351
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effective CO2 adsorption in hybrid 2D material with cellulose and its derivatives

, &
Pages 134-150 | Received 13 Aug 2023, Accepted 28 Oct 2023, Published online: 08 Nov 2023

References

  • Theo, W. L.; Lim, J. S.; Hashim, H., et al. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy. 2016, 183, 1633–1663. DOI: 10.1016/j.apenergy.2016.09.103.
  • Mengis, N.; Matthews, H. D. Non-CO2 Forcing Changes Will Likely Decrease the Remaining Carbon Budget for 1.5 °C. NPJ Clim. Atmos Sci. 2020, 3(1), 19. DOI: https://doi.org/10.1038/s41612-020-0123-3.
  • Sharma, A.; Gore, P. M.; Kandasubramanian, B. Reduction of Carbon Dioxide (CO2) Using ‘P’ & ‘D’ Block Electro-Catalysts: A Review. Journal Of Environmental Chemical Engineering. 2021, 9(1), 104798. DOI: https://doi.org/10.1016/j.jece.2020.104798.
  • Shanmughan, B.; Nighojkar, A.; Kandasubramanian, B. Exploring the Future of 2D Catalysts for Clean and Sustainable Hydrogen Production. Int. J. Hydrogen. Energy. 2023, 48, 28679–28693. DOI: 10.1016/j.ijhydene.2023.04.053.
  • Cheung, O.; Hedin, N. Zeolites and Related Sorbents with Narrow Pores for CO 2 Separation from Flue Gas. R.S.C. Adv. 2014, 4(28), 14480–14494. DOI: https://doi.org/10.1039/C3RA48052F.
  • Zhao, F.; Wan, C.; Bao, X.; Kandasubramanian, B. Modification of Montmorillonite with Aminopropylisooctyl Polyhedral Oligomeric Silsequioxane. J. Colloid. Interface. Sci. 2009, 333, 164–170. DOI: 10.1016/j.jcis.2009.02.014.
  • Wu, H.-Y.; Chen, S. S.; Liao, W. Assessment of Agricultural Waste-Derived Activated Carbon in Multiple Applications. Environ. Res. 2020, 191, 110176. DOI: 10.1016/j.envres.2020.110176.
  • Zhang, J.; Luo, N.; Zhang, X. All-Cellulose Nanocomposites Reinforced with in situ Retained Cellulose Nanocrystals During Selective Dissolution of Cellulose in an Ionic Liquid. ACS Sustainable Chem. Eng. 2016, 4(8), 4417–4423.
  • Cash, M. J. Caputo SJ Cellulose Derivatives. In Food Stabilisers, Thickeners and Gelling Agents. Wiley-Blackwell: Oxford, UK, pp. 95–115.
  • Panchal, P.; Ogunsona, E.; Mekonnen, T. Trends in Advanced Functional Material Applications of Nanocellulose. Processes. 2018, 7(1), 10. DOI: https://doi.org/10.3390/pr7010010.
  • Lee, H. V.; Hamid, S. B. A.; Zain, S. K. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Sci. World J. 2014, 2014, 1–20. DOI: https://doi.org/10.1155/2014/631013.
  • Tshikovhi, A.; Mishra, S. B.; Mishra, A. K. Nanocellulose-Based Composites for the Removal of Contaminants from Wastewater. International Journal Of Biological Macromolecules. 2020, 152, 616–632. DOI: 10.1016/j.ijbiomac.2020.02.221.
  • Suresh Khurd, A.; Kandasubramanian, B. A systematic review of cellulosic material for green electronics devices. Carbohydr. Polym. Technol. Appl. 2022, 4, 100234. DOI: 10.1016/j.carpta.2022.100234.
  • Hou, X.; Sun, J.; Lian, M. Emerging Synthetic Methods and Applications of MOF‐Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromol. Mater. Eng. 2023, 308(2). DOI:https://doi.org/10.1002/mame.202200469.
  • Adegoke, K. A.; Oyedotun, K. O.; JoshuaO, I. Cellulose Derivatives and Cellulose-Metal-Organic Frameworks for CO2 Adsorption and Separation. J. CO2 Uti. 2022, 64, 102163. DOI: 10.1016/j.jcou.2022.102163.
  • Rubin, E. S.; Chen, C.; Rao, A. B. Cost and Performance of Fossil Fuel Power Plants with CO2 Capture and Storage. Energy Policy. 2007, 35(9), 4444–4454. DOI: 10.1016/j.enpol.2007.03.009.
  • Chao, C.; Deng, Y.; Dewil, R. Post-Combustion Carbon Capture. Renewable Sustainable Energy Rev. 2021, 138, 110490. DOI: 10.1016/j.rser.2020.110490.
  • Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng, Data. 2019, 64(3), 833–867. DOI: 10.1021/acs.jced.8b01057.
  • Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and Trends in CO2 Capture/Separation Technologies: A Review. Energy. 2012, 46(1), 431–441. DOI: 10.1016/j.energy.2012.08.006.
  • Liu, J.; Baeyens, J.; Deng, Y. The Chemical CO2 Capture by Carbonation-Decarbonation Cycles. J. Environ. Manage. 2020, 260, 110054. DOI: 10.1016/j.jenvman.2019.110054.
  • Linderholm, C.; Schmitz, M. Chemical-Looping Combustion of Solid Fuels in a 100 kW dual Circulating Fluidized Bed System Using Iron Ore as Oxygen Carrier. J. Environ. Chem. Eng. 2016, 4(1), 1029–1039. DOI: 10.1016/j.jece.2016.01.006.
  • Kumar, C. V.; Kandasubramanian, B. Advances in Ablative Composites of Carbon Based Materials: A Review. Ind. Eng. Chem. Res. 2019, 58(51), 22663–22701. DOI: 10.1021/acs.iecr.9b04625.
  • Kashyap, S.; Kabra, S.; Kandasubramanian, B. Graphene Aerogel-Based Phase Changing Composites for Thermal Energy Storage Systems. J. Mater. Sci. 2020, 55(10), 4127–4156. DOI: 10.1007/s10853-019-04325-7.
  • Zinge, C.; Kandasubramanian, B. Nanocellulose Based Biodegradable Polymers. Eur. Polym. J. 2020, 133, 109758. DOI: 10.1016/j.eurpolymj.2020.109758.
  • Dixit, F.; Munoz, G.; Mirzaei, M.; Barbeau, B.; Liu, J.; Duy, S. V.; Sauvé, S.; Kandasubramanian, B.; Mohseni, M. Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins. Environ. Sci. Technol. 2022, 56(10), 6212–6222. DOI: https://doi.org/10.1021/acs.est.1c03780.
  • Zeng, L.; Cheng, Z.; Fan, J. A. Metal Oxide Redox Chemistry for Chemical Looping Processes. Nat. Rev. Chem. 2018, 2(11), 349–364.
  • Osman, M.; Khan, M. N.; Zaabout, A. Review of Pressurized Chemical Looping Processes for Power Generation and Chemical Production with Integrated CO2 Capture. Fuel Process. Technol. 2021, 214, 106684. DOI: 10.1016/j.fuproc.2020.106684.
  • Ajiwibowo, M. W.; Darmawan, A.; Aziz, M. A Conceptual Chemical Looping Combustion Power System Design in a Power-To-Gas Energy Storage Scenario. Int. J. Hydrogen. Energy. 2019, 44(19), 9636–9642. DOI: 10.1016/j.ijhydene.2018.11.177.
  • Toftegaard, M. B.; Brix, J.; Jensen, P. A. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 2010, 36(5), 581–625.
  • Purabgola, A.; Mayilswamy, N.; Kandasubramanian, B. Graphene-Based TiO2 Composites for Photocatalysis & Environmental Remediation: Synthesis and Progress. Environ. Sci. Pollut. Res. 2022, 29(22), 32305–32325. DOI: 10.1007/s11356-022-18983-9.
  • Mayilswamy, N.; Krishnan, A.; Mundhada, M. Shock Wave-Assisted Exfoliation of 2D-Material-Based Polymer Nanocomposites: A Breakthrough in Nanotechnology. Ind. Eng. Chem. Res. 2023, 62(17), 6584–6598.
  • Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-Fuel Coal Combustion—A Review of the Current State-Of-The-Art. Int. J. Greenhouse Gas Con. 2011, 5, S16–S35. DOI: 10.1016/j.ijggc.2011.05.020.
  • Tlili, N.; Grévillot, G.; Vallières, C. Carbon Dioxide Capture and Recovery by Means of TSA And/Or VSA. Int. J. Greenhouse Gas Con. 2009, 3(5), 519–527. DOI: 10.1016/j.ijggc.2009.04.005.
  • Krishnan, A.; Nighojkar, A.; Kandasubramanian, B. Emerging towards zero carbon footprint via carbon dioxide capturing and sequestration. Carbon Capture Sci. & Tech. 2023, 9, 100137. DOI: 10.1016/j.ccst.2023.100137.
  • Banayan Esfahani, E.; Dixit, F.; Asadi Zeidabadi, F. Ion Exchange and Advanced Oxidation/Reduction Processes for Per- and Polyfluoroalkyl Substances Treatment: A Mini-Review. Curr. Opin. Chem. Eng. 2023, 42, 100953. DOI: 10.1016/j.coche.2023.100953.
  • Koohestanian, E.; Shahraki, F. Review on Principles, Recent Progress, and Future Challenges for Oxy-Fuel Combustion CO2 Capture Using Compression and Purification Unit. J. Environ. Chem. Eng. 2021, 9(4), 105777. DOI: 10.1016/j.jece.2021.105777.
  • Kanniche, M.; Gros-Bonnivard, R.; Jaud, P. Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture. Appl. Therm. Eng. 2010, 30(1), 53–62.
  • Escudero, A. I.; Espatolero, S.; Romeo, L. M. Oxy-Combustion Power Plant Integration in an Oil Refinery to Reduce CO 2 Emissions. Int. J. Greenhouse Gas Con. 2016, 45, 118–129. DOI: 10.1016/j.ijggc.2015.12.018.
  • Yang, X.; Clements, A.; Szuhánszki, J.; Huang, X.; Farias Moguel, O.; Li, J.; Gibbins, J.; Liu, Z.; Zheng, C.; Ingham, D., et al. Prediction of the Radiative Heat Transfer in Small and Large Scale Oxy-Coal Furnaces. Appl. Energy. 2018, 211, 523–537. DOI: 10.1016/j.apenergy.2017.11.070.
  • Zeng, Y.; Li, K. Influence of SO2 on the Corrosion and Stress Corrosion Cracking Susceptibility of Supercritical CO2 Transportation Pipelines. Corros. Sci. 2020, 165, 108404. DOI: 10.1016/j.corsci.2019.108404.
  • Chansomwong, A.; Zanganeh, K. E.; Shafeen, A. Dynamic Modelling of a CO2 Capture and Purification Unit for an Oxy-Coal-Fired Power Plant. Int. J. Greenhouse Gas Con. 2014, 22, 111–122. DOI: 10.1016/j.ijggc.2013.12.025.
  • Subraveti, S. G.; Pai, K. N.; Rajagopalan, A. K. Cycle Design and Optimization of Pressure Swing Adsorption Cycles for Pre-Combustion CO2 Capture. Appl. Energy. 2019, 254, 113624. DOI: 10.1016/j.apenergy.2019.113624.
  • Martelli, E.; Kreutz, T.; Carbo, M. Shell Coal IGCCS with Carbon Capture: Conventional Gas Quench Vs. Innovative Configurations. Appl. Energy. 2011, 88(11), 3978–3989.
  • Spallina, V.; Gallucci, F.; Romano, M. C.; Sint Annaland M, V. Pre-Combustion Packed Bed Chemical Looping (PCCL) Technology for Efficient H2-Rich Gas Production Processes. Chem. Eng. J. 2016, 294, 478–494. DOI: 10.1016/j.cej.2016.03.011.
  • Jansen, D.; Gazzani, M.; Manzolini, G. Pre-combustion CO2 capture. Int. J. Greenhouse Gas Con. 2015, 40, 167–187. DOI: 10.1016/j.ijggc.2015.05.028.
  • Goto, K.; Yogo, K.; Higashii, T. A Review of Efficiency Penalty in a Coal-Fired Power Plant with Post-Combustion CO2 Capture. Appl. Energy. 2013, 111, 710–720. DOI: 10.1016/j.apenergy.2013.05.020.
  • Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E. Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations – a Review. Appl. Energy. 2016, 161, 225–255. DOI: 10.1016/j.apenergy.2015.10.011.
  • Otitoju, O.; Oko, E.; Wang, M. Modelling, Scale-Up and Techno-Economic Assessment of Rotating Packed Bed Absorber for CO2 Capture from a 250 MWe Combined Cycle Gas Turbine Power Plant. Appl. Energy. 2023, 335, 120747. DOI: 10.1016/j.apenergy.2023.120747.
  • Rosa, L.; Gabrielli, P. Achieving Net-Zero Emissions in Agriculture: A Review. Environ. Res. Lett. 2023, 18(6), 063002. DOI: https://doi.org/10.1088/1748-9326/acd5e8.
  • Anant Deshpande, V.; Antanitta, S. V.; Kore, A.; Kandasubramanian, B. Silk Based Bio–Inks for Medical Applications. European Polymer Journal. 2023, 196, 112255. DOI: 10.1016/j.eurpolymj.2023.112255.
  • Matsumoto, M.; Kitaoka, T. Ultraselective Gas Separation by Nanoporous Metal-Organic Frameworks Embedded in Gas-Barrier Nanocellulose Films. Adv.Mate. 2016, 28(9), 1765–1769. DOI: 10.1002/adma.201504784.
  • Millward, A. R.; Yaghi, O. M. Metal−organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127(51), 17998–17999. DOI: 10.1021/ja0570032.
  • Su, Z.; Zhang, M.; Lu, Z. Functionalization of Cellulose Fiber by in situ Growth of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals for Preparing a Cellulose-Based Air Filter with Gas Adsorption Ability. Cellulose. 2018, 25(3), 1997–2008.
  • Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organic-framework Particles for Separations Applications. Adv.Mate. 2016, 28(35), 7652–7657. DOI: https://doi.org/10.1002/adma.201601351.
  • Zhu, L.; Zong, L.; Wu, X. Shapeable Fibrous Aerogels of Metal–Organic-frameworks Templated with Nanocellulose for Rapid and Large-Capacity Adsorption. ACS Nano. 2018, 12(5), 4462–4468.
  • Yu, S.; Zhao, X.; Zhang, J. A Novel Combining Strategy of Cellulose Aerogel and Hierarchically Porous Metal Organic Frameworks (HP-MOFs) to Improve the CO2 Absorption Performance. Cellulose. 2022, 29(12), 6783–6796.
  • Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir. 2012, 28(44), 15606–15613. DOI: 10.1021/la3035352.
  • Cao, Y.; Zhang, H.; Song, F. UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance. Materials. 2018, 11(4), 589.
  • Policicchio, A.; Zhao, Y.; Zhong, Q. Cu-Btc/aminated Graphite Oxide Composites as High-Efficiency CO 2 Capture Media. ACS Appl. Mater. Interfaces. 2014, 6(1), 101–108.
  • Vincent, S.; Kandasubramanian, B. Cellulose Nanocrystals from Agricultural Resources: Extraction and Functionalisation***. Eur. Polym. J. 2021, 160, 110789. DOI: 10.1016/j.eurpolymj.2021.110789.
  • Valencia, L.; Abdelhamid, H. N. Nanocellulose Leaf-Like Zeolitic Imidazolate Framework (ZIF-L) Foams for Selective Capture of Carbon Dioxide. Carbohydr. Polym. 2019, 213, 338–345. DOI: 10.1016/j.carbpol.2019.03.011.
  • Kumar Mishra, A.; Ramaprabhu, S. Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite-An Excellent Reversible CO2 Capture Candidate. R.S.C. Adv. 2012, 2(5), 1746. DOI: 10.1039/c1ra00958c.
  • Li, X.; Jin, Y.; Xue, Q. Ultra-High Selective Capture of CO 2 on One-Sided N-Doped Carbon Nanoscrolls. J. CO2 Uti. 2017, 18, 275–282. DOI: 10.1016/j.jcou.2016.12.012.
  • Alghamdi, A.; Alshahrani, A.; Khdary, N. Enhanced CO2 Adsorption by Nitrogen-Doped Graphene Oxide Sheets (N-GOs) Prepared by Employing Polymeric Precursors. Materials. 2018, 11(4), 578.
  • Rodríguez-García, S.; Santiago, R.; López-Díaz, D.; Merchán, M. D.; Velázquez, M. M.; Fierro, J. L. G.; Palomar, J. Role of the Structure of Graphene Oxide Sheets on the CO 2 Adsorption Properties of Nanocomposites Based on Graphene Oxide and Polyaniline or Fe 3 O 4 -Nanoparticles. ACS Sustainable Chem. Eng. 2019. DOI: 10.1021/acssuschemeng.9b02035.
  • Kosseva, M. R. Sources, Characteristics and Treatment of Plant-Based Food Waste. In Food Industry Wastes, 2nd ed.; Kosseva, Maria R., Webb, Colin., Eds. Elsevier: Amsterdam, 2020; pp 37–66.
  • Ahmadi, R.; Ardjmand, M.; Rashidi, A.; Rafizadeh, M. High Performance Novel Nanoadsorbents Derived - Natural Cellulose Fibers for Superior CO 2 Adsorption and CO 2/CH 4 Separation. Energy Sources Part A. 2020, 1–19. DOI: 10.1080/15567036.2020.1845878.
  • Heo, Y.-J.; Park, S.-J. A Role of Steam Activation on CO2 Capture and Separation of Narrow Microporous Carbons Produced from Cellulose Fibers. Energy. 2015, 91, 142–150. DOI: 10.1016/j.energy.2015.08.033.
  • Yao, Q.; Fan, B.; Xiong, Y. 3D Assembly Based on 2D Structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Sci. Rep. 2017, 7(1), 45914.
  • Li, Z.; Wang, J.; Dai, L. Asymmetrically Patterned Cellulose Nanofibers/Graphene Oxide Composite Film for Humidity Sensing and Moist-Induced Electricity Generation. ACS Appl. Mater. Interfaces. 2020, 12(49), 55205–55214.
  • Valencia, L.; Monti, S.; Kumar, S. Nanocellulose/Graphene Oxide Layered Membranes: Elucidating Their Behaviour During Filtration of Water and Metal Ions in Real Time. Nanoscale. 2019, 11(46), 22413–22422.
  • Chen, H.; Dong, S.; Zhang, Y.; He, P. Robust Structure Regulation of Geopolymer as Novel Efficient Amine Support to Prepare High-Efficiency CO2 Capture Solid Sorbent. Chem. Eng. J. 2022, 427, 131577. DOI: 10.1016/j.cej.2021.131577.
  • Meng, Y.; Ju, T.; Meng, F. Insights into the Critical Role of Abundant-Porosity Supports in Polyethylenimine Functionalization as Efficient and Stable CO 2 Adsorbents. ACS Appl. Mater. Interfaces. 2021, 13(45), 54018–54031.
  • Zhou, H.; Zhu, H.; Shi, X. Design of Amphoteric Bionic Fibers by Imitating Spider Silk for Rapid and Complete Removal of Low-Level Multiple Heavy Metal Ions. Chem. Eng. J. 2021, 412, 128670. DOI: 10.1016/j.cej.2021.128670.
  • Xu, X.; Ozden, S.; Bizmark, N. A Bioinspired Elastic Hydrogel for Solar‐Driven Water Purification. Adv.Mate. 2021, 33(18), 2007833.
  • Lu, W.; Shi, X.; Zhou, H. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture. Chem. Eng. J. 2022, 449, 137885. DOI: 10.1016/j.cej.2022.137885.
  • Rehman, A.; Jahan, Z.; Sher, F. Cellulose acetate based sustainable nanostructured membranes for environmental remediation. Chemosphere. 2022, 307, 135736. DOI: 10.1016/j.chemosphere.2022.135736.
  • Sun, J.; Shang, M.; Zhang, M. Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohydr. Polym. 2022, 293, 119720. DOI: 10.1016/j.carbpol.2022.119720.
  • Wang, S.; Wang, C.; Zhou, Q. Strong Foam-Like Composites from Highly Mesoporous Wood and Metal-Organic Frameworks for Efficient CO 2 Capture. ACS Appl. Mater. Interfaces. 2021, 13(25), 29949–29959. DOI: 10.1021/acsami.1c06637.
  • Wan, C.; Zhao, F.; Bao, X. Surface Characteristics of Polyhedral Oligomeric Silsesquioxane Modified Clay and Its Application in Polymerization of Macrocyclic Polyester Oligomers. J. Phys. Chem B. 2008, 112(38), 11915–11922.
  • Nasser Abdelhamid, H.; Mathew, A. P. Cellulose-Zeolitic Imidazolate Frameworks (CelloZifs) for Multifunctional Environmental Remediation: Adsorption and Catalytic Degradation. Chem. Eng. J. 2021, 426, 131733. DOI: 10.1016/j.cej.2021.131733.
  • Maia, R. A.; Louis, B.; Gao, W.; Wang, Q. CO 2 Adsorption Mechanisms on MOFs: A Case Study of Open Metal Sites, Ultra-Microporosity and Flexible Framework. Reaction Chem. Eng. 2021, 6(7), 1118–1133. DOI: 10.1039/D1RE00090J.
  • Pereira, D.; Fonseca, R.; Marin-Montesinos, I. Understanding CO2 Adsorption Mechanisms in Porous Adsorbents: A Solid-State NMR Survey. Curr. Opin. Colloid. Interface Sci. 2023, 64, 101690. DOI: 10.1016/j.cocis.2023.101690.
  • Kaur, R.; Kaur, A.; Umar, A. Metal Organic Framework (MOF) Porous Octahedral Nanocrystals of Cu-BTC: Synthesis, Properties and Enhanced Adsorption Properties. Mater. Res. Bull. 2019, 109, 124–133. DOI: 10.1016/j.materresbull.2018.07.025.
  • Ashika, A. P.; Nighojkar, A.; Subash, A.; Kandasubramanian, B. Polymeric Architectures (PAs) for H2 Capture: A Review on the Mechanism, Synthesis Approach, and Physicochemical Traits. Eur. Polym. J. 2023, 194, 112189. DOI: 10.1016/j.eurpolymj.2023.112189.
  • Johar, N.; Ahmad, I.; Dufresne, A. Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012, 37(1), 93–99. DOI: 10.1016/j.indcrop.2011.12.016.
  • Wei, J.; Geng, S.; Hedlund, J.; Oksman, K. Lightweight, Flexible, and Multifunctional Anisotropic Nanocellulose-Based Aerogels for CO2 Adsorption. Cellulose. 2020, 27(5), 2695–2707. DOI: 10.1007/s10570-019-02935-7.
  • Liu, S.; Zhang, Y.; Jiang, H. High CO2 Adsorption by Amino-Modified Bio-Spherical Cellulose Nanofibres Aerogels. Environ. Chem. Lett. 2018, 16(2), 605–614.
  • Magalhães, T. O.; Aquino, A. S.; Vecchia, F. D. Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. R.S.C. Adv. 2014, 4(35), 18164.
  • Bernard, F. L.; DanielaM, R.; Polesso, B. B. Development of inexpensive cellulose-based sorbents for Carbon dioxide. Braz. J. Chem. Eng. 2019, 36(1), 511–521.
  • Reyes, G.; Vega‐Coloma, M.; Antonova, A. Direct CO 2 Capture by Alkali‐Dissolved Cellulose and Sequestration in Building Materials and Artificial Reef Structures. Adv.Mate. 2023, 35(11). DOI:https://doi.org/10.1002/adma.202209327.
  • Sepahvand, S.; Jonoobi, M.; Ashori, A. A Promising Process to Modify Cellulose Nanofibers for Carbon Dioxide (CO2) Adsorption. Carbohydr. Polym. 2020, 230, 115571. DOI: 10.1016/j.carbpol.2019.115571.
  • Melouki, R.; Ouadah, A.; Llewellyn, P. L. The CO2 Adsorption Behavior Study on Activated Carbon Synthesized from Olive Waste. J. CO2 Uti. 2020, 42, 101292. DOI: 10.1016/j.jcou.2020.101292.
  • Yue, L.; Xia, Q.; Wang, L. CO2 Adsorption at Nitrogen-Doped Carbons Prepared by K2CO3 Activation of Urea-Modified Coconut Shell. J. Colloid. Interface. Sci. 2018, 511, 259–267. DOI: 10.1016/j.jcis.2017.09.040.
  • Hirst, E. A.; Taylor, A.; Mokaya, R. A Simple Flash Carbonization Route for Conversion of Biomass to Porous Carbons with High CO 2 Storage Capacity. J. Mater. Chem. A. 2018, 6(26), 12393–12403. DOI: 10.1039/C8TA04409K.
  • Chomiak, K.; Gryglewicz, S.; Kierzek, K.; Machnikowski, J. Optimizing the Properties of Granular Walnut-Shell Based KOH Activated Carbons for Carbon Dioxide Adsorption. J. CO2 Uti. 2017, 21, 436–443. DOI: 10.1016/j.jcou.2017.07.026.
  • Ogungbenro, A. E.; Quang, D. V.; Al-Ali, K. A., et al. Synthesis and Characterization of Activated Carbon from Biomass Date Seeds for Carbon Dioxide Adsorption. J. Environ. Chem. Eng. 2020, 8(5), 104257.
  • Pramanik, P.; Patel, H.; Charola, S. High Surface Area Porous Carbon from Cotton Stalk Agro-Residue for CO2 Adsorption and Study of Techno-Economic Viability of Commercial Production. J. CO2 Uti. 2021, 45, 101450. DOI: 10.1016/j.jcou.2021.101450.
  • Policicchio, A.; Florent, M.; Attia, M. F. Effect of the Incorporation of Functionalized Cellulose Nanocrystals into UiO‐66 on Composite Porosity and Surface Heterogeneity Alterations. Adv. Mater. Interfaces. 2020, 7(14), 1902098.
  • Qiu, X.; Wang, X.; Chen, S. A stable and easily regenerable solid amine adsorbent derived from a polyethylenimine-impregnated dialdehyde-cellulose/graphene-oxide composite. New. J. Chem. 2022, 46(15), 6956–6965. DOI: https://doi.org/10.1039/D2NJ00530A.
  • Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. DOI: 10.1016/j.jhazmat.2020.122156.
  • Kunz Lazzari, L.; Perondi, D.; Zattera, A. J.; Campomanes Santana, R. M. Cellulose/Biochar Cryogels: A Study of Adsorption Kinetics and Isotherms. Langmuir. 2021, 37(10), 3180–3188. DOI: 10.1021/acs.langmuir.1c00123.
  • Serna-Guerrero, R.; Sayari, A. Modeling Adsorption of CO2 on Amine-Functionalized Mesoporous Silica. 2: Kinetics and Breakthrough Curves. Chem. Eng. J. 2010, 161(1–2), 182–190. DOI: 10.1016/j.cej.2010.04.042.
  • Yin, F.; Wu, Z.; Luo, X. Synthesis of Nitrogen-Rich Hollow Microspheres for CO2 Adsorption. J. Mater. Sci. 2019, 54(5), 3805–3816.
  • Ma, H.; Wang, Z.; Zhang, X.-F. In situ Growth of Amino-Functionalized ZIF-8 on Bacterial Cellulose Foams for Enhanced CO2 Adsorption. Carbohydr. Polym. 2021, 270, 118376. DOI: 10.1016/j.carbpol.2021.118376.
  • Miao, Y.; Luo, H.; Pudukudy, M. CO2 Capture Performance and Characterization of Cellulose Aerogels Synthesized from Old Corrugated Containers. Carbohydr. Polym. 2020, 227, 115380. DOI: 10.1016/j.carbpol.2019.115380.
  • Liu, H.; Liang, Z.; Wang, S. Synthesis and Characterization of a Thermosensitive Solid Amine Biomass Adsorbent for Carbon Dioxide Adsorption. J. Environ. Manage. 2021, 292, 112722. DOI: 10.1016/j.jenvman.2021.112722.
  • Wu, R.; Ye, Q.; Wu, K. Highly Efficient CO2 Adsorption of Corn Kernel-Derived Porous Carbon with Abundant Oxygen Functional Groups. J. CO2 Uti. 2021, 51, 101620. DOI: 10.1016/j.jcou.2021.101620.
  • Rim, G.; Feric, T. G.; Moore, T.; Park, A. A. Solvent Impregnated Polymers Loaded with Liquid‐Like Nanoparticle Organic Hybrid Materials for Enhanced Kinetics of Direct Air Capture and Point Source CO 2 Capture. Adv. Funct. Mater. 2021, 31(21), 2010047. DOI: https://doi.org/10.1002/adfm.202010047.
  • Hamdy, L. B.; Wakeham, R. J.; Taddei, M. Epoxy Cross-Linked Polyamine CO 2 Sorbents Enhanced via Hydrophobic Functionalization. Chem. Mater. 2019, 31(13), 4673–4684.
  • Roy, S.; Das, T.; Dasgupta Ghosh, B. From Hazardous Waste to Green Applications: Selective Surface Functionalization of Waste Cigarette Filters for High-Performance Robu St Triboelectric Nanogenerators and CO 2 Adsorbents. ACS Appl. Mater. Interfaces. 2022, 14(28), 31973–31985.
  • Zhang, Q.; Cheng, Y.; Fang, C.; Shi, J. Construction of Novel Regenerated Cellulose Based Foam Derived from Waste Cigarette Filters as Effective Oil Adsorbent. J. Appl. Polym. Sci. 2022, 139(14), 51900. DOI: 10.1002/app.51900.
  • Gupta, N. K.; Bae, J.; Kim, K. S. From MOF-199 Microrods to CuO Nanoparticles for Room-Temperature Desulfurization: Regeneration and Repurposing Spent Adsorbents as Sustainable Approaches. ACS Omega. 2021, 6(39), 25631–25641. DOI: 10.1021/acsomega.1c03712.
  • CHEN, L.; ZHENG, T.; S, M. E. I. Review and Prospect of Compressed Air Energy Storage System. J. Mod. Power Syst. Clean Energy. 2016, 4(4), 529–541.
  • Alhasan, S.; Carriveau, R.; Ting, D.-K. A Review of Adsorbed Natural Gas Storage Technologies. Int. J. Environ. Stud. 2016, 73(3), 343–356. DOI: https://doi.org/10.1080/00207233.2016.1165476.
  • Assen, A. H.; Belmabkhout, Y.; Adil, K. Advances on CO2 Storage. Synthetic Porous Solids, Mineralization and Alternative Solutions. Chem. Eng. J. 2021, 419, 129569. DOI: 10.1016/j.cej.2021.129569.
  • Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C., et al. Graphene Oxide as a Promising Photocatalyst for CO 2 to Methanol Conversion. Nanoscale. 2013, 5(1), 262–268.
  • Yeh, T.-F.; Cihlář, J.; Chang, C.-Y. Roles of Graphene Oxide in Photocatalytic Water Splitting. Mater. Today. 2013, 16(3), 78–84.
  • Wang, B.; Zhang, X.; Liu, Y. Basic Intensity Regulation of Layered double Oxide for CO2 Adsorption Process at Medium Temperature in Coal Gasification. Chem. Eng. J. 2022, 446, 136842. DOI: 10.1016/j.cej.2022.136842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.