144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of ultraviolet-irradiation on the physicochemical and disintegrability properties of nanocomposite tunta starch:tara gum films reinforced with starch nanocrystals

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 299-311 | Received 23 Sep 2023, Accepted 16 Nov 2023, Published online: 25 Nov 2023

References

  • Fathi, N.; Almasi, H.; Pirouzifard, M. K. Effect of Ultraviolet Radiation on Morphological and Physicochemical Properties of Sesame Protein Isolate Based Edible Films. Food Hydrocoll. 2018, 85, 136–143. DOI: 10.1016/j.foodhyd.2018.07.018.
  • Liu, F.; Chang, W.; Chen, M.; Xu, F.; Ma, J.; Zhong, F. Film-Forming Properties of Guar Gum, Tara Gum and Locust Bean Gum. Food Hydrocoll. 2020, 98, 105007. DOI: 10.1016/j.foodhyd.2019.03.028.
  • González, K.; Retegi, A.; González, A.; Eceiza, A.; Gabilondo, N. Starch and Cellulose Nanocrystals Together into Thermoplastic Starch Bionanocomposites. Carbohydr. Polym. 2015, 117, 83–90. DOI: 10.1016/j.carbpol.2014.09.055.
  • Ahmad, S.; Manzoor, K.; Ahmad, M.; Purwar, R.; Ikram, S. Starch-Based Bionanocomposites. In Bionanocomposites: Green Synthesis and Applications; Mahmood, K., Jabeen, F., Naveed, M. Ikram, S., Eds.; Elsevier: Oxford, MS, 2020; pp. 157–171.
  • Jogee, P. S.; Agarkar, G. A.; Rai, M. Starch-Based Films Loaded with Nano-Antimicrobials for Food Packaging. In Biopolymer-Based Nano Films: Applications in Food Packaging and Wound Healing; Rai, M. Dos Santos, C. A., Eds.; Elsevier: Oxford, MS, 2021; pp. 99–114.
  • Dash, K. K.; Ali, N. A.; Das, D.; Mohanta, D. Thorough Evaluation of Sweet Potato Starch and Lemon-Waste Pectin Based-Edible Films with Nano-Titania Inclusions for Food Packaging Applications. Int J Biol Macromol. 2019, 139, 449–458. DOI: 10.1016/j.ijbiomac.2019.07.193.
  • Gujral, H.; Sinhmar, A.; Nehra, M.; Nain, V.; Thory, R.; Pathera, A. K.; Chavan, P. Synthesis, Characterization, and Utilization of Potato Starch Nanoparticles as a Filler in Nanocomposite Films. Int J Biol Macromol. 2021, 186, 155–162. DOI: 10.1016/j.ijbiomac.2021.07.005.
  • Llanos, J. R.; Tadini, C. C. Preparation and Characterization of Bio-Nanocomposite Films Based on Cassava Starch or Chitosan, Reinforced with Montmorillonite or Bamboo Nanofibers. Int J Biol Macromol. 2018, 107, 371–382. DOI: 10.1016/j.ijbiomac.2017.09.001.
  • Dominic, C. M.; Dos Santos, R. D.; Camani, P. H.; Kumar, A. S.; Begum, P. M. S.; Dinakaran, D.; Saeb, M. R. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. Int J Biol Macromol. 2021, 191, 572–583. DOI: 10.1016/j.ijbiomac.2021.09.103.
  • Alves, Z.; Abreu, B.; Ferreira, N. M.; Marques, E. F.; Nunes, C.; Ferreira, P. Enhancing the Dispersibility of Multiwalled Carbon Nanotubes within Starch-Based Films by the Use of Ionic Surfactants. Carbohydr. Polym. 2021, 273, 118531. DOI: 10.1016/j.carbpol.2021.118531.
  • Mukurubira, A. R.; Mellem, J. M.; Amonsou, E. O. Effects of Amadumbe Starch Nanocrystals on the Physicochemical Properties of Starch Biocomposite Films. Carbohydr. Polym. 2017, 165, 142–148. DOI: 10.1016/j.carbpol.2017.02.041.
  • Silva, A. M.; Oliveira, A. V.; Pontes, S. M.; Pereira, A. L.; Rosa, M. F.; Azeredo, H. M. Mango Kernel Starch Films as Affected by Starch Nanocrystals and Cellulose Nanocrystals. Carbohydr. Polym. 2019, 211, 209–216. DOI: 10.1016/j.carbpol.2019.02.013.
  • Dai, L.; Yu, H.; Zhang, J.; Cheng, F. Preparation and Characterization of Cross-Linked Starch Nanocrystals and Self-Reinforced Starch-Based Nanocomposite Films. Int J Biol Macromol. 2021, 181, 868–876. DOI: 10.1016/j.ijbiomac.2021.04.020.
  • Martins, P. C.; Latorres, J. M.; Martins, V. G. Impact of Starch Nanocrystals on the Physicochemical, Thermal and Structural Characteristics of Starch-Based Films. LWT. 2022, 156, 113041. DOI: 10.1016/j.lwt.2021.113041.
  • González, A.; Alvarez Igarzabal, C. I. Nanocrystal-Reinforced Soy Protein Films and Their Application as Active Packaging. Food Hydrocoll. 2015, 43, 777–784. DOI: 10.1016/j.foodhyd.2014.08.008.
  • Rezaee, M.; Askari, G.; EmamDjomeh, Z.; Salami, M. UV-Irradiated Gelatin-Chitosan Bio-Based Composite Film, Physiochemical Features and Release Properties for Packaging Applications. Int J Biol Macromol. 2020, 147, 990–996. DOI: 10.1016/j.ijbiomac.2019.10.066.
  • International Organization for Standardization. ISO 21348. Space environment (natural and artificial) — Process for determining solar irradiances. 2007.
  • Acevedo, C. A.; Olguín, Y.; Briceño, M.; Forero, J. C.; Osses, N.; Díaz-Calderón, P.; Jaques, A.; Ortiz, R. Design of a Biodegradable UV-Irradiated Gelatin-Chitosan/nanocomposed Membrane with Osteogenic Ability for Application in Bone Regeneration. Mat. Sci. Eng. C. 2019, 99, 875–886. DOI: 10.1016/j.msec.2019.01.135.
  • Bhat, R.; Karim, A. A. Towards Producing Novel Fish Gelatin Films by Combination Treatments of Ultraviolet Radiation and Sugars (Ribose and Lactose) as Cross-Linking Agents. J. Food Sci. Technol. 2014, 51(7), 1326–1333. DOI: 10.1007/s13197-012-0652-9.
  • Díaz, O.; Candia, D.; Cobos, A. Effects of Ultraviolet Radiation on Properties of Films from Whey Protein Concentrate Treated Before or After Film Formation. Food Hydrocoll. 2016, 55, 189–199. DOI: 10.1016/j.foodhyd.2015.11.019.
  • Zhou, Y.; Chi, Z.; Qi, X.; Wang, W.; Yu, L.; Dong, Y.; Qian, C.; Fu, Y. Degradable Photo-Crosslinked Starch-Based Films with Excellent Shape Memory Property. Int J Biol Macromol. 2021, 193, 1685–1693. DOI: 10.1016/j.ijbiomac.2021.10.227.
  • Martínez, P.; Betalleluz-Pallardel, I.; Cuba, A.; Peña, F.; Cervantes-Uc, J. M.; Uribe-Calderón, J. A.; Velezmoro, C. Effects of Natural Freeze-Thaw Treatment on Structural, Functional, and Rheological Characteristics of Starches Isolated from Three Bitter Potato Cultivars from the Andean Region. Food Hydrocolloids. 2022, 132, 107860. DOI: 10.1016/j.foodhyd.2022.107860.
  • Ma, Q.; Hu, D.; Wang, L. Preparation and Physical Properties of Tara Gum Film Reinforced with Cellulose Nanocrystals. Int J Biol Macromol. 2016, 86, 606–612. DOI: 10.1016/j.ijbiomac.2016.01.104.
  • Ibarz, R.; Garvín, A.; Aguilar, K.; Ibarz, A. Kinetic Study and Modelling of the UV Photodegradation of Thiabendazole. Food. Res. Int. 2016, 81, 133–140. DOI: 10.1016/j.foodres.2015.12.014.
  • Pérez-Córdoba, L. J.; Norton, I. T.; Batchelor, H. K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P. J. A. Physico-Chemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Based Films Loaded with Nanoemulsions Encapsulating Active Compounds. Food Hydrocoll. 2018, 79, 544–559. DOI: 10.1016/j.foodhyd.2017.12.012.
  • Gontard, N.; Guilbert, S.; Cuq, J. Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film. J. Food Sci. 1992, 57(1), 190–199. DOI: 10.1111/j.1365-2621.1992.tb05453.x.
  • Condés, M. C.; Añón, M. C.; Mauri, A. N.; Dufresne, A. Amaranth Protein Films Reinforced with Maize Starch Nanocrystals. Food Hydrocoll. 2015, 47, 146–157. DOI: 10.1016/j.foodhyd.2015.01.026.
  • Goswami, T. H.; Maiti, M. M. Biodegradability of Gelatin—PF Resin Blends by Soil Burial Method. Polym. Degrad. Stab. 1998, 61(2), 351–359. DOI: 10.1016/S0141-3910(97)00222-X.
  • Nandi, S.; Guha, P. Modelling the Effect of Guar Gum on Physical, Optical, Barrier and Mechanical Properties of Potato Starch Based Composite Film. Carbohydr. Polym. 2018, 200, 498–507. DOI: 10.1016/j.carbpol.2018.08.028.
  • Dai, L.; Zhang, J.; Cheng, F. Cross-Linked Starch-Based Edible Coating Reinforced by Starch Nanocrystals and Its Preservation Effect on Graded Huangguan Pears. Food Chem. 2020, 311, 125891. DOI: 10.1016/j.foodchem.2019.125891.
  • García, N. L.; Ribba, L.; Dufresne, A.; Aranguren, M.; Goyanes, S. Effect of Glycerol on the Morphology of Nanocomposites Made from Thermoplastic Starch and Starch Nanocrystals. Carbohydr. Polym. 2011, 84(1), 203–210. DOI: 10.1016/j.carbpol.2010.11.024.
  • BenBettaïeb, N.; Karbowiak, T.; Bornaz, S.; Debeaufort, F. Spectroscopic Analyses of the Influence of Electron Beam Irradiation Doses on Mechanical, Transport Properties and Microstructure of Chitosan-Fish Gelatin Blend Films. Food Hydrocoll. 2015, 46, 37–51. DOI: 10.1016/j.foodhyd.2014.09.038.
  • Bel Haaj, S.; Thielemans, W.; Magnin, A.; Boufi, S. Starch Nanocrystals and Starch Nanoparticles from Waxy Maize as Nanoreinforcement: A Comparative Study. Carbohydr. Polym. 2016, 143, 310–317. DOI: 10.1016/j.carbpol.2016.01.061.
  • Piyada, K.; Waranyou, S.; Thawien, W. Mechanical, Thermal and Structural Properties of Rice Starch Films Reinforced with Rice Starch Nanocrystals. Int. Food Res. J. 2013, 20, 439–449.
  • Bajer, D.; Janczak, K.; Bajer, K. Novel Starch/Chitosan/Aloe Vera Composites as Promising Biopackaging Materials. J Polym. Environ. 2020, 28(3), 1021–1039. DOI: 10.1007/s10924-020-01661-7.
  • Rajisha, K. R.; Maria, H. J.; Pothan, L. A.; Ahmad, Z.; Thomas, S. Preparation and Characterization of Potato Starch Nanocrystal Reinforced Natural Rubber Nanocomposites. Int J Biol Macromol. 2014, 67, 147–153. DOI: 10.1016/j.ijbiomac.2014.03.013.
  • Oliveira, A. V.; da Silva, A. M.; Barros, M. O.; de sá, M.; Souza Filho, M.; Rosa, M. F.; Azeredo, H. M. Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. Starch Stärke. 2018, 70(11–12), 1800028. DOI: 10.1002/star.201800028.
  • Hao, Y.; Chen, Y.; Li, Q.; Gao, Q. Preparation of Starch Nanocrystals Through Enzymatic Pretreatment from Waxy Potato Starch. Carbohydr. Polym. 2018, 184, 171–177. DOI: 10.1016/j.carbpol.2017.12.042.
  • Antoniou, J.; Liu, F.; Majeed, H.; Zhong, F. Characterization of Tara Gum Edible Films Incorporated with Bulk Chitosan and Chitosan Nanoparticles: A Comparative Study. Food Hydrocoll. 2015, 44, 309–319. DOI: 10.1016/j.foodhyd.2014.09.023.
  • Medrano de Jara, E.; García-Hernández, E.; Quequezana-Bedregal, M.; Arrieta-González, C.; Salgado-Delgado, R.; Lastarria-Tapia, H.; Castañón-Vilca, J. Potato Starch-Based Films: Effects of Glycerol and Montmorillonite Nanoclay Concentration. Revista Mexicana de Ingenieria Quimica. 2020, 19, 627–637. DOI: 10.24275/rmiq/Poli779.
  • International Organization for Standardization. ISO 20200:2015. Plastics — Determination of the Degree of Disintegration of Plastic Materials Under Simulated Composting Conditions in a Laboratory-Scale Test.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.