110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermoelectric properties investigation of Tungsten carbide-filled poly (vinyl alcohol)/Polypyrrole ternary composites

&
Pages 151-160 | Received 13 Aug 2023, Accepted 28 Oct 2023, Published online: 03 Nov 2023

References

  • Li, X.; Cai, K.; Gao, M.; Du, Y.; Shen, S. Recent Advances in Flexible Thermoelectric Films and Devices. Nano. Energy. 2021, 89, 106309. DOI: 10.1016/j.nanoen.2021.106309.
  • Wang, Y.; Hong, M.; Liu, W. D.; Shi, X. L.; Xu, S. D.; Sun, Q.; Gao, H.; Lu, S.; Zou, J.; Chen, Z. G. B. 5. 5. PSS-Based Flexible Thermoelectric Film and Device. Chem. Eng. J. 2020, 397, 125360. DOI: 10.1016/j.cej.2020.125360.
  • Chen, X.; Feng, L.; Yu, P.; Liu, C.; Lan, J.; Lin, Y. H.; Yang, X. Flexible Thermoelectric Films Based on Bi2Te3 Nanosheets and Carbon Nanotube Network with High N-Type Performance. ACS Appl. Mater. Interfaces. 2021, 13(4), 5451–5459. DOI: 10.1021/acsami.0c21396.
  • Gao, Q.; Wang, W.; Lu, Y.; Cai, K.; Li, Y.; Wang, Z.; Wu, M.; Huang, C.; He, J. High Power Factor Ag/Ag2Se Composite Films for Flexible Thermoelectric Generators. ACS Appl. Mater. Interfaces. 2021, 13(12), 14327–14333. DOI: 10.1021/acsami.1c02194.
  • Li, Y.; Lou, Q.; Yang, J.; Cai, K.; Liu, Y.; Lu, Y.; Qiu, Y.; Lu, Y.; Wang, Z.; Wu, M., et al. Exceptionally High Power Factor Ag2Se/Se/polypyrrole Composite Films for Flexible Thermoelectric Generators. Adv. Funct. Mater. 2022, 32(7), 2106902. DOI: 10.1002/adfm.202106902.
  • Lund, A.; Tian, Y.; Darabi, S.; Müller, C. A Polymer-Based Textile Thermoelectric Generator for Wearable Energy Harvesting. J. Power Sources. 2020, 480, 228836. DOI: 10.1016/j.jpowsour.2020.228836.
  • Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-Based Flexible Thermoelectric Generators: From Materials to Devices. Nano. Energy. 2022, 92, 106774. DOI: 10.1016/j.nanoen.2021.106774.
  • Xu, S.; Hong, M.; Shi, X. L.; Wang, Y.; Ge, L.; Bai, Y.; Wang, L.; Dargusch, M.; Zou, J.; Chen, Z. G. H.-P. P. PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. Chem. Mater. 2019, 31(14), 5238–5244. DOI: 10.1021/acs.chemmater.9b01500.
  • Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable Free-Standing Polypyrrole Films for Wrist-Band Type Flexible Thermoelectric Power Generator. Energy. 2019, 176, 853–860. DOI: 10.1016/j.energy.2019.04.013.
  • Chen, Z. P.; Li, Y.; Gao, C. Y.; Fan, X. H.; Li, H. P.; Yang, L. M. Electrochemical Assembly of Single-Walled Carbon Nanotube/Polypyrrole/Tellurium/Lead Telluride Multi-Layer Nanocomposite Films for Room-Temperature Flexible Thermoelectric Application. J. Colloid. Interface. Sci. 2023, 646, 824–833. DOI: 10.1016/j.jcis.2023.05.134.
  • Li, M.; Jiang, F.; Yang, J.; Wang, Y.; Zhao, F.; Xu, X.; Liu, M.; Yan, J.; Xu, J. Electrochemical Preparation and Regulation of Flexible Polypyrrole Film Toward Enhanced Thermoelectric Performance. ACS Appl. Energy Mater. 2021, 4(11), 12982–12988. DOI: 10.1021/acsaem.1c02550.
  • Yin, M.; Du, H.; Liu, Y.; Li, L.; Yu, X. Improved Thermoelectric Performance of Flexible Film Based on Polypyrrole/Silver Nanocomposites. J. Electron. Mater. 2022, 1–7. DOI: 10.1007/s11664-021-09356-y.
  • Li, Y.; Gao, C. Y.; Fan, X. H.; Li, H. P.; Yang, L. M. Pulse Electrochemically Driven Multilayer Assembly of Single‐Walled Carbon Nanotube/Polypyrrole/Tellurium Composite Films for Ultra‐High‐Performance Flexible Thermoelectric Applications. Adv. Mater. Technol. 2023, 8(7), 2201544. DOI: 10.1002/admt.202201544.
  • Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible Thermoelectric Materials and Devices. Appl. Mater. Today. 2018, 12, 366–388. DOI: 10.1016/j.apmt.2018.07.004.
  • Andzane, J.; Buks, K.; Bitenieks, J.; Bugovecka, L.; Kons, A.; Merijs-Meri, R.; Svirksts, J.; Zicans, J.; Erts, D. P-Type PVA/MWCNT-Sb2Te3 Composites for Application in Different Types of Flexible Thermoelectric Generators in Combination with N-Type PVA/MWCNT-Bi2Se3 Composites. Polym. 2022, 14(23), 5130. DOI: 10.3390/polym14235130.
  • Koc, R.; Kodambaka, S. K. Tungsten Carbide (WC) Synthesis from Novel Precursors. J. Eur. Ceram. Soc. 2000, 20(11), 1859–1869. DOI: 10.1016/S0955-2219(00)00038-8.
  • Du, Y.; Chen, J.; Liu, X.; Lu, C.; Xu, J.; Paul, B.; Eklund, P. Flexible N-Type Tungsten Carbide/Polylactic Acid Thermoelectric Composites Fabricated by Additive Manufacturing. Coat. 2018, 8(1), 25. DOI: 10.3390/coatings8010025.
  • Ozturk, C. E.; Ugraskan, V.; Yazici, O. Thermoelectric Properties of Titanium Carbide Filled Polypyrrole Hybrid Composites. J. Electron. Mater. 2022, 51(9), 5246–5252. DOI: 10.1007/s11664-022-09776-4.
  • Ugraskan, V.; Sazci, O.; Hazar Yoruc, A. B. Enhanced Mechanical Properties of Poly (Vinyl Alcohol)/Boron Phosphate Nanocomposites. Plast. Rubber Compos. 2021, 50(10), 477–484. DOI: 10.1080/14658011.2021.1913384.
  • Khmyrov, R. S.; Shevchukov, A. P.; Gusarov, A. V.; Tarasova, T. V.; Grigoriev, S. N. Phase Composition and Microstructure of WC–Co Alloys Obtained by Selective Laser Melting. Mech. Ind. 2017, 18(7), 714. DOI: 10.1051/meca/2017059.
  • Kharazmi, A.; Faraji, N.; Hussin, R. M.; Saion, E.; Yunus, W. M. M.; Behzad, K. Structural, Optical, Opto-Thermal, and Thermal Properties of ZnS–PVA Nanofluids Synthesized Through a Radiolytic Approach. Beilstein J. Nanotechnol. 2015, 6(1), 529–536. DOI: 10.3762/bjnano.6.55.
  • Abureesh, M. A.; Oladipo, A. A.; Gazi, M. Facile Synthesis of Glucose-Sensitive Chitosan–Poly (Vinyl Alcohol) Hydrogel: Drug Release Optimization and Swelling Properties. Int. J. Biol. Macromol. 2016, 90, 75–80. DOI: 10.1016/j.ijbiomac.2015.10.001.
  • Turczyn, R.; Krukiewicz, K.; Katunin, A.; Sroka, J.; Sul, P. Fabrication and Application of Electrically Conducting Composites for Electromagnetic Interference Shielding of Remotely Piloted Aircraft Systems. Compos. Struct. 2020, 232, 111498. DOI: 10.1016/j.compstruct.2019.111498.
  • Fu, Y.; Su, Y. S.; Manthiram, A. Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. J. Electrochem. Soc. 2012, 159(9), A1420. DOI: 10.1149/2.027209jes.
  • Abbas, R. K.; Musa, K. M. Using Raman Shift and FT-IR Spectra as Quality Indices of Oil Bit PDC Cutters. Pet. 2019, 5(3), 329–334. DOI: 10.1016/j.petlm.2018.10.003.
  • Pandurangarao, K.; Kumar, V. R. Preparation and Characterization of Nanocrystalline Tungsten Oxide Thin Films for Electrochromic Devices: Effect of Deposition Parameters. Mater. Today Proc. 2019, 19, 2596–2603. DOI: 10.1016/j.matpr.2019.10.093.
  • Kumar, V. B.; Mohanta, D. Formation of Nanoscale Tungsten Oxide Structures and Colouration Characteristics. Bull. Mater. Sci. 2011, 34, 435–442. DOI: 10.1007/s12034-011-0117-1.
  • Zhang, H.; Zhong, X.; Xu, J. J.; Chen, H. Y. Fe3O4/polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure: Synthesis, Characterization, and Their Electrochemical Properties. Langmuir. 2008, 24(23), 13748–13752. DOI: 10.1021/la8028935.
  • Zhang, F.; Shi, Y.; Zhao, Z.; Song, W.; Cheng, Y. Influence of Semiconductor/Insulator/Semiconductor Structure on the Photo-Catalytic Activity of Fe3O4/SiO2/polythiophene Core/Shell Submicron Composite. Appl. Catal. B. 2014, 150, 472–478. DOI: 10.1016/j.apcatb.2013.12.049.
  • Zhao, W.; Wang, Y.; Wang, A. Nonlinear Optical Properties of Novel Polypyrrole Derivatives Bearing Different Aromatic Segments. Mater. Sci. Appl. 2017, 8(11), 774. DOI: 10.4236/msa.2017.811056.
  • Su, C.; Wang, L.; Xu, L.; Zhang, C. Synthesis of a Novel Ferrocene-Contained Polypyrrole Derivative and Its Performance as a Cathode Material for Li-Ion Batteries. Electrochim. Acta. 2013, 104, 302–307. DOI: 10.1016/j.electacta.2013.04.127.
  • Badry, R.; El-Khodary, S.; Elhaes, H.; Nada, N.; Ibrahim, M. Optical, Conductivity and Dielectric Properties of Plasticized Solid Polymer Electrolytes Based on Blends of Sodium Carboxymethyl Cellulose and Polyethylene Oxide. Opt. Quantum Electron. 2021, 53(1), 1–15. DOI: 10.1007/s11082-020-02649-2.
  • Mott, N. F. Conduction in Non-Crystalline Systems: IV. Anderson Localization in a Disordered Lattice. Philos. Mag. 1970, 22(175), 7–29. DOI: 10.1080/14786437008228147.
  • Ugraskan, V. Investigation of Optical and Electrical Properties of Piperic Acid-Filled Polyaniline Composites. Fullerenes, Fuller. Nanotub. Carbon Nanostruct. 2023, 31(11), 1–10. DOI: 10.1080/1536383X.2023.2241586.
  • Guo, H. X.; Takahara, H.; Imai, Y.; Aota, H. Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers. 2022, 14(12), 2472. DOI: 10.3390/polym14122472.
  • Ju, H.; Park, D.; Kim, J. Thermoelectric Enhancement in Multilayer Thin-Films of Tin Chalcogenide Nanosheets/Conductive Polymers. Nanoscale. 2019, 11(34), 16114–16121. DOI: 10.1039/C9NR04712C.
  • Li, M.; Jiang, F.; Yang, J.; Wang, Y.; Zhao, F.; Xu, X.; Liu, M.; Yan, J.; Xu, J. Electrochemical Preparation and Regulation of Flexible Polypyrrole Film Toward Enhanced Thermoelectric Performance. ACS Appl. Energy Mater. 2021, 4(11), 12982–12988. DOI: 10.1021/acsaem.1c02550.
  • Xiang, M.; Yang, Z.; Chen, J.; Zhou, S.; Wei, W.; Dong, S. Polymeric Thermoelectric Composites by Polypyrrole and Cheap Reduced Graphene Oxide in Towel-Gourd Sponge Fibers. ACS. Omega. 2020, 5(46), 29955–29962. DOI: 10.1021/acsomega.0c04356.
  • Pires, A. L.; Cruz, I. F.; Silva, J.; Oliveira, G. N.; Ferreira-Teixeira, S.; Lopes, A. M.; Araújo, J. P.; Fonseca, J.; Pereira, C.; Pereira, A. M. Printed Flexible μ-Thermoelectric Device Based on Hybrid Bi2Te3/PVA Composites. ACS Appl. Mater. Interfaces. 2019, 11(9), 8969–8981. DOI: 10.1021/acsami.8b18081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.