; Plotnikov, E.; Khan, Y.; Epple, M.; Sokolova, V., et al. Functionalization of Additive-Manufactured Ti6Al4V Scaffolds with Poly(allylamine Hydrochloride)/Poly(styrene Sulfonate) Bilayer Microcapsule System Containing Dexamethasone. Mater. Chem. Phys. 2021, 273, 273 125099. DOI: 10.1016/j.matchemphys.2021.125099.
  • Bian, T.; Pang, N.; Xing, H. Preparation and Antibacterial Evaluation of a Beta-Tricalcium Phosphate/Collagen Nanofiber Biomimetic Composite Scaffold. Mater. Chem. Phys. 2021, 273, 273 125059. DOI: 10.1016/j.matchemphys.2021.125059.
  • Bian, T.; Wang, L.; Xing, H. Preparation and Biological Assessment of a ZrO2-based Bone Scaffold Coated with Hydroxyapatite and Bioactive Glass Composite. Mater. Chem. Phys. 2021, 267, 267 124616. DOI: 10.1016/j.matchemphys.2021.124616.
  • Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Design and Statistical Analysis of Irregular Porous Scaffolds for Orthopedic Reconstruction Based on Voronoi Tessellation and Fabricated Via Selective Laser Melting (SLM). Mater. Chem. Phys. 2020, 239, 239 121968. DOI: 10.1016/j.matchemphys.2019.121968.
  • Lim, D. J.; Sim, M.; Heo, Y.; Jun, H. W.; Park, H. Facile Method for Fabricating Uniformly Patterned and Porous Nanofibrous Scaffolds for Tissue Engineering. Macromol. Res. 2015, 23(12), 1152–1158. DOI: 10.1007/s13233-015-3147-5.
  • Bigham, A.; Foroughi, F.; Rezvani Ghomi, E.; Rafienia, M.; Neisiany, R. E.; Ramakrishna, S. The Journey of Multifunctional Bone Scaffolds Fabricated from Traditional Toward Modern Techniques. Bio-des. Manuf. 2020, 3(4), 281–306. DOI: 10.1007/s42242-020-00094-4.
  • Takayama, T.; Todo, M.; Arakawa, K. Characterization of Impact Fracture Behavior of Biodegradable PLA/PCL Polymer Blend. Key Eng. Mater. 2006, 326-328, 1569–1572. DOI: 10.4028/www.scientific.net/KEM.326-328.1569.
  • Deng, Z. Y.; Yang, J. F.; Beppu, Y.; Ando, M.; Ohji, T. Effect of Agglomeration on Mechanical Properties of Porous Zirconia Fabricated by Partial Sintering. J. Am. Ceram. Soc. 2002, 85(8), 1961–1965. DOI: 10.1111/j.1151-2916.2002.tb00388.x.
  • Zadpoor, A. A., AA Zadpoor. Relationship Between In Vitro Apatite-Forming Ability Measured Using Simulated Body Fluid and In Vivo Bioactivity of Biomaterials. Mater. Sci. Eng. 2014, 35, 134–143. DOI: 10.1016/j.msec.2013.10.026.
  • Sartore, L.; Pandini, S.; Dey, K.; Bignotti, F.; Chiellini, F. A Versatile Cell-Friendly Approach to Produce PLA-Based 3D Micro-Macro-Porous Blends for Tissue Engineering Scaffolds. Mater. 2020, 9, 100615. DOI: 10.1016/j.mtla.2020.100615.
  • Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of Super-Hydrophilic and Highly Open-Porous Poly (Lactic Acid) Scaffolds Using Supercritical Carbon Dioxide Foaming. Int J. Biol Macromol. 2022, 205, 740–748. DOI: 10.1016/j.ijbiomac.2022.03.107.
  • Promnil, S.; Numpaisal, P. O.; Ruksakulpiwat, Y. Effect of Molecular Weight on Mechanical Properties of Electrospun Poly (Lactic Acid) Fibers for Meniscus Tissue Engineering Scaffold. Mater. Today Proc. 2021, 47, 3496–3499. DOI: 10.1016/j.matpr.2021.03.504.
  • Rahmani, M.; Khani, M. M.; Rabbani, S.; Mashaghi, A.; Noorizadeh, F.; Faridi-Majidi, R.; Ghanbari, H. Development of Poly (Mannitol Sebacate)/Poly (Lactic Acid) Nanofibrous Scaffolds with Potential Applications in Tissue Engineering. Mater. Sci. Eng. 2020, 110, 110 110626. DOI: 10.1016/j.msec.2020.110626.
  • Hou, Y.; Wang, W.; Bartolo, P. Investigation of Polycaprolactone for Bone Tissue Engineering Scaffolds: In Vitro Degradation and Biological Studies. Mater. Des. 2022, 216, 216 110582. DOI: 10.1016/j.matdes.2022.110582.
  • Radhakrishnan, S.; Nagarajan, S.; Belaid, H.; Farha, C.; Iatsunskyi, I.; Coy, E.; Soussan, L.; Huon, V.; Bares, J.; Belkacemi, K., et al. Fabrication of 3D Printed Antimicrobial Polycaprolactone Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. 2021, 118, 118 111525. DOI: 10.1016/j.msec.2020.111525.
  • Maleki-Ghaleh, H.; Siadati, M. H.; Fallah, A.; Zarrabi, A.; Afghah, F.; Koc, B.; Abdolahinia, E. D.; Omidi, Y.; Barar, J.; Akbari-Fakhrabadi, A., et al. Effect of Zinc-Doped Hydroxyapatite/Graphene Nanocomposite on the Physicochemical Properties and Osteogenesis Differentiation of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering. Chem. Eng. J. 2021, 426, 426 131321. DOI: 10.1016/j.cej.2021.131321.
  • Bhagyasree, K.; Mukherjee, D.; Azamthulla, M.; Debnath, S.; Sundar, L. M.; Hulikal, S.; Teja, B. V.; Bhatt, S. Kamnoore D Thiolated Sodium Alginate/Polyethylene Glycol/Hydroxyapatite Nanohybrid for Bone Tissue Engineering. J. Drug Deliv. Sci. Technol. 2022, 76, 103813. DOI: 10.1016/j.jddst.2022.103813.
  • Schappo, H.; Salmoria, G. V.; Magnaudeix, A.; Dumur, A.; Renaudie, E.; Giry, K.; Damia, C.; Hotza, D. Laser Powder Bed Fusion of Ultra-High-Molecular-Weight Polyethylene/Hydroxyapatite Composites for Bone Tissue Engineering. Powder. Technol. 2022, 412, 412 117966. DOI: 10.1016/j.powtec.2022.117966.
  • Hu, Y.; Zhang, Q.; You, R.; Wang, L.; Li, M. The Relationship Between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds. Adv. Mater. Sci. Eng. 2012, 185905. doi10.1155/2012/185905.
  • Gomes, M. E.; Azevedo, H. S.; Moreira, A. R.; Ellä, V.; Kellomäki, M.; Reis, R. L. Starch–poly(ε-caprolactone) and Starch–Poly(lactic Acid) Fibre-Mesh Scaffolds for Bone Tissue Engineering Applications: Structure, Mechanical Properties and Degradation Behaviour. J. Tissue Eng. Regen Med. 2008, 2(5), 243–252. DOI: 10.1002/term.89.
  • Kim, H. D.; Amirthalingam, S.; Kim, S. L.; Lee, S. S.; Rangasamy, J.; Hwang, N. S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthc. Mater. 2017, 6(23), 6.10.1002/adhm.201700612. DOI: 10.1002/adhm.201700612.
  • Chong, W. J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak Simunec, D.; Kyratzis, I.; Sola, A.; Wen, C. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties tissue engineering viability, and enhanced biocompatibility. Smart Mater Manuf. 2023, 1, 100004. DOI: 10.1016/j.smmf.2022.100004.
  • Christy, P. N.; Basha, S. K.; Kumari, V. S. Nano Zinc Oxide and Nano Bioactive Glass Reinforced Chitosan/Poly(vinyl Alcohol) Scaffolds for Bone Tissue Engineering Application. Mater. Today Commun. 2022, 31, 103429. DOI: 10.1016/j.mtcomm.2022.103429.
  • Zhang, Q.; Mochalin, V. N.; Neitzel, I.; Hazeli, K.; Niu, J.; Kontsos, A.; Zhou, J. G.; Lelkes, P. I.; Gogotsi, Y. Mechanical Properties and Biomineralization of Multifunctional Nanodiamond-PLLA Composites for Bone Tissue Engineering. Biomater. 2012, 33(20), 5067–5075. DOI: 10.1016/j.biomaterials.2012.03.063.
  • Sarrami, P.; Karbasi, S.; Farahbakhsh, Z.; Bigham, A.; Rafienia, M. Fabrication and Characterization of Novel Polyhydroxybutyrate-Keratin/nanohydroxyapatite Electrospun Fibers for Bone Tissue Engineering Applications. Int J Biol Macromol. 2022, 220, 1368–1389. DOI: 10.1016/j.ijbiomac.2022.09.117.
  • Sarrami, P.; Movahedi, M. Simultaneous Effects of Agglomeration and Interfacial Defects on Gas Transport Properties in Nanocomposites a Novel Modeling Approach. Comput. Mater. Sci. 2022, 207, 207 111293. DOI: 10.1016/j.commatsci.2022.111293.
  • Khan, M. U. A.; Al Arjan, W. S.; Ashammakhi, N.; Haider, S.; Amin, R.; Hasan, A. Multifunctional Bioactive Scaffolds from ARX- G -(Zn@rgo)-HAp for Bone Tissue Engineering: In Vitro Antibacterial, Antitumor, and Biocompatibility Evaluations. Antitumor And Biocompatibility Eval ACS Appl Bio Mater. 2022, 5(11), 5445–5456. DOI: 10.1021/acsabm.2c00777.
  • O’Connor, J. P.; Kanjilal, D.; Teitelbaum, M.; Lin, S. S.; Cottrell, J. A. Zinc as a Therapeutic Agent in Bone Regeneration. Mater; Basel Switzerland: Materials (Basel), 2020. p. 13 10.
  • Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A. L.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties. Biomacromol. 2011, 12(5), 1762–1771. DOI: 10.1021/bm2001445.
  • Castro-Mayorga, J. L.; Fabra, M. J.; Pourrahimi, A. M.; Olsson, R. T.; Lagaron, J. M. The Impact of Zinc Oxide Particle Morphology as an Antimicrobial and When Incorporated in Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Films for Food Packaging and Food Contact Surfaces Applications. Food Bioprod. Process. 2017, 101, 32–44. DOI: 10.1016/j.fbp.2016.10.007.
  • Nayara Koba de, M.; Idália, A. W. B. S.; João, M.; Paulo de Barros, H. K.; Avanzi, I. R.; Ana Claudia Muniz, R.; Eliandra de Sousa, T.; Passador, F. R. Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. J. Compos. Sci. 2019, 3(2), 45. DOI: 10.3390/jcs3020045.
  • Jayarambabu, N.; Kumari, B. S.; Rao, K. V.; Prabhu, Y. J. I. J. C. E. T. Germination and Growth Characteristics of Mungbean Seeds (Vigna Radiata L.) Affected by Synthesized Zinc Oxide Nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 3411–3416.
  • Zhang, C.; Yang, J.; Quan, Z.; Yang, P.; Li, C.; Hou, Z.; Lin, J. Hydroxyapatite Nano- and Microcrystals with Multiform Morphologies Controllable Synthesis and Luminescence Properties. Cryst. Growth Des. 2009, 9(6), 2725–2733. DOI: 10.1021/cg801353n.
  • Wu, D.; Samanta, A.; Srivastava, R. K.; Hakkarainen, M. Nano-Graphene Oxide Functionalized Bioactive Poly(lactic Acid) and Poly(ε-Caprolactone) Nanofibrous Scaffolds. Mater; Basel, Switzerland: Materials, 2018. p. 11 10.3390/ma11040566.
  • Mondal, S.; Nguyen, T. P.; Pham, V. H.; Hoang, G.; Manivasagan, P.; Kim, M. H.; Nam, S. Y.; Oh, J. Hydroxyapatite Nano Bioceramics Optimized 3D Printed Poly Lactic Acid Scaffold for Bone Tissue Engineering Application. Ceram. Int. 2020, 46(3), 3443–3455. DOI: 10.1016/j.ceramint.2019.10.057.
  • Ghaziof, S.; Shojaei, S.; Mehdikhani, M.; Khodaei, M.; Nodoushan, M. J. Electro-Conductive 3D Printed Polycaprolactone/Gold Nanoparticles Nanocomposite Scaffolds for Myocardial Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2022, 132, 105271. DOI: 10.1016/j.jmbbm.2022.105271.
  • Thangavel, K.; Roshini, T.; Balaprakash, V.; Gowrisankar, P.; Sudha, S.; Mohan, M. Structural, Morphological and Antibacterial Properties of ZnO Nanofibers Fabricated by Electrospinning Technique. Mater. Today Proc. 2020, 33, 2160–2166. DOI: 10.1016/j.matpr.2020.03.241.
  • Johari, N.; Rafati, F.; Zohari, F.; Tabari, P. G.; Samadikuchaksaraei, A. Porous Functionally Graded Scaffolds of Poly (ε-Caprolactone)/zno Nanocomposite for Skin Tissue Engineering: Morphological, Mechanical and Biological Evaluation. Mater. Chem. Phys. 2022, 280, 280 125786. DOI: 10.1016/j.matchemphys.2022.125786.
  • Shi, R.; Xue, J.; He, M.; Chen, D.; Zhang, L.; Tian, W. Structure, physical properties, biocompatibility and in vitro/vivo degradation behavior of anti-infective polycaprolactone-based electrospun membranes for guided tissue/bone regeneration. Polym Degrad. 2014, 109, Stab109 293–306. DOI: 10.1016/j.polymdegradstab.2014.07.017.
  • Etemadi, N.; Mehdikhani, M.; Poorazizi, E.; Rafienia, M. Novel Bilayer Electrospun Poly(caprolactone)/Silk Fibroin/Strontium Carbonate Fibrous Nanocomposite Membrane for Guided Bone Regeneration. J. Appl. Polym. Sci. 2021, 138(16), 138 50264. DOI: 10.1002/app.50264.
  • Sattary, M.; Khorasani, M. T.; Rafienia, M.; Rozve, H. S. Incorporation of Nanohydroxyapatite and Vitamin D3 into Electrospun PCL/Gelatin Scaffolds the Influence on the Physical and Chemical Properties and Cell Behavior for Bone Tissue Engineering. Polym. Adv. Technol. 2018, 29(1), 451–462. DOI: 10.1002/pat.4134.
  • Bigham, A.; Foroughi, F.; Motamedi, M.; Rafienia, M. Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceram. Int. 2018, 44(10), 11798–11806. DOI: 10.1016/j.ceramint.2018.03.264.
  • Konan, S.; Haddad, F. S. A Clinical Review of Bioabsorbable Interference Screws and Their Adverse Effects in Anterior Cruciate Ligament Reconstruction Surgery. The Knee. 2009, 16(1), 6–13. DOI: 10.1016/j.knee.2008.06.001.
  • Yu, X.; Tang, X.; Gohil, S. V.; Laurencin, C. T. Biomaterials for Bone Regenerative Engineering. Adv. Healthc. Mater. 2015, 4, 1268–1285. DOI: 10.1002/adhm.201400760.
  • Pietrzykowska, E.; Romelczyk-Baishya, B.; Chodara, A.; Koltsov, I.; Smogor, H.; Mizeracki, J.; Pakieła, Z; Łojkowski, W. Microstructure and Mechanical Properties of Inverse Nanocomposite Made from Polylactide and Hydroxyapatite Nanoparticles; Materials (Basel), 2021.
  • Sadudeethanakul, S.; Wattanutchariya, W.; Nakkiew, W.; Chaijaruwanich, A.; Pitjamit, S. Bending Strength and Biological Properties of PLA-HA Composites for Femoral Canine Bone Fixation Plate. IOP Conf. Ser Mater. Sci. Eng. 2019, 635(1), 12004. DOI: 10.1088/1757-899X/635/1/012004.
  • Saksorn, S.; Wattanutchariya, W. Bending Strength and Biological Properties of PLA-HA Composites for Femoral Canine Bone Fixation Plate. Mater. Sci. Eng. 2019, 635 .012004. doi10.1088/1757-899X/635/1/012004.
  • Movahedi, M.; Salehi, A. O. M.; Moezi, D.; Yarahmadian, R. In Vitro and In Vivo Study of Aspirin Loaded, Electrospun Polycaprolactone–Maltodextrin Membrane for Enhanced Skin Tissue Regeneration. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(17), 1334–1344. DOI: 10.1080/00914037.2021.1962877.
  • Yin, G.; Zhao, D.; Zhang, L.; Ren, Y.; Ji, S.; Tang, H.; Zhou, Z.; Li, Q. Highly Porous 3D PLLA Materials Composed of Nanosheets, Fibrous Nanosheets, or Nanofibrous Networks Preparation and the Potential Application in Oil–Water Separation. Chem. Eng. J. 2016, 302, 1–11. DOI: 10.1016/j.cej.2016.05.023.
  • Bouzourâa, M. B.; Naciri, A. E.; Moadhen, A.; Rinnert, H.; Guendouz, M.; Battie, Y.; Chaillou, A.; Zaïbi, M. A.; Oueslati, M. Effects of Silicon Porosity on Physical Properties of ZnO Films. Mater. Chem. Phys. 2016, 175, 233–240. DOI: 10.1016/j.matchemphys.2016.03.026.
  • Wang, Y. Y.; Yu, H. Y.; Yang, L.; Abdalkarim, S. Y. H.; Chen, W. L. Enhancing Long-Term Biodegradability and UV-Shielding Performances of Transparent Polylactic Acid Nanocomposite Films by Adding Cellulose Nanocrystal-Zinc Oxide Hybrids. Int J Biol Macromol. 2019, 141, 893–905. DOI: 10.1016/j.ijbiomac.2019.09.062.
  • Mohammad Mohsen, D.; Stiharu, I. Preparing and Characterizing Novel Biodegradable Starch/PVA-Based Films with Nano-Sized Zinc-Oxide Particles for Wound-Dressing Applications. Appl. Sci. 2022, 12(8), 4001. DOI: 10.3390/app12084001.
  • Phakatkar, A. H.; Shirdar, M. R.; Qi, M. L.; Taheri, M. M.; Narayanan, S.; Foroozan, T.; Sharifi-Asl, S.; Huang, Z.; Agrawal, M.; Lu, Y. P., et al. Novel PMMA Bone Cement Nanocomposites Containing Magnesium Phosphate Nanosheets and Hydroxyapatite Nanofibers. Mater. Sci. Eng. 2020, 109, 109 110497. DOI: 10.1016/j.msec.2019.110497.
  • Barua, E.; Deoghare, A. B.; Chatterjee, S.; Sapkal, P. Effect of ZnO Reinforcement on the Compressive Properties, In Vitro Bioactivity, Biodegradability and Cytocompatibility of Bone Scaffold Developed from Bovine Bone-Derived HAp and PMMA. Ceram. Int. 2019, 45(16), 20331–20345. DOI: 10.1016/j.ceramint.2019.07.006.
  • Guo, C.; Xue, J.; Dong, Y. Fabrication and Characterization of Hydroxyapatite Nanomaterial Dual Deposited with Nano Silver and Zinc Oxide. Mater. Lett. 2018, 219, 182–185. DOI: 10.1016/j.matlet.2018.02.045.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7(3), 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Chen, J. P.; Chang, Y. S. Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells. Colloid Surf B Biointerface. 2011, 86(1), 169–175. DOI: 10.1016/j.colsurfb.2011.03.038.
  • Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y. K.; Musarrat, J.; Al-Khedhairy, A. A.; Al-Ahmad, A. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition Via Zinc Oxide Nanoparticles and Their Statistical Determination. PLoS One. 2014, 9(11), 111289. DOI: 10.1371/journal.pone.0111289.
  • Ahmed, J.; Hiremath, N.; Jacob, H. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus Aureus and Campylobacter Jejuni. J. Food Sci. 2016, 81(2), E419–E429. DOI: 10.1111/1750-3841.13193.
  • El-Shafai, N.; El-Khouly, M. E.; El-Kemary, M.; Ramadan, M.; Eldesoukey, I.; Masoud, M. Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles fabrication, characterization. DNA. Interact . Antibacterial. Act RSC. Adv. 2019, 9(7), 3704–3714. DOI: 10.1039/C8RA09788G.
  • Banthia, S.; Hazra, C.; Sen, R.; Das, S.; Das, K. Electrodeposited Functionally Graded Coating Inhibits Gram-Positive and Gram-Negative Bacteria by a Lipid Peroxidation Mediated Membrane Damage Mechanism. Mater. Sci. Eng. 2019, 102, 623–633. DOI: 10.1016/j.msec.2019.04.087.
  • AlSalem, H. S.; Keshk, A. A.; Ghareeb, R. Y.; Ibrahim, A. A.; Abdelsalam, N. R.; Taher, M. M.; Almahri, A.; AbuRayyan, A. Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization. Mater. Chem. Phys. 2022, 283, 283 125988. DOI: 10.1016/j.matchemphys.2022.125988.
  • Liu, H.; Slamovich, E. B.; Webster, T. J. Increased Osteoblast Functions Among Nanophase Titania/poly(lactide-Co-Glycolide) Composites of the Highest Nanometer Surface Roughness. J. Biomed. Mater. Res. Part A. 2006, 78(4), 798–807. DOI: 10.1002/jbm.a.30734.
  • Liao, S. S.; Cui, F. Z.; Zhu, Y. Osteoblasts Adherence and Migration Through Three-Dimensional Porous Mineralized Collagen Based Composite nHac/PLA. J. Bioact. Compat. Polym. 2004, 19(2), 117–130. DOI: 10.1177/0883911504042643.
  • Felfel, R. M.; Poocza, L.; Gimeno-Fabra, M.; Milde, T.; Hildebrand, G.; Ahmed, I.; Scotchford, C.; Sottile, V.; Grant, D. M.; Liefeith, K. In vitro Degradation and Mechanical Properties of PLA-PCL Copolymer Unit Cell Scaffolds Generated by Two-Photon Polymerization. Biomed. Mater. 2016, 11(1), 015011. DOI: 10.1088/1748-6041/11/1/015011.
  • Tajdari, A.; Babaei, A. Preparation and Study on the Optical, Mechanical, and Antibacterial Properties of Polylactic Acid/ZnO/TiO2 Shared Nanocomposites. J. Plast. Film Sheeting. 2020, 1–27. doi10.1177/8756087919900365.
  • Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. A Review on Bidirectional Analogies Between the Photocatalysis and Antibacterial Properties of ZnO. J. Alloys Compound. 2019, 783, 898–918. DOI: 10.1016/j.jallcom.2018.12.330.
  • Collins, M. N.; Ren, G.; Young, K.; Pina, S.; Reis, R. L.; Oliveira, J. M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 2021, 31(21), 2010609. DOI: 10.1002/adfm.202010609.
  • Kim, K.-J.; Choi, S.; Cho, Y. S.; Yang, S.-J.; Cho, Y.-S.; Kim, K. K. Magnesium Ions Enhance Infiltration of Osteoblasts in Scaffolds via Increasing Cell Motility. J. Mater. Sci. Mater. Med. 2017, 28(6), 96. DOI: 10.1007/s10856-017-5908-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.